正态分布教学设计方案书
正态分布教学设计方案书

普通高中课程标准实验教科书数学(人教A版)选修2-32。
4 正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1。
通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1。
什么是正态曲线?问题2。
什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解]从正态曲线可知,该正态曲线关于直线x=20对称,最大值为错误!,所以μ=20,错误!=错误!,∴σ=错误!。
于是φμ,σ(x)=错误!·e错误!,x∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(错误!)2=2。
方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1。
对称轴方程x=μ;2.最值错误!。
这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x)中便可求出相应的解析式.变式训练1.如图,曲线C1:f(x)=错误!e错误!(x∈R),曲线C2:φ(x)=错误!e-错误!(x∈R),则()A.μ1〈μ2B.曲线C1与x轴相交C.σ1>σ2D.曲线C1,C2分别与x轴所夹的面积相等解析:选D。
正态分布示范教案

正态分布示范教案第一章:正态分布的定义与特征1.1 引入:通过现实生活中的例子(如考试分数、人的身高等)引导学生了解正态分布的概念。
1.2 讲解正态分布的定义:一个连续型随机变量X服从正态分布,如果其概率密度函数为f(x) = (1/σ√(2π)) e^(-(x-μ)^2/(2σ^2)),其中μ是分布的均值,σ是分布的标准差。
1.3 分析正态分布的特征:均值、标准差、对称性、拖尾现象等。
1.4 练习:让学生通过图表或计算器观察正态分布的特性。
第二章:正态分布的参数估计2.1 引入:讲解参数估计的概念,以及正态分布参数估计的重要性。
2.2 讲解均值和标准差的点估计:利用样本均值和样本标准差来估计总体均值和总体标准差。
2.3 讲解置信区间:以样本均值为例,讲解如何计算置信区间,并解释其含义。
2.4 练习:让学生运用给出的数据,计算正态分布的均值和标准差的点估计,以及置信区间。
第三章:正态分布的假设检验3.1 引入:讲解假设检验的概念,以及正态分布假设检验的应用。
3.2 讲解单样本Z检验:通过给出样本数据,引导学生了解如何进行正态分布的单样本Z检验。
3.3 讲解两样本Z检验:通过给出两个样本数据,引导学生了解如何进行正态分布的两样本Z检验。
3.4 练习:让学生运用给出的数据,进行正态分布的假设检验。
第四章:正态分布的应用4.1 引入:讲解正态分布在日常生活中的应用,如质量控制、医学等领域。
4.2 讲解正态分布的应用案例:如某产品的质量控制,如何利用正态分布进行控制限的确定。
4.3 讲解正态分布在其他领域的应用:如医学中正常值的判断、心理测量等。
4.4 练习:让学生通过实例,运用正态分布解决实际问题。
第五章:总结与拓展5.1 总结:回顾本章所讲内容,让学生掌握正态分布的定义、特征、参数估计和假设检验。
5.2 拓展:讲解其他连续型分布,如t分布、卡方分布等,以及它们与正态分布的关系。
5.3 练习:让学生运用所学的知识,解决更复杂的实际问题。
正态分布教学设计方案书

A版)选修2-32.4 正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1.什么是正态曲线?问题2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解] 从正态曲线可知,该正态曲线关于直线x =20对称,最大值为12π,所以μ=20, 12πσ=12π, ∴σ= 2.于是φμ,σ(x )=12π·e-x -2024,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1.对称轴方程x =μ;2.最值1σ2π.这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x )中便可求出相应的解析式.变式训练1.如图,曲线C 1:f (x )=12πσ21e -x -μ2 2σ2(x ∈R ),曲线C 2:φ(x )=12πσ2e-x -μ2 2σ2(x ∈R ),则( )A .μ1<μ2B .曲线C 1与x 轴相交 C .σ1>σ2D .曲线C 1,C 2分别与x 轴所夹的面积相等解析:选D.由正态曲线的特点易知μ1>μ2,σ1<σ2,曲线C 1,C 2分别与x 轴所夹面积相等,故选D.例2.设X ~N (1,22),试求: (1)P (-1<X ≤3);(2)P (3<X ≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ)=0.682 6.(2)因为P(3<X≤5)=P(-3≤X<-1),所以P(3<X≤5)=12[P(-3<X≤5)-P(-1<X≤3)]=12[P(1-4<X≤1+4)-P(1-2<X≤1+2)]=12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9.方法归纳对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:(1)对任意的a,有P(X<μ-a)=P(X>μ+a);(2)P(X<x0)=1-P(X≥x0);(3)P(a<X<b)=P(X<b)-P(X≤a).变式训练2.在某项测量中,测量结果服从正态分布N(1,4),求正态总体X在区间(-1,1)内取值的概率.