2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数

合集下载

山东省2014届高三数学一轮复习考试试题精选(1)分类汇编6《二次函数》.pdf

山东省2014届高三数学一轮复习考试试题精选(1)分类汇编6《二次函数》.pdf

山东省2014届高三数学一轮复习考试试题精选(1)分类汇编6:二次函数 一、选择题 .(山东省临沂一中2014届高三9月月考数学(理科)试题)若函数在区间上是减函数,则实数的取值范围是( ) A.B.C.D. 【答案】A .(山东省潍坊市2014届高三上学期期中考试数学(理)试题)不等式≤0对于任意及恒成立,则实数的取值范围是≤B.≥C.≥D.≥ 【答案】D .(山东省威海市乳山一中2014届高三上学期第一次质量检测数学试题)若关于x的方程有四个不同的实数解,则实数m的取值范围是( ) A.B.C.D. 【答案】C .(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)已知函数,且,则下列说法正确的是( ) A.B.C.D.与的大小关系不能确定 【答案】A .(山东省实验中学2014届高三上学期第二次诊断性测试数学(理)试题)已知对任意的,函数的值总大于0,则的取值范围是B.C.D. 【答案】B .(山东省日照市第一中学2014届高三上学期第一次月考数学(理)试题)已知函数在区间上有最大值3,最小值2,则的取值范围是( ) A.B.C.D. 【答案】D .(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)函数是单调函数的充要条件是( ) A.B.C.D. 【答案】A .(山东省菏泽市2014届高三上学期期中考试数学(理)试题)若关于的方程有四个不同的实数解,则实数的取值范围是B.C.D.【答案】C二、填空题 .(山东师大附中2014届高三第一次模拟考试数学试题)已知满足,则______________ . 【答案】 三、解答题 .(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)设函数f(x)=x2-2|x|-1 (-3≤x≤3), (1)证明f(x)是偶函数; (2)画出这个函数的图象; (3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增还是减函数; (4)求函数的值域. 【答案】(1)证明 ∵x∈[-3,3],∴f(x)的定义域关于原点对称. f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x≥0时,f(x)=x2-2x-1=(x-1)2-2, 当x<0时,f(x)=x2+2x-1=(x+1)2-2, 即f(x)=根据二次函数的作图方法,可得函数图象如图.(3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3]. f(x)在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数.(4)解 当x≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2;当x<0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2.故函数f(x)的值域为[-2,2]. .(山东省烟台二中2014届高三10月月考理科数学试题)已知二次函数f(x)=ax24x+c.若f(x)<0的解集是(1,5)(1)求实数a,c的值;(2)求函数f(x)在x∈[0,3]上的值域.【答案】解:(1)由f(x)<0,得:ax24x+c<0,不等式ax24x+c0,∴f(a)=2-a|a+3|=-a2-3a+2=-. ∵二次函数f(a)在上单调递减,∴≤f(a)≤f(-1),即-≤f(a)≤4,∴f(a)的值域为 [-,4]. .(山东省临沂一中2014届高三9月月考数学(理科)试题)设函数. (1)在区间上画出函数的图象 ;(2)设集合. 试判断集合和之间的关系,并给出证明 ;(3)当时,求证:在区间上,的图象位于函数图象的上方. 【答案】 解:(1)函数在区间上画出的图象如下图所示: (2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此 由于 (3)解法一:当时,. 设 , . 又,① 当,即时,取, . , 则 ② 当,即时,取,=. 由 ①.②可知,当时,, 因此,在区间上,的图象位于函数图象的上方 解法二:当时,. 由 得, 令 ,解得 或, 在区间上,当时,的图象与函数的图象只交于一点; 当时,的图象与函数的图象没有交点. 由于直线过点,当时,直线是由直线绕点逆时针方向旋转得到. 因此,在区间上,的图象位于函数图象的上方.。

一轮复习2014届高三数学

一轮复习2014届高三数学

个零点 0. 4. [2013·北京卷] “φ=π”是“曲线 y=sin(2x+φ)过坐标原点”的( )
A.充分而不必要条件
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

山东省2014届理科数学一轮复习试题选编:指数函数、对数函数、幂函数(教师版)

山东省2014届理科数学一轮复习试题选编:指数函数、对数函数、幂函数(教师版)