解:∵由题意知μ=1,σ=2,∴P(-1<X≤3)=P(1-2<X≤1+2)=0.682 6.又∵密度函数关于直线x=1对称,∴P(-1<X<1)=P(1<X<3)=12P(-1<X<3)=0.341 3.例3.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×(0.954 4-0.682 6)=13.59%.方法归纳运用3σ原则时,关键是将给定的区间转化为用μ再加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时,不妨先通过分解或合成,再求其对称区间概率的一半解决问题.变式训练3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12×0.954 4+12×0.682 6=0.818 5.即他在(30,60]分内赶到火车站的概率是0.818 5.例4.(1)如图为σ取三个不同值σ1,σ2,σ3时的三种正态曲线N(0,σ2)的图象,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3[解析]当μ=0,σ=1时,正态分布密度函数f(x)=12πe-x22,x∈(-∞,+∞),当x =0时,取得最大值12π,所以σ2=1.由正态曲线的特点知:当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.[答案] D(2)把一条正态曲线C 沿着x 轴正方向移动2个单位,得到一条新的曲线C ′,下列说法不正确的是( )A .曲线C ′仍然是正态曲线B .曲线C 和曲线C ′的最高点的纵坐标相等C .以曲线C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大2D .以曲线C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大2[解析] 在正态曲线沿着x 轴方向水平移动的过程中σ始终保持不变,所以曲线的最高点的纵坐标⎝ ⎛⎭⎪⎫即正态分布密度函数的最大值1σ2π和方差σ2没有变化.设曲线C 的对称轴为x =m ,那么曲线C ′的对称轴为x =m +2,说明均值从m 变到了m +2,增大了2.[答案] C(3)已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个曲线中的μ值为________.[解析] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等;又两个区间的长度相等,所以正态曲线在这两个区间上是对称的.易知区间(-3,-1)和区间(3,5)关于直线x =1对称,因此μ=1.[答案] 1[名师点评] (1)正态曲线在x =μ处达到峰值1σ2π及当μ一定时,曲线的形状由σ确定这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质,由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线及x 轴所围成的平面图形的面积,就是随机变量X 落在区间(a ,b )的概率的近似值,以及正态曲线的对称性.应注意的是,如果两个区间的长度不相等,就不能根据这两个区间上位于正态曲线下方的面积相等得出正态曲线在这两个区间上是对称的.例5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( )A .0.158 8B .0.158 7C .0.158 6D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P 2≤X ≤42=0.158 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.四.目标检测1.判断下列各题.(对的打“√”,错的打“×”) (1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( ) (3)正态曲线可以关于y 轴对称.( ) 答案:(1)× (2)× (3)√2.下列函数是正态分布密度函数的是( )A .f (x )=12πσex -μ2 2σ2,μ,σ(σ>0)都是实数B .f (x )=2π2π·e -x 22C .f (x )=122πex -12 σD .f (x )=12πe x 22解析:选B.f (x )=2π2π·e -x 22=12πe -x 22.3.设X ~N (μ,σ2),当X 在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=________.解析:根据正态曲线的对称性知μ=4. 答案:44.如何求服从正态分布的随机变量X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在x =μ对称的区间上概率相等求得结果.五.课堂小结 六.课后作业:[学业水平训练]1.(2014·东营检测)设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4解析:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.2.设随机变量X ~N (1,32),则D (13X )等于( )A .9B .3C .1D.13解析:选C.∵X ~N (1,32),∴D (X )=9. ∴D (13X )=19D (X )=1.3.(2014·沈阳高二检测)设随机变量ξ~N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( ) A.12+p B .1-p C .1-2pD.12-p 解析:选D.如图,P (ξ>1)表示x 轴、x >1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x 轴、x <-1与正态密度曲线围成区域的面积也为p ,所以P (-1<ξ<0)=1-2p 2=12-p .4.关于正态分布N (μ,σ2),下列说法正确的是( ) A .随机变量落在区间长度为3σ的区间之外是一个小概率事件 B .随机变量落在区间长度为6σ的区间之外是一个小概率事件 C .随机变量落在(-3σ,3σ)之外是一个小概率事件 D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件 解析:选D.∵P (μ-3σ<X <μ+3σ)=0.997 4.∴P (X >μ+3σ或X <μ-3σ)=1-P (μ-3σ<X <μ+3σ)=1-0.997 4=0.002 6. ∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.5.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为( )A .(1,12π)B .(1,2)C .(12π,1) D .(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x =1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%, ∴1-3σ=-2,1+3σ=4,∴σ=1. ∴f (x )=12πe-x -122,x ∈R ,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π.6.(2014·临沂一中检测)如图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ“瘦高”. 答案:① ② ③7.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________.解析:由于随机变量X ~N (μ,σ2),其中概率密度函数关于x =μ对称,故P (X ≤μ)=12. 答案:128.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-0.8)=0.1.答案:0.19.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)=0.682 6P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=0.271 82=0.135 9.10.商场经营的某种包装的大米质量X 服从正态分布N (10,0.12)(单位:kg),任取一袋大米,质量在10 kg ~10.2 kg 的概率是多少?解:∵X ~N (10,0.12), ∴μ=10,σ=0.1.∴P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)=0.954 4. 又∵正态曲线关于直线x =10对称,∴P (10<X ≤10.2)=12P (9.8<X ≤10.2)=0.477 2,∴质量在10 kg ~10.2 kg 的概率为0.477 2.。
高中数学教案正态分布

高中数学教案-正态分布一、教学目标1. 了解正态分布的概念,理解正态分布曲线的特点及应用。
2. 学会计算正态分布的概率密度函数,掌握正态分布的性质。
3. 能够运用正态分布解决实际问题,提高解决问题的能力。
二、教学重点与难点1. 重点:正态分布的概念、性质及应用。
2. 难点:正态分布的概率密度函数的计算及应用。
三、教学准备1. 教学工具:黑板、粉笔、多媒体课件。
2. 教学素材:正态分布的相关案例、练习题。
四、教学过程1. 导入:通过一个具体案例,引发学生对正态分布的兴趣,例如“考试分数的分布”。
2. 新课讲解:a) 介绍正态分布的定义及特点b) 讲解正态分布的概率密度函数c) 阐述正态分布的性质3. 案例分析:分析一些实际问题,运用正态分布解决问题,如“药物疗效的评估”。
4. 练习巩固:让学生独立完成一些关于正态分布的练习题,加深对知识点的理解。
5. 总结拓展:引导学生思考正态分布在其他领域的应用,如“经济学、生物学”。
五、课后作业1. 复习正态分布的概念、性质及概率密度函数。
2. 完成课后练习题,巩固所学知识。
3. 选择一个感兴趣的领域,查找正态分布在该领域的应用案例,下节课分享。
六、教学评估1. 课堂提问:通过提问了解学生对正态分布概念的理解程度,以及对正态分布性质和概率密度函数的掌握情况。
2. 课后作业:检查学生完成课后练习题的情况,评估学生对正态分布知识的掌握程度。
3. 案例分析报告:评估学生在案例分析中的表现,考察学生运用正态分布解决实际问题的能力。
七、教学策略1. 采用直观演示法,通过多媒体课件展示正态分布曲线,帮助学生形象地理解正态分布的特点。
2. 采用案例分析法,让学生在实际问题中体验正态分布的应用,提高解决问题的能力。
3. 采用分组讨论法,鼓励学生互相交流、合作解决问题,提高学生的团队协作能力。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的认知水平。
2. 反思教学方法:评估所采用的教学方法是否有效,是否能够激发学生的兴趣和参与度。
《正态分布》教学设计方案

《正态分布》教学设计方案
课堂活动2:“门高的秘密”
问题1:我们每天都从这扇门进出,你们知道它的高度吗?为什么门要设定这样的高度吗?它和我们的身高是否有着某种必然的联系?