山东省2014届理科数学一轮复习试题选编:指数函数、对数函数、幂函数一、选择题1 .(山东省烟台市2013届高三3月诊断性测试数学理试题)已知幂函数y=f(x)的图象过点(12),则log 2f(2)的值为 ( )A .12 B .-12C .2D .-2【答案】A 设幂函数为()f x x α=,则11()()222f α==,解得12α=,所以()f x =,所以(2)f =即221log (2)log 2f ==,选A . 2 .(山东省德州市2013届高三上学期期末校际联考数学(理))已知a>0,b>0,且1ab =,则函数()x f x a =与函数()1b g x og x =的图象可能是【答案】D【解析】因为对数函数()1b g x og x =的定义域为(0,)+∞,所以排除A,C .因为1ab =,所以1b a=,即函数()xf x a =与()1bg x og x =的单调性相反.所以选 D .3 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)下列函数图象中,正确的是【答案】C【解析】A 中幂函数中0a <而直线中截距1a >,不对应.B 中幂函数中12a =而直线中截距1a >,不对应.D 中对数函数中1a >,而直线中截距01a <<,不对应,选C .4 .(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出其中两个函数在( )A .BC .D【答案】B【解析】A 中1()x f x a =单调递增,所以1a >,而幂函数2()a f x x =递减,0a <,所以不正确.B 中3()log a f x x =单调递增,所以1a >,而幂函数2()a f x x =递增,,所以正确.C 中1()x f x a =单调递增,所以1a >,而3()log a f x x =递减,01a <<,所以不正确.D 中1()x f x a =单调递减,所以01a <<,而幂函数2()a f x x =递增,0a >,所以不正确.所以正确的是B .5 .(2012年高考(四川文))函数(0,1)xy a a a a =->≠的图象可能是【答案】 [答案]C[解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合.6 .(山东省曲阜市2013届高三11月月考数学(理)试题)函数log (||1)(1)a y x a =+>的大致图象是A .B .C .D .【答案】B7 .(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数9()4(1)1f x x x x =-+>-+,当x=a 时,()f x 取得最小值,则在直角坐标系 中,函数11()()x g x a+=的大致图象为【答案】B 9941+511y x x x x =-+=+-++,因为1x >-,所以910,01x x +>>+,所以由均值不等式得91+5511y x x =+-≥=+,当且仅当911x x +=+,即2(1)9x +=,所以13,2x x +==时取等号,所以2a =,所以1111()()()2x x g x a ++==,又1111(),11()()222,1x x x x g x x +++⎧≥-⎪==⎨⎪<-⎩,所以选 B . 8 .(2013陕西高考数学(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 ( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】 B9 .(2013辽宁高考数学(文))已知函数())ln31,f x x =+则()1lg 2lg 2f f ⎛⎫+= ⎪⎝⎭( )A .1-B .0C .1D .2[答案]D()3)1f x x -=+所以()()2f x f x +-=,因为lg 2,1lg 2为相反数,所以所求值为2.10.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))若点(a,9)在函数3xy =的图象上,则tan3πa 的值为 ( )A .0B .33-C .1D .3-【答案】D 【解析】因为点(,9)a 在函数3xy =的图象上,所以39a=,解得2a =,所以2t a n t a n 333a ππ==选D11.(2012年高考(四川理))函数1(0,1)x ya a a a=->≠的图象可能是【答案】 [答案]C[解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C .12.(2009高考(山东理))函数x xx xe e y--+=的图像大致为【答案】【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A .13.(2011年高考(山东理))若点(,9)a 在函数3xy =的图象上,则tan6a π的值为 ( )A .0B .3C .1D 【答案】解析:2393a==,2a =,tantan 63a ππ==答案应选D . 14.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)设11333124log ,log ,log ,233a b c ===则a,b,c 的大小关系是( )A .a b cB .c b aC .b a cD .b c aD【答案】B15.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))若函数⎪⎩⎪⎨⎧<->=0),(log 0,log )(212x x x x x f ,若0)(>-a af ,则实数a 的取值范围是( )A .)()(1,00,1⋃-B .),(),(∞+⋃-∞-11C .),()(∞+⋃-10,1 D .)(),(1,01⋃-∞- 【答案】A 【解析】若0a >,则由0)(>-a af 得, 12log 0a a >,解得01a <<,若0a <,则由0)(>-a af 得, 2log ()0a a ->,即2log ()0a -<解得01a <-<,所以10a -<<,综上01a <<或10a -<<,选A .16.已知曲线221:9436C x y +=,曲线12:3x C y +=,则1C 与2C 的交点个数为( )A .0B .1C .2D .3【答案】 C .17.(山东省日照市2013届高三12月份阶段训练数学(理)试题)已知函数()2log ,0,2,0.x x x f x x >⎧=⎨≤⎩若()12f a =,则a 等于 ( )A .1-BC .1-D .1或【答案】A 【解析】若0a >,则由()12f a =得,21log 2a =,解得a =.若0a ≤,则由()12f a =得122a =,解得1a =-,所以a =1a =-,选 ( )A .18.(2013福建高考数学(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】 A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C;由函数过)0,0(点,排除B, D .19.(2013上海春季数学(理))函数12()f x x-=的大致图像是【答案】( )A .20.(山东省潍坊市2013届高三第二次模拟考试理科数学)已知1122log (4)log (32)x y x y ++<+-,若x y λ-<恒成立, 则λ的取值范围是( )A .(],10-∞B .(),10-∞C .[)10,+∞D .()10,+∞【答案】C 要使不等式成立,则有40320432x y x y x y x y ++>⎧⎪+->⎨⎪++>+-⎩,即403203x y x y x ++>⎧⎪+->⎨⎪<⎩,设z x y =-,则y x z =-.作出不等式组对应的平面区域如图,平移直线y x z =-,由图象可知当直线y x z =-经过点B 时,直线的截距最小,此时z 最大,由403x y x ++=⎧⎨=⎩,解得73y x =-⎧⎨=⎩,代入z x y =-得3710z x y =-=+=,所以要使x y λ-<恒成立,则λ的取值范围是10λ≥,即[)10,+∞,选 C .21.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)幂函数()y f x =的图象经过点(4,12),则f(14)的值为 ( )A .1B .2C .3D .4【答案】B22.(山东省烟台市2013届高三上学期期中考试数学试题(理科))已知()()()2,log 0,1x a f x a g x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是【答案】B 【解析】由()()440f g ⋅-<知04log ,04log 2<∴<⋅a a a )(.10x f a ∴<<∴为减函数,因此可排除 ( )A .C,而)(x g 在0>x 时也为减函数,故选B .23.(山东省烟台市2013届高三上学期期中考试数学试题(理科))设5.205.2)21(,5.2,2===c b a,则c b a ,,的大小关系是 ( )A .b c a >>B .b a c >>C .c a b >>D .c b a >>【答案】D 【解析】,10,1,1<<=>c b a 所以c b a >>.故选D二、填空题24.(2013安徽高考数学(文))函数1ln(1)y x=++_____________. 【答案】(]0,1 解:2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1 25.(2013北京高考数学(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.【答案】 (-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x的值域为(0,2),所以原函数的值域为(-∞,2).26.若12()1f x x--=+,且(1)(102)f a f a +<-,则a 的取值范围为______.【答案】由12()1f x x -=+为定义在(0,)+∞上的减函数,可知101(1)(102)102053511023a a f a f a a a a a a a +>>-⎧⎧⎪⎪⎪⎪+<-⇔->⇔<⇔<<⎨⎨⎪⎪+>->⎪⎪⎩⎩27.(2012年高考(上海文))方程03241=--+x x的解是_________.【答案】 [解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x,3log 2=x .28.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【答案】 答案:14 解析:当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.另解:由函数()(14g x m =-在[0,)+∞上是增函数可知41,041<>-m m ; 当1>a 时()x f x a =在[-1,2]上的最大值为=2a 4,解得2=a ,最小值为211==-a m 不符合题意,舍去;当10<<a 时,()x f x a =在[-1,2]上的最大值为41=-a,解得41=a ,此时最小值为411612<==a m ,符合题意, 故a =41. 29.(山东省实验中学2013届高三第三次诊断性测试理科数学)若直线a y 2=与函数|1|-=x a y ()10≠>a a 且的图像有两个公共点,则a 的取值范围是____________.【答案】1(0,)2【解析】因为1x y a =-的图象是由xy a =向下平移一个单位得到,当1a >时,作出函数1x y a =-的图象如图,此时22y a =>,如图象只有一个交点,不成立. 当01a <<时,022a <<,要使两个函数的图象有两个公共点,则有021a <<,即102a <<,所以a的取值范围是1(0,)2.30.函数122(2)y xx --=-的定义域为_______________【答案】(2,)(,0)+∞⋃-∞.由122(2)y x x -=-=,故由2202x x x ->⇒>或0x <.31.(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)当1{1,,1,3},2∈-时幂函数a y x =的图象不奇能经过第_____象限. 【答案】二、四。