课前准备:学生两人为一组,搜集我校学生的身高
做一做:请同学们利用前收集的身高数据,借助Excel制作频率分布直方图。
(组距选择分为20cm、
正态曲线:
曲线中任意的一个x均对应着唯一的一个y值,经过拟合,这条曲线是(或近
同学们操作几何画板学习软件,通过观察正态曲线思考以下问题:
(1)曲线的位置分布
()9974.033=+≤-σμσμX P <从图中可发现:在()σμσμ3,3+-区间以外取
值的概率只有0.0026,通常认为这种情况在一次试验中几乎不可能发生。
教学后记:
对于本节课,我有几点感受:
“情”动数学
我通过多种信息化教学手段,创设与学生所学专业相结合的情境,激发学习热情使学生主动去了解、学习正态分布的相关知识.。
高中高三数学《正态分布》教案、教学设计

6.预习任务:布置下一节课的相关内容,要求学生进行预习,为课堂学习做好准备。
在布置作业时,要注意以下几点:
1.针对不同层次的学生,适当调整作业难度,确保每个学生都能在完成作业的过程中获得成就感。
1.提问:询问学生关于数据分布的知识,如“你们在生活中见过哪些数据呈现一定的分布规律?”
2.实例展示:利用多媒体展示一些生活中的数据分布图像,如学生身高、考试成绩等,让学生观察并总结这些分布的特点。
3.引入正态分布:通过分析实例,引导学生发现这些数据分布的共同点,即呈现出对称、钟形的形状,从而引出正态分布的概念。
-练习巩固:设计难易程度不同的练习题,让学生在练习中巩固所学知识,提高解题能力。
3.评价与反馈:
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业等,全面了解学生的学习情况。
-针对学生的个体差异,给予有针对性的指导和建议,帮助他们克服学习难点,提高学习效果。
-定期进行教学反思,根据学生的学习情况和反馈,调整教学策略,不断提高教学质量。
因此,在教学过程中,应关注学生的个体差异,因材施教,充分调动他们的学习积极性,提高正态分布这一章节的教学效果。同时,注重培养学生的学习兴趣和实际应用能力,使他们在掌握知识的同时,增强数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正态分布的概念、性质、图像特点及其在实际中的应用。
2.难点:正态分布的概率计算、期望和方差的推导及在实际问题中的运用。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发他们学习数学的兴趣,使他们认识到数学知识在现实生活中的重要作用。
人教版高中选修2-3《正态分布》教案

人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。
2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。
3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。
二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。
2.教学难点:–正态分布在实际中的广泛应用。
三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。
2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。
3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。
2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。
2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。
3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。
3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。
2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。
四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。
2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。
2.4正态分布教案

2.4正态分布教案篇一:2.4正态分布教学设计教案教学准备1.教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
2.教学重点/难点1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用3.教学用具课件4.标签正态分布,正态曲线性质教学过程山东省信息技术与课堂整合优质课评选《正态分布》教学设计五莲县第三中学李治国《正态分布》教学设计一、教学分析(一)教学目标1、知识:了解正态分布在实际生活中的意义和作用;结合正态曲线,加深对正态密度函数的理解;通过正态分布的图形特征,归纳正态曲线的性质;结合3σ原则对服从正态分布的变量进行简单决策2、能力:提高学生的整体认知能力、快速提取信息能力、识图能力、理论联系实际分析问题、解决问题的能力。
(二)重难点:1、重点:正态分布的概念和性质2、难点:正态分布(曲线)的性质及3σ原则简单应用二、教学过程及多媒体的应用本课主要利用powerpoint,数学专用scilab随机数表生成程序,几何画板,mathtype编辑程序制作了教学课件,因为本节内容所用数据以及公式较多,又需要使用数据构造作图并估计,是本节教学中的一个难点,传统教学很难解决课堂上大量的数据分组和作图问题,而利用以上媒体设计使数据分组快速直接,并能让图像动起来,能够节省课堂上的教学时间,提高教学效率,加大课堂容量,利用动画设计突破了研究正态曲线性质的教学难点,更有利于学生直观感知,总之,使用多媒体技术能够化抽象为具体,化分散为紧凑。
给学生以动感的认识,高度浓缩时空,有效突破重难点,激活课堂,起到事半功倍的效果。
(-)(复习导入)1、(1)运用多媒体画出频率分布直方图和总体密度曲线.(2)当样本容量n无限增大时,频率分布直方图变化的情况?(3)重新感知“样本容量越大,总体估计就越精确”.2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.多媒体的作用:展示以前学习知识,回顾总结,引出课题(二)具体学习阶段自主学习探究一:概率密度函数的概念和函数形式其中:π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差,正态分布一般记为n(μ,σ2).注意:①函数表达式的形式②当μ=0、σ=1时,正态总体称为标准正态总体,其相应的函数表示式是其相应的曲线称为标准正态曲线.多媒体作用:用图形展示数据的总体趋势,引出概念,展示函数形式,给学生以函数的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书数学(人教A版)选修2-32.4 正态分布设计教师:高二数学组一、教学目标及其解析(一)教学目标:1.通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.2.了解正态曲线的基本特点.3.了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.(二)解析:正态分布在统计中是很常见的分布,它能刻画很多随机现象。
从生活实践入手,描绘频率直方图,进而理解正态曲线,结合定积分的有关知识理解其概率分布列,结合图象认识参数μ,σ的几何意义.提高学生用数学知识分析现实问题的能力.善于从复杂多变的现象中发现问题的实质,提高识别能力.二、教学重难点解析(一)重点、难点:重点:了解正态曲线随着参数μ和σ变化而变化的特点.了解正态分布的3σ原则.难点:通过正态曲线的图象认识正态曲线,通过正态曲线了解正态分布.(二)解析:正态分布密度函数的推导是十分困难的,一般教科书采用直接给出正态分布密度函数表达式的方法,这使学生在很长一段时间是不理解正态分布的实际含义。
可以通过直观方法引入正态分布密度曲线,也可以用样本平均值和样本标准差来估计,正态曲线的特点包括图像与坐标轴之间的关系,单峰性,对称性,峰值的位置环境等。
三、教学过程设计问题1.什么是正态曲线?问题2.什么是正态分布?正态分布又有哪些特点?例1.如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机总量的均值和方差.[解]从正态曲线可知,该正态曲线关于直线x=20对称,最大值为12π,所以μ=20, 12πσ=12π, ∴σ= 2.于是φμ,σ(x )=12π·e-x -2024,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.方法归纳本题主要考查正态曲线的图象及性质特点,其具有两大明显特征:1.对称轴方程x =μ;2.最值1σ2π.这两点把握好了,参数μ,σ便确定了,代入φμ,σ(x )中便可求出相应的解析式.变式训练1.如图,曲线C 1:f (x )=12πσ21e -x -μ22σ2(x ∈R),曲线C 2:φ(x )=12πσ2e-x -μ22σ2(x ∈R),则( )A .μ1<μ2B .曲线C 1与x 轴相交 C .σ1>σ2D .曲线C 1,C 2分别与x 轴所夹的面积相等解析:选D.由正态曲线的特点易知μ1>μ2,σ1<σ2,曲线C 1,C 2分别与x 轴所夹面积相等,故选D.例2.设X ~N (1,22),试求: (1)P (-1<X ≤3);(2)P (3<X ≤5).[解] 因为X ~N (1,22),所以μ=1,σ=2. (1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)=0.682 6. (2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5)=12[P(-3<X≤5)-P(-1<X≤3)]=12[P(1-4<X≤1+4)-P(1-2<X≤1+2)]=12[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9.