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。

安徽省高三数学一轮复习 考试试题精选(1)分类汇编6 指数函数、对数函数与幂函数

安徽省高三数学一轮复习 考试试题精选(1)分类汇编6 指数函数、对数函数与幂函数

安徽省2014届高三理科数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数与幂函数一、选择题1 .(安徽省屯溪一中2014届高三上学期期中考试数学(理)试题)下列区间中,函数)3ln()(x x f -=在其上为增函数的是.)(A ]2,(-∞ .)(B )3,1[ .)(C ]1,(-∞ .)(D )3,2[【答案】D2 .(安徽省迎河中学2014届高三上学期第一次月考数学(理)试题)设a=log 32,b=ln2,c=125-,则( ) A .b>a>c B .b>c>a C .a>c>b D .c>b>a 【答案】A3 .(安徽省屯溪一中2014届高三第一次月考数学(理)试题)已知函数()|lg |f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于 ( )A .BC .2+D .【答案】A 4 .(安徽省巢湖市第一中学2013-2014学年高三第一学期第一次月考数学试卷(理科))已知函数)3(log )(25.0a ax x x f +-=在),2[+∞单调递减,则a 的取值范围( )A .]4,(-∞B .),4[+∞C .]4,4[-D .]4,4(-【答案】D5 .(安徽省望江中学2014届高三上学期期中考试数学(理)试题)若11222(21)(1)m m m +>+-,则实数m 的取值范围是111.(,].[,).(1,2).[,2)222A B C D ----∞+∞- 【答案】D 二、填空题6 .(安徽省迎河中学2014届高三上学期第一次月考数学(理)试题)函数22x y a +=-的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为_______ 【答案】8 ;7 .(安徽省涡阳四中2014届高三上学期第二次月考数学(理)试题)22log 3321272log 8-⨯+=_______________【答案】198 .(安徽省安庆市第九中学2014届高三上学期期中考试数学(理)试题)当)2,1(∈x 时,不等式xx a log )1(2<-恒成立,则a 的取值范围为_____【答案】12a <≤9 .(安徽省迎河中学2014届高三上学期第一次月考数学(理)试题)函数)x 2x (log y 221-=的单调递减区间是______________ 【答案】()2,+∞;10.(安徽省泗县双语中学2014届高三9月摸底测试 数学(理)试题)要使函数12()log ()f x x m =-的图像不经过第一象限,则实数m 的取值范围是________.【答案】1-≤m 函数12()log ()f x x m =-的图像是12()log f x x =的图像向右平移m 个单位得到,如果不经过第一象限,则至少向左平移1个单位(即向右平移1-个单位),所以1-≤m .11.(安徽省阜阳一中2014届高三上学期第一次月考数学(理)试题)已知函数)53(log 221+-=ax x y 在[-1,+ ∞)上是减函数,则a 的取值范围是_____________.【答案】(–8,6] 12.(安徽省蚌埠市五河县高考辅导学校2014届高三上学期第一次月考数学(理)试题)已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是_____【答案】1<a <213.(安徽省萧县中学2014届高三理科数学月考试卷)若f(x)是幂函数,满足__________)21(,3)2()4(==f f f 则 【答案】 3114.(安徽省池州一中2014届高三上学期第三次月考数学(理)试题)幂函数2223(1)mm y m m x --=--在区间(0,)+∞上单调递减,则实数m 的值为_________.【答案】10 15.(安徽省巢湖市第一中学2013-2014学年高三第一学期第一次月考数学试卷(理科))已知函数),2()(322N k k n x x f n n∈==++-的图像在),0[+∞上单调递增,则=n ________.【答案】0或2 三、解答题16.(安徽省涡阳四中2014届高三上学期第二次月考数学(理)试题)已知函数()242 1.xxf x a =⋅--(1)当1a =时,求函数()f x 在]0,3[-∈x 的值域; (2)若关于x 的方程0)(=x f 有解,求a 的取值范围.【答案】(1)当1=a 时,12)2(21242)(2--=--⋅=xx xxx f , 令]0,3[,2-∈=x t x,则]1,81[∈t , 故]1,81[,89)41(21222∈--=--=t t t t y ,故值域为]0,89[-17.(安徽省寿县第一中学2014届高三上学期第二次月考数学(理)试卷)设函数)10()1()(≠>--=-a a a k a x f x x 且是定义域为R 的奇函数.(Ⅰ)求k 的值; (Ⅱ)若23)1(=f ,且)(2)(22x f m a a xg xx ⋅-+=-在),1[∞+上的最小值为2-,求m 的值. 【答案】(Ⅰ)由题意,对任意R ∈x ,)()(x f x f -=-, 即x x x xa k a a k a---+-=--)1()1(,0)())(1(=+-+---x x x x a a a a k ,0))(2(=+--x x a a k因为x 为任意实数 所以2=k .(或者用0)0(=f )(Ⅱ)由(1)xxaa x f --=)(,因为23)1(=f ,所以231=-a a ,解得2=a 故x x x f --=22)(, )22(222)(22x x x x m x g ----+=,令x x t --=22,则,由),1[∞+∈x ,得⎪⎭⎫⎢⎣⎡∞+∈,23t , 2222)(22)()(m m t mt t t h x g -+-=+-==, ⎪⎭⎫⎢⎣⎡∞+∈,23t当23<m 时,)(t h 在⎪⎭⎫⎢⎣⎡∞+,23上是增函数, 则223-=⎪⎭⎫⎝⎛h ,22349-=+-m ,解得1225=m (舍去). 当23≥m 时,则2)(-=m f ,222-=-m , 解得2=m ,或2-=m (舍去). 综上,m 的值是2.18.(安徽省淮北一中2014届高三第三次月考数学理试题)函数f (x )=log a (x 2-4ax +3a 2), 0<a <1, 当x ∈[a +2,a +3]时,恒有|f (x )|≤1,试确定a 的取值范围.【答案】解:f (x )=log a (x 2-4ax +3a 2)= log a (x -3a )(x -a )∵|f (x )|≤1恒成立,∴ -1≤log a (x -3a )(x -a )≤1∵ 0<a <1. ∴a ≤(x -3a )(x -a )≤1a对x ∈[a +2,a +3]恒成立 令h (x )= (x -3a )(x -a ), 其对称轴x =2a . 又 2a <2, 2<a +2, ∴当x ∈[a +2,a +3]时,h (x )min =h (a +2),h (x )max =h (a +3)∴⎪⎩⎪⎨⎧-≥-≤⇔⎪⎩⎪⎨⎧≥≤,691,44,)(1,)(max min a a a a x h ax h a 125790-≤<⇒a 19.(安徽省巢湖市第一中学2013-2014学年高三第一学期第一次月考数学试卷(理科))将函数)1(log )(2+=x x f 的图像向左平移1个单位,再将图像上的所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数)(x g y =的图像.(1)求函数)(x g y =的解析式和定义域;(2)求函数)()1()(x g x f x F y --==的最大值. 【答案】解析:(1)2),2(log 2)(2->+==x x x g y (2)0,)2(log )(22>+==x x xx F y令0,)2()(2>+=x x xx u (过程略) 当2=x 时,()1()(xg x f x F y --==的最大值-3 20.(安徽省蚌埠市五河县高考辅导学校2014届高三上学期第一次月考数学(理)试题)已知函数()()()22lg 32215f x m m x m x ⎡⎤=-++-+⎣⎦(1)如果函数()f x 的定义域为R 求实数m 的取值范围. (2)如果函数()f x 的值域为R 求实数m 的取值范围.【答案】 (1)据题意知若函数的定义域为R 即对任意的x 值()()2232215m m x m x -++-+0>恒成立,令()()()2232215g x m m x m x =-++-+,当232m m -+=0时,即1m =或2.经验证当1m =时适合,当2320m m -+≠时,据二次函数知识若对任意x 值函数值大于零恒成立,只需23200m m ⎧-+>⎨∆<⎩解之得1m <或94m >综上所知m 的取值范围为1m ≤或94m >. (2)如果函数()f x 的值域为R 即对数的真数()()2232215m m x m x -++-+能取到任意的正数,令()()()2232215g x m m x m x =-++-+当232m m -+=0时,即1m =或2.经验证当2m =时适合,当2320m m -+≠时,据二次函数知识知要使的函数值取得所有正值只需2320m m ⎧-+>⎨∆≥⎩解之得924m <≤综上可知满足题意的m 的取值范围是924m ≤≤.。