方法归纳对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:(1)对任意的a,有P(X<μ-a)=P(X>μ+a);(2)P(X<x0)=1-P(X≥x0);(3)P(a<X<b)=P(X<b)-P(X≤a).变式训练2.在某项测量中,测量结果服从正态分布N(1,4),求正态总体X在区间(-1,1)内取值的概率.解:∵由题意知μ=1,σ=2,∴P(-1<X≤3)=P(1-2<X≤1+2)=0.682 6.又∵密度函数关于直线x=1对称,∴P(-1<X<1)=P(1<X<3)=12P(-1<X<3)=0.341 3.例3.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少?(2)成绩在80~90之间的学生占多少?[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=0.682 6=68.26%,∴不及格的学生所占的比为12×(1-0.682 6)=0.158 7=15.87%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×(0.954 4-0.682 6)=13.59%.方法归纳运用3σ原则时,关键是将给定的区间转化为用μ再加上或减去几个σ来表示;当要求服从正态分布的随机变量的概率其所在的区间不对称时,不妨先通过分解或合成,再求其对称区间概率的一半解决问题.变式训练3.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12×0.954 4+12×0.682 6=0.818 5.即他在(30,60]分内赶到火车站的概率是0.818 5.例 4.(1)如图为σ取三个不同值σ1,σ2,σ3时的三种正态曲线N(0,σ2)的图象,那么σ1,σ2,σ3的大小关系是() A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3[解析]当μ=0,σ=1时,正态分布密度函数f(x)=12πe-x22,x∈(-∞,+∞),当x=0时,取得最大值12π,所以σ2=1.由正态曲线的特点知:当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.[答案]D(2)把一条正态曲线C沿着x轴正方向移动2个单位,得到一条新的曲线C′,下列说法不正确的是()A.曲线C′仍然是正态曲线B.曲线C和曲线C′的最高点的纵坐标相等C .以曲线C ′为概率密度曲线的总体的方差比以曲线C 为概率密度曲线的总体的方差大2D .以曲线C ′为概率密度曲线的总体的均值比以曲线C 为概率密度曲线的总体的均值大2[解析] 在正态曲线沿着x 轴方向水平移动的过程中σ始终保持不变,所以曲线的最高点的纵坐标⎝ ⎛⎭⎪⎫即正态分布密度函数的最大值1σ2π和方差σ2没有变化.设曲线C 的对称轴为x =m ,那么曲线C ′的对称轴为x =m +2,说明均值从m 变到了m +2,增大了2.[答案] C(3)已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个曲线中的μ值为________.[解析] 正态总体的数据落在这两个区间内的概率相等,说明在这两个区间上位于正态曲线下方的面积相等;又两个区间的长度相等,所以正态曲线在这两个区间上是对称的.易知区间(-3,-1)和区间(3,5)关于直线x =1对称,因此μ=1.[答案] 1[名师点评] (1)正态曲线在x =μ处达到峰值1σ2π及当μ一定时,曲线的形状由σ确定这两条性质.根据题设中的图象,数形结合易得到结论.(2)理解正态分布的实质,由正态曲线,过点(a,0)和点(b,0)的两条x 轴的垂线及x 轴所围成的平面图形的面积,就是随机变量X 落在区间(a ,b )的概率的近似值,以及正态曲线的对称性.应注意的是,如果两个区间的长度不相等,就不能根据这两个区间上位于正态曲线下方的面积相等得出正态曲线在这两个区间上是对称的.例5.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 6,则P (X >4)=( )A .0.158 8B .0.158 7C .0.158 6D .0.158 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P 2≤X ≤42=0.158 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.四.目标检测1.判断下列各题.(对的打“√”,错的打“×”)(1)函数φμ,σ(x )中参数μ,σ的意义分别是样本的均值与方差.( )(2)正态曲线是单峰的,其与x 轴围成的面积是随参数μ,σ的变化而变化的.( ) (3)正态曲线可以关于y 轴对称.( ) 答案:(1)× (2)× (3)√2.