2014高考数学分类汇编(文)函数含答案(word)

2014高考数学分类汇编(文)函数含答案(word)

高考数学分类汇编(文科) 函数1. 【2014高考安徽卷文第5题】设 1.13.13log 7,2,0.8a b c ===则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<2.【2014高考安徽卷文第11题】=++⎪⎭⎫⎝⎛54log 45log 81163343-_____3. 【2014高考安徽卷文第14题】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f . 4. 【2014高考北京卷文第2题】下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.3y x = C.ln y x = D.y x = 5.【2014高考北京卷文第6题】已知函数()x xx f 2log 6-=,在下列区间中,包含()x f 的零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+)6. 【2014高考北京卷文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟O 5430.80.70.5t p7.【2014高考大纲卷文第12题】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .18. 【2014高考福建卷文第8题】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是()9. 【2014高考福建卷文第15题】函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.10. 【2014高考广东卷文第5题】下列函数为奇函数的是( )A.122x x -B.3sin x xC.2cos 1x +D.22xx + 11. 【2014高考湖北卷文第9题】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{27,1,3}-D.{27,1,3}--12. 【2014高考湖北卷文第15题】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .13. 【2014高考湖南卷文第4题】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -= 14. 【2014高考湖南卷文第15题】若()()ax ex f x++=1ln 3是偶函数,则=a ____________.15. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .16. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .17. 【2014高考江西卷文第4题】已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D 18.【2014高考辽宁卷文第3题】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>19. 【2014高考辽宁卷文第10题】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--20. 【2014高考辽宁卷文第16题】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 21. 【2014高考全国1卷文第5题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数22. 【2014高考全国1卷文第15题】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.23. 【2014高考山东卷文第3题】函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞24. 【2014高考全国2卷文第15题】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.25. 【2014高考山东卷文第5题】已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y > C.22ln(1)ln(1)x y +>+ D.221111x y >++ 26. 【2014高考山东卷文第6题】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><< C.01,1a c <<> D.01,01a c <<<<27.【2014高考山东卷文第9题】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是(A) ()f x x =(B) 3()f x x = (C) ()tan f x x =(D) ()cos(1)f x x =+28. 【2014高考陕西卷文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是(A )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭29. 【2014高考陕西卷文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-30. 【2014高考陕西卷文第12题】已知42a=,lg x a =,则x =________.31. 【2014高考四川卷文第7题】已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+ 32. 【2014高考四川卷文第13题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 33. 【2014高考天津卷卷文第4题】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>34. 【2014高考天津卷卷文第12题】函数2()lg f x x =的单调递减区间是________.35. 【2014高考天津卷卷文第14题】已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f ,若()x a x f y -=恰好有4个零点,则实数a 的取值范围是________36. 【2014高考浙江卷文第7题】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c37. 【2014高考浙江卷文第8题】在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是( )38. 【2014高考浙江卷文第15题】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .39. 【2014高考浙江卷文第16题】已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.40. 【2014高考重庆卷文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x xC f x -=-.()22x x D f x -=+41. 【2014高考重庆卷文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m的取值范围是( )A.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43--42. 【2014高考上海卷文第3题】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .43. 【2014高考上海卷文第11题】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .44.【2014高考上海卷文第18题】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解45. 【2014高考上海文第20题】设常数0≥a ,函数aax f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.高考数学分类汇编(文科) 函数答案与详解1. 【2014高考安徽卷文第5题】设 1.13.13log 7,2,0.8a b c ===则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<14.3. 【2014高考安徽卷文第14题】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f .考点:1.函数的奇偶性与周期性;2.分段函数求值.4. 【2014高考北京卷文第2题】下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.3y x = C.ln y x = D.y x =6. 【2014高考北京卷文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实 验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟O5430.80.70.5t p【答案】B【解析】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,8. 【2014高考福建卷文第8题】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是()【答案】B 【解析】试题分析:由函数()log 0,1a y x a a =>≠且的图象可知,3,a = 所以,x y a -=,33()y x x =-=-及3log ()y x =-均为减函数,只有3y x =是增函数,选B .考点:幂函数、指数函数、对数函数的图象和性质.9. 【2014高考福建卷文第15题】函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.10. 【2014高考广东卷文第5题】下列函数为奇函数的是( )A.122x x-B.3sin x xC.2cos 1x +D.22xx + 【答案】A【解析】对于A 选项中的函数()12222xx x x f x -=-=-,函数定义域为R ,()()2222x x x x f x -----=-=- ()f x =-,故A 选项中的函数为奇函数;对于B 选项中的函数()3sin g x x x =,由于函数 31y x =与函数2sin y x =均为奇函数,则函数()3sin g x x x =为偶函数;对于C 选项中的函数()2cos 1h x x =+,定义域为R ,()()()2cos 12cos 1h x x x h x -=-+=+=,故函数()2cos 1h x x =+为偶函数;(学科,网)对于D 选项中的函数()22xx x ϕ=+,()13ϕ=,()312ϕ-=,则()()11ϕϕ-≠±,因此函数()22xx x ϕ=+为非奇非偶函数,故选A.【考点定位】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题.11. 【2014高考湖北卷文第9题】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{27,1,3}-D.{27,1,3}--12. 【2014高考湖北卷文第15题】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .【答案】)61,0( 【解析】试题分析:依题意,⎩⎨⎧<-->1)3(30a a a ,解得610<<a ,即正实数a 的取值范围是)61,0(.考点:函数的奇函数图象的的性质、分段函数、最值及恒成立,难度中等.13. 【2014高考湖南卷文第4题】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -=14. 【2014高考湖南卷文第15题】若()()ax e x f x ++=1ln 3是偶函数,则=a ____________.15. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 . 【答案】2(,0)2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.16. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .17. 【2014高考江西卷文第4题】已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D【考点定位】指数函数和对数函数的图象和性质.19. 【2014高考辽宁卷文第10题】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--20. 【2014高考辽宁卷文第16题】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 【答案】1- 【解析】试题分析:设2a b t+=,则2b t a =-,代入到22420a ab b c -+-=中,得()()2242220a a t a t a c --+--=,即221260a ta t c -+-=……①21. 【2014高考全国1卷文第5题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数22. 【2014高考全国1卷文第15题】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________. 【答案】(,8]-∞ 【解析】试题分析:由于题中所给是一个分段函数,则当1x <时,由12x e-≤,可解得:1ln 2x ≤+,则此时:1x <;当1x ≥时,由132x ≤,可解得:328x ≤=,则此时:18x ≤≤,综合上述两种情况可得:(,8]x ∈-∞考点:1.分段函数;2.解不等式23. 【2014高考山东卷文第3题】函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞ 【答案】C【解析】由已知22log 10,log 1,x x ->>,解得2x >,故选C . 考点:函数的定义域,对数函数的性质.24. 【2014高考全国2卷文第15题】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.25. 【2014高考山东卷文第5题】已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)x y+>+ D.221111x y >++ 【答案】A【解析】由(01)x y a a a <<<知,,x y >所以,33x y >,选A .考点:指数函数的性质,不等式的性质.26. 【2014高考山东卷文第6题】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )B.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<7.28. 【2014高考陕西卷文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是(B )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;29. 【2014高考陕西卷文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-【答案】A 【解析】试题分析:由题目图像可知:该三次函数过原点,故可设该三次函数为32()y f x ax bx cx ==++,则2()32y f x ax bx c ''==++,由题得:(0)1f '=-,(2)0f =,(2)3f '= 即184201243c a b c a b c =-⎧⎪++=⎨⎪++=⎩,解得12121a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以321122y x x x =--,故选A .考点:函数的解析式.30. 【2014高考陕西卷文第12题】已知42a=,lg x a =,则x =________.31. 【2014高考四川卷文第7题】已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+32. 【2014高考四川卷文第13题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .33. 【2014高考天津卷卷文第4题】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 【答案】C. 【解析】试题分析:因为2221122log log 21,log log 10,(0,1),a b c πππ-=>==<==∈所以b c a >>,选C.考点:比较大小34. 【2014高考天津卷卷文第12题】函数2()lg f x x =的单调递减区间是________. 【答案】(,0).-∞函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点,当0x <时,若y ax =-与254,(41)y x x x =----<<-相切,则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点,当0x <,1a =时,函数()y f x =与||y a x =有三个交点,当0x <,01a <<时,函数()y f x =与||y a x =有四个交点,所以当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点. 考点:函数图像(zxxk )36. 【2014高考浙江卷文第7题】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )B.3≤c B.63≤<cC. 96≤<cD.9>c 【答案】C37. 【2014高考浙江卷文第8题】在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是( )38. 【2014高考浙江卷文第15题】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a . 【答案】2【解析】试题分析:若0≤a ,则01)1(22)(22>++=++=a a a a f ,所以2]22[22=++-a a ,无解;若0>a ,则0)(2<-=a a f ,所以22)(2)(222=+-+-a a ,解得2=a .故2=a .考点:分段函数,复合函数,容易题.39. 【2014高考浙江卷文第16题】已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.40. 【2014高考重庆卷文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x x C f x -=- .()22x x D f x -=+41. 【2014高考重庆卷文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m 的取值范围是( )B.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43-- 【答案】A.42. 【2014高考上海卷文第3题】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .【答案】3【解析】由题意(2)121f a =+-=,则2a =,所以(1)11143f =-+-=. 【考点】函数的定义.44. 【2014高考上海卷文第11题】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .44.【2014高考上海卷文第18题】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解45. 【2014高考上海文第20题】设常数0≥a ,函数aa x f x x -+=22)( (3)若a =4,求函数)(x f y =的反函数)(1x f y -=;(4)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.【答案】(1)121()2log 1x f x x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞;(2)1a =时()y f x =为奇函数,当0a =时()y f x =为偶函数,当0a ≠且1a ≠时()y f x =为非奇非偶函数.【解析】试题分析:(1)求反函数,就是把函数式2424x x y +=-作为关于x 的方程,解出x ,得1()x f y -=,再把此。

2014届高考文科数学第一轮复习试题及答案

2014届高考文科数学第一轮复习试题及答案

惠州市2014届高三第二次调研考试试题数 学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1. 已知集合{}0,1S =,集合{}0T =,∅表示空集,那么S T = ( ) A .∅ B .{0} C .{0,1} D .{0,1,0}2. 命题“存在实数x ,使210x x +-<”的否定为( )A .对任意实数x ,都有210x x +-≥ B .不存在实数x ,使210x x +-≥ C .对任意实数x ,都有210x x +-< D .存在实数x ,使210x x +-≥3. 双曲线221169x y -=的离心率为( ) A .53 B .54 C .35 D . 454. 直线40y +=与圆22(2)(1)9x y -++=的位置关系是( )A .相切B .相交且直线不经过圆心C .相离D .相交且直线经过圆心5. 已知(a = ,(1,)b x =,若a b ⊥ ,则x 等于( )A .2BC .3D 6. 函数()()2log 31xf x =-的定义域为( )A .[)1,+∞B .()1,+∞ C .[)0,+∞ D . ()0,+∞7. 已知等差数列{}n a 的前n 项和为n S ,若125a a +=,349a a +=,则10S 为( ) A .55 B .60 C .65 D .708. 已知函数sin()(0,||)2y x πωϕωϕ=+><的部分图像如图所示,则,ωϕ的值分别为( ) A .2,3π- B .2,6π-C .4,6π- D .4,3π9.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题:①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .②③C .③④D .①④ 10. 设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=.则集合S 表示的平面区域是( )A .三角形区域B .四边形区域C .五边形区域D .六边形区域二、填空题:(本大题共5小题,分为必做题和选做题两部分.每小题5分,满分20分) (一)必做题:第11至13题为必做题,每道试题考生都必须作答. 11.复数2(1)i -的虚部为__________.12.如图所示,程序框图(算法流程图)的输出结果为_________.13.设变量,x y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =+的最大值为_________.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。