下列函数是正态分布密度函数的是( ) A .f (x )=12πσex -μ22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2π·e -x 22C .f (x )=122πex -12σD .f (x )=12πe x 22 解析:选B.f (x )=2π2π·e -x 22=12πe -x22.3.设X ~N (μ,σ2),当X 在(1,3]内取值的概率与在(5,7]内取值的概率相等时,μ=________.解析:根据正态曲线的对称性知μ=4. 答案:44.如何求服从正态分布的随机变量X 在某区间内取值的概率?解:首先找出服从正态分布时μ,σ的值,再利用3σ原则求某一个区间上的概率,最后利用在x =μ对称的区间上概率相等求得结果.五.课堂小结 六.课后作业:[学业水平训练]1.(2014·东营检测)设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c =( )A .1B .2C .3D .4解析:选B.∵μ=2,由正态分布的定义知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2.故选B.2.设随机变量X ~N (1,32),则D (13X )等于( )A .9B .3C .1D.13解析:选C.∵X ~N (1,32),∴D (X )=9. ∴D (13X )=19D (X )=1.3.(2014·沈阳高二检测)设随机变量ξ~N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( )A.12+p B .1-p C .1-2pD.12-p 解析:选D.如图,P (ξ>1)表示x 轴、x >1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x 轴、x <-1与正态密度曲线围成区域的面积也为p ,所以P (-1<ξ<0)=1-2p 2=12-p .4.关于正态分布N (μ,σ2),下列说法正确的是( ) A .随机变量落在区间长度为3σ的区间之外是一个小概率事件 B .随机变量落在区间长度为6σ的区间之外是一个小概率事件 C .随机变量落在(-3σ,3σ)之外是一个小概率事件 D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件 解析:选D.∵P (μ-3σ<X <μ+3σ)=0.997 4.∴P (X >μ+3σ或X <μ-3σ)=1-P (μ-3σ<X <μ+3σ)=1-0.997 4=0.002 6.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.5.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为99.7%,则该正态总体对应的正态曲线的最高点的坐标为()A.(1,12π) B.(1,2)C.(12π,1) D.(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x=1对称,所以μ=1.又在区间(-2,4)内的概率为99.7%,∴1-3σ=-2,1+3σ=4,∴σ=1.∴f(x)=12πe-x-122,x∈R,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π.6.(2014·临沂一中检测)如图是三个正态分布X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的________、________、________.解析:在密度曲线中,σ“瘦高”.答案:①②③7.若随机变量X~N(μ,σ2),则P(X≤μ)=________.解析:由于随机变量X~N(μ,σ2),其中概率密度函数关于x=μ对称,故P(X≤μ)=12.答案:1 28.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P(ξ>2)=12×[1-2P(0<ξ<1)]=12×(1-0.8)=0.1.答案:0.19.设X~N(5,1),求P(6<X≤7).解:由已知得P (4<X ≤6)=0.682 6P (3<X ≤7)=0.954 4.又∵正态曲线关于直线x =5对称,∴P (3<X ≤4)+P (6<X ≤7)=0.954 4-0.682 6 =0.271 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=0.271 82=0.135 9.10.商场经营的某种包装的大米质量X 服从正态分布N (10,0.12)(单位:kg),任取一袋大米,质量在10 kg ~10.2 kg 的概率是多少?解:∵X ~N (10,0.12), ∴μ=10,σ=0.1.∴P (9.8<X ≤10.2)=P (10-2×0.1<X ≤10+2×0.1)=0.954 4. 又∵正态曲线关于直线x =10对称,∴P (10<X ≤10.2)=12P (9.8<X ≤10.2)=0.477 2,∴质量在10 kg ~10.2 kg 的概率为0.477 2.。