2014届一轮高三数学

2014届一轮高三数学

2014届一轮高三数学(新课标)复习方案精编试题八考查范围:集合、逻辑、函数、导数、三角、向量、数列、不等式、立体几何、解析几何、统计、统计案例、计数原理(仅理科有),概率、随机变量及其分布(仅理科有)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}【答案】A [解析] 集合M ={x|-1<x<3},则M∩N={0,1,2}.2.[2013·湖北卷] 已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( )A.3 22 B.3 152 C .-3 22 D .-3 152【答案】A [解析] AB→=(2,1),CD →=(5,5),|AB →|·cos 〈AB →,CD →〉=AB →·CD →|CD →|=3 22,选A.3. [2013·山东卷] 将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4 B.π4 C .0 D .-π4【答案】B [解析] 方法一:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图像,若f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4+φ为偶函数,必有π4+φ=k π+π2,k∈Z,当k =0时,φ=π4.方法二:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图像,其对称轴所在直线满足2x +π4+φ=k π+π2,k∈Z,又∵f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4+φ为偶函数,∴y 轴为其中一条对称轴,即π4+φ=k π+π2,k∈Z,当k =0时,φ=π4.4.(理)[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③【答案】C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. (文)(河南省许昌新乡平顶山2012届高三第三次调研考试数学文)一个总体分为A,B,C 三层,用分层抽样方法从总体中抽取一个容量为50的样本,已知B 层中每个个体被抽到的概率都为121,则总体中的个数为( ) A.150 B.200 C.500 D.600 【答案】D【解析】设总体个数为n ,由分层抽样的定义得,12150=n 所以600n =. 5.(东北三省四市教研协作体等值诊断联合考试(2012长春三模)数学文)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( ) A.13B.23C.12D.34【答案】C【解析】设两道题分别为AB 题,所以抽取情况共有:AAA,AAB,ABA, ABB,BAA, BAB,BBA,BBB ,其中第1个,第2个分别是两个女教师抽取的题目,第3个表示的男教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA ,ABB ,BAA ,BAB ,共4种;故所求事件的概率为12. 6.(理)【2012高考真题湖北理5】设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =( )A.0B.1C.11D.12【答案】D 【解析】()()()212122015111aa a+=+-,显然当()113a k k +=∈Z ,即()131a k k =-∈Z 时,201251a +的各项都是13的倍数,故能被13整除.又013a <<,所以12a =.故选D.(文)(海南省琼海市2012年高考模拟测试一数学文)为了了解某校高三400名学生的数学学业水平测试成绩,制成样本频率分布直方图如图,规定不低于60分为及格,不低于80分为优秀,则及格率与优秀人数分别是( ) A.60%,60 B.60%,80 C.80%,80 D.80%,60【答案】C【解析】由频率分布直方图可知,及格率为()0.0250.0350.0100.0101080%+++⨯=,优秀人数为()0.0100.010*******+⨯⨯=.7. [2013·新课标全国卷Ⅱ] 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19 【答案】C [解析] S 3=a 2+10a 1a 1+a 2+a 3=a 2+10a 1a 3=9a 1q 2=9,a 5=9a 3q 2=9a 3=1a 1=a 3q 2=19,故选C.8.(理)(云南昆明一中2012届高三第二次摸底测试数学理)某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于514757512C +C CC 的是( )A.()1P ξ=B.()1P ξ≤C.()1P ξ≥D.()2P ξ≤【答案】B【解析】()()()514514757757555121212C +C C C C C =+011C C C P P P ξξξ==+==≤.(文)[2013·山东卷] 在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【答案】C [解析] 不等式组表示的可行域如图,联立⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,解得P ()3,-1,当M 与P 重合时,直线OM 斜率最小,此时k OM =-1-03-0=-13.9. [2013·全国卷] 若函数f(x)=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是( )A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞)【答案】D [解析] f′(x)=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a≥1x 2-2x 在⎝ ⎛⎭⎪⎫12 ,+∞上恒成立,由于y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上单调递减,所以y<3,故只要a≥3.10.(山东省潍坊市2012届高三第二次模拟考试数学文)已知双曲线154:22=-y x C 的左、右焦点分别为12,,F F P 为C 的右支上一点,且212F F PF =,则12PF PF 等于( ) A.24B.48C.50D.56【答案】C【解析】由双曲线C 的方程22145x y -=,得2,,53a b c ==,所以21226PF F F c ===.又由双曲线的定义,得1224PF PF a -==,所以110PF =.所以22212121212121212cos ,502PF PF F F PF PF PF PF PF PF PF PF PF PF +-===.11.(河南省许昌新乡平顶山2012届高三第三次调研考试数学文)已知四棱锥P -ABCD 的侧棱长与底面边长都相等,点E 是PB 的中点,则异面直线AE 与P D 所成角的余弦值为( ) A.31 B.32 C.33D.32 【答案】C【解析】设棱长都为1,连接AC,BD 交于点O ,连接OE.因为所有棱长都相等,不放设 ABCD 是正方形,所以O是BD 的中点,且OE//PD ,故AEO ∠为异面直线AE 与PD 所成的角.易知11,22OE PD AE ===122AB OA AC ====.在OAE ∆中,由余弦定理得311cos AEO +-∠=3=12.(理)(河北省石家庄市2012届高中毕业班第二次模拟考试数学理)已知长方形ABCD ,抛物线l 以CD 的中点E 为顶点,经过A 、B 两点,记拋物线l 与AB 边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M 的概率为P.则下列结论正确的是( )A.不论边长,AB BC 如何变化,P 为定值;B.若ABBC-的值越大,P 越大; C.当且仅当AB BC =时,P 最大; D.当且仅当AB BC =时,P 最小.【答案】A【解析】以E 为原点,CD 为x 轴,过点E 垂直于CD 的直线为y 轴建立平面直角坐标系如下图所示.设正方形的长为2a ,宽为b ,则(,0),(,),(,),(,0)C a B a b A a b D a --,设抛物线方程为2y m x =,代入点B ,得2b m a =,所以22b y x a=.阴影面积23022042d 2|33aa b b abS b x x bx x a a ⎛⎫⎛⎫=-=-=⎪ ⎪⎝⎭⎝⎭⎰,矩形ABCD 的面积S ab '=,故由几何概PA BCDEO型得,所求事件的概率为43S P S =='为常数.故选A.(文)(宁夏银川一中2012届高三年级第三次月考数学文)曲线12-=x xy 在点()1,1处的切线为l ,则l 上的点到圆22430x y x +++=上的点的最近距离是( )【答案】B 【解析】因为()()222121'2121x xy x x --==---,所以1'|1x y ==-.所以曲线12-=x xy 在点()1,1处的切线方程为()11y x -=--,即l :20x y +-=.圆22430x y x +++=的圆心为()2,0-,半径为1,且圆心()2,0-到直线l :20x y +-=的距离为d==所以l 上的点到圆22430x y x +++=上的点的最近距离是1d r -=.第II 卷二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上. 13. 【2012高考湖南文12】不等式x 2-5x +6≤0的解集为________. 【答案】{x |2≤x ≤3}【解析】解不等式得(x -2)(x -3)≤0,即2≤x ≤3,所以不等式的解集是{x |2≤x ≤3}. 14.(理)(云南昆明一中2012届高三第二次摸底测试数学理)设曲线y =,直线1,x x =轴所围成的平面区域为M ,01,{(,)|}0 1.x x y y ≤≤⎧Ω=⎨≤≤⎩,向区域Ω内随机设一点A ,则点A 落在M 内的概率为 . 【答案】23【解析】如图,M的面积为3122233x x ==⎰,Ω的面积为111⨯=,故由几何概型得,所求的概率为22313P ==.(文)(云南昆明一中2012届高三第二次摸底测试数学文)小华的妈妈经营一家饮品店,经常为进货数量而烦恼,于是小华带妈妈进行统计,其中某种饮料的日销售量y (瓶)与当天的气温x (℃)的几组对照数据如下:根据上表得回归方程y bx a =+中的48a =,据此模型估计当气温为35℃时,该饮料的日销售量为 瓶. 【答案】244【解析】由已知,得20x =,160y =,将点(),x y 代入回归方程y bx a =+中,得ˆ 5.6b=,所以回归方程为ˆ 5.648yx =+.所以当35x =时,ˆ244y =. 15. [2013·江苏卷] 在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y2b 2=1(a>0,b>0),右焦点为F ,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=6d 1,则椭圆C 的离心率为________.yb=1,即bx +cy -bc =0. 于是d 1=|-bc|b 2+c2=bca, d 2=a 2c -c =a 2-c 2c =b 2c.由d 2=6d 1,得⎝ ⎛⎭⎪⎫b 2c 2=6⎝ ⎛⎭⎪⎫bc a 2,化简得6c 4+a 2c 2-a 4=0, 即6e 4+e 2-1=0,解得e 2=13或e 2=-12(舍去),故e =33,故椭圆C 的离心率为33. 16.(理)(黑龙江省哈尔滨市第六中学2012届高三第三次模拟考试数学理)将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球不能放入同一盒子中,则不同的方法共有 种. 【答案】72【解析】将6个小球放入3个盒子,每个盒子中2个,有222642C C C 90=种情况.其中标号为1,2的球放入同一个盒子中有1234C C 18=种,所以满足题意的方法共有90-18=72种.(文)(湖北省武汉市2012届高三四月调研测试数学文)为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)【答案】123s s s >>【解析】甲数据的平均值为=12500.0006500+17500.0004500+22500.0002x ⨯⨯⨯⨯⨯甲500+27500.0002500⨯⨯⨯+32500.0006500=2200⨯⨯,同理,乙数据的平均值为=2150x 乙,丙数据的平均值为=2250x 丙,可见甲乙丙三者的平均值都处在频率分布直方图的最中间一列,此时,若越靠近中间列所占的频率越大,则相应的方差越小,明显丙的中间列及附近列所占的频率最大,其次是乙,甲中间列及附近列所占的频率最小,故123s s s >>.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤 17.(本小题满分10分)[2013·江西卷] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n∈N *,都有T n <564. 【解】(1)由S 2n -(n 2+n -1)S n -(n 2+n)=0,得 [S n -(n 2+n)](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n.于是a 1=S 1=2,n≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n. 综上,数列{a n }的通项为a n =2n. (2)证明:由于a n =2n ,b n =n +1(n +2)2a 2n,则b n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. T n =116⎣⎢⎡1-132+122-142+132-152+…+1(n -1)2-⎦⎥⎤1(n +1)2+1n 2-1(n +2)2=116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564. 18.(本小题满分12分)[2013·山东卷] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B)的值.【解】(1)由余弦定理b 2=a 2+c 2-2accos B ,得b 2=(a +c)2-2ac(1+cosB), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =4 29.由正弦定理得sin A =asin B b =2 23.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B)=sin Acos B -cos Asin B =10 227.19.(本小题满分12分)(理)[2013·湖北卷] 假设每天从甲地去乙地的旅客人数X 是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为P 0.(1)求P 0的值;(参考数据:若X ~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)(2)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不小于P 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?【解】(1)由于随机变量X 服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.954 4.由正态分布的对称性,可得P 0=P(X≤900)=P(X≤800)+P(800<X≤900) =12+12P (700<X≤900)=0.977 2. (2)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1 600x +2 400y ,依题意,x ,y 还需满足:x +y≤21,y≤x+7,P(X≤36x+60y)≥P 0.由(1)知,P 0=P(X≤900),故P(X≤36x+60y)≥P 0等价于36x +60y≥900,于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y≤21,y≤x+7,36x +60y≥900,x ,y≥0,x ,y∈N且使目标函数z =1 600x +2 400y 达到最小的x ,y 值.作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上截距z2 400最小,即z 取得最小值,故应配备A 型车5辆,B 型车12辆.(文)[2013·北京卷] 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-6(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【解】设A i 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8.所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13 .所以X的分布列为故X的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.20.(本小题满分12分)(理)[2013·山东卷] 如图1-4所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP =BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ 交于点H,联结GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.【解】(1)证明:因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB,所以EF∥DC.又EF平面PCD,DC平面PCD,所以EF∥平面PCD. 又EF平面EFQ ,平面EFQ∩平面PCD =GH ,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)方法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ=90°,即AB⊥BQ.因为PB⊥平面ABQ ,所以AB⊥PB.又BP∩BQ=B ,图1-5所以AB⊥平面PBQ.由(1)知AB∥GH,所以GH⊥平面PBQ.又FH 平面PBQ ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC 为二面角D -GH -E 的平面角.设BA =BQ =BP =2.联结FC ,在Rt △FBC 中,由勾股定理得FC =2,在Rt △PBC 中,由勾股定理得PC = 5.又H 为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45. 方法二:在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ=90°.又PB⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2).所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1), 由m ·EQ →=0,m ·FQ →=0,得⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2). 设平面PDC 的一个法向量为n =(x 2,y 2,z 2), 由n ·DP →=0,n ·CP →=0,得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0, 取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=m·n |m||n |=45. 因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为-45.(文)[2013·江苏卷] 如图1-2,在三棱锥S -ABC 中,平面SAB⊥平面SBC ,AB⊥BC,AS =AB.过A 作AF⊥SB,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG∥平面ABC ; (2)BC⊥SA.图1-2证明:(1)因为AS =AB ,AF⊥SB,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF∥AB.因为EF平面ABC ,AB平面ABC ,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E , 所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC ,且交线为SB , 又AF平面SAB ,AF⊥SB,所以AF⊥平面SBC. 因为BC平面SBC ,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A ,AF ,AB 平面SAB ,所以BC⊥平面SAB.因为SA平面SAB ,所以BC⊥SA.21.(本小题满分12分)(理)【2012高考真题福建理19】如图1-4,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.图1-4【解】解法一:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3. 故椭圆E 的方程是x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*) 此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m ,所以P ⎝ ⎛⎭⎪⎫-4k m ,3m . 由⎩⎪⎨⎪⎧x =4,y =kx +m 得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则MP →·MQ →=0对满足(*)式的m 、k 恒成立. 因为MP →=⎝ ⎛⎭⎪⎫-4k m-x 1,3m ,MQ →=(4-x 1,4k +m ),由MP →·MQ →=0,得-16k m +4kx 1m -4x 1+x 21+12k m+3=0,整理,得(4x 1-4)km+x 21-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M . 解法二:(1)同解法一.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*) 此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m ,所以P ⎝ ⎛⎭⎪⎫-4k m ,3m . 由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ).假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.取k =0,m =3,此时P (0,3),Q (4,3),以PQ 为直径的圆为(x -2)2+(y -3)2=4,交x 轴于点M 1(1,0),M 2(3,0);取k =-12,m =2,此时P ⎝ ⎛⎭⎪⎫1,32,Q (4,0),以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -342=4516,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP →=⎝⎛⎭⎪⎫-4km-1,3m ,MQ →=(3,4k +m ),从而MP →·MQ →=-12k m -3+12k m+3=0,故恒有MP →⊥MQ →,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .(文)【2012高考真题福建文21】如图1-4所示,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.图1-4(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,证明以PQ 为直径的圆恒过y 轴上某定点.【解】解法一:(1)依题意,|OB |=83,∠BOy =30°. 设B (x ,y ),则x =|OB |sin30°=43,y =|OB |cos30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2. 故抛物线E 的方程为x 2=4y .(2)由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.假设以PQ 为直径的圆恒过定点M ,由图形的对称性知M 必在y 轴上,设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1. 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0.即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 解法二: (1)同解法一.(2)由(1)知y =14x 2,y ′=12x ,设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,所以Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1)或M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于M 3(0,1)或M 4⎝⎛⎭⎪⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1). 以下证明点M (0,1)就是所要求的点. 因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M .22.(本小题满分12分)(理)[2013·天津卷] 已知函数f(x)=x 2ln x. (1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s ,使t =f(s);(3)设(2)中所确定的s 关于t 的函数为s =g(t).证明:当t>e 2时,有25<ln g (t )ln t <12.【解】(1)函数f(x)的定义域为(0,+∞).f ′(x)=2xln x +x =x(2ln x +1),令f′(x)=0,得x =1e .当x 变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间是0,e,单调递增区间是e ,+∞. (2)证明:当0<x≤1时,f(x)≤0,设t>0, 令h(x)=f(x)-t ,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t)=e 2tln e t-t =t(e 2t-1)>0.故存在唯一的s∈(1,+∞),使得t =f(s)成立.(3)证明:因为s =g(t),由(2)知,t =f(s),且s>1,从而ln g (t )ln t =ln sln f (s )=ln s ln (s 2ln s )=ln s 2ln s +ln ln s =u2u +ln u,其中u =ln s.要使25<ln g (t )ln t <12成立,只需0<ln u<u 2. 当t>e 2时,若s =g(t)≤e ,则由f(s)的单调性,有t =f(s)≤f(e)=e 2,矛盾. 所以s>e ,即u>1,从而ln u>0成立.另一方面,令F(u)=ln u -u 2,u>1.F′(u)=1u -12,令F′(u)=0,得u =2.当1<u<2时,F′(u)>0;当u>2时.F ′(u)<0,故对u>1,F(u)≤F(2)<0,因此ln u<u 2成立. 综上,当t>e 2时,有25<ln g (t )ln t <12.(文)[2013·全国卷] 已知函数f(x)=x 3+3ax 2+3x +1.(1)当a =-2时,讨论f(x)的单调性;(2)若x∈[2,+∞)时,f(x)≥0,求a 的取值范围.【解】(1)当a =-2时,f(x)=x 3-3 2x 2+3x +1,f ′(x)=3x 2-6 2x +3.令f′(x)=0,得x 1=2-1,x 2=2+1.当x∈(-∞,2-1)时,f′(x)>0,f(x)在(-∞,2-1)上是增函数; 当x∈(2-1,2+1)时,f′(x )<0,f(x)在(2-1,2+1)上是减函数; 当x∈(2+1,+∞)时,f′(x)>0,f(x)在(2+1,+∞)上是增函数.(2)由f(2)≥0得a≥-54. 当a ≥-54,x∈(2,+∞)时, f ′(x)=3(x 2+2ax +1)≥3⎝ ⎛⎭⎪⎫x 2-52x +1= 3⎝ ⎛⎭⎪⎫x -12(x -2)>0, 所以f(x)在(2,+∞)上是增函数,于是当x∈[2,+∞)时,f(x)≥f(2)≥0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,+∞.薄雾浓云愁永昼,瑞脑消金兽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高三数学一轮复习考试试题精选(1)分类汇编6:指数函数、对数函数及幂函数一、填空题1 .(江苏省兴化市2014届高三第一学期期中调研测试)计算:()=++-3233ln 125.09loge__★__.【答案】112 .(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)如图,已知过原点O 的直线与函数8log y x =的图像交于A,B 两点,分别过A,B 作y 轴的平行线与函数2log y x =的图像交于C,D 两点;若//BC x 轴,则点A 的坐标为_____________.【答案】213,log 36⎛⎫ ⎪⎝⎭3 .(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)=+5lg 2lg ________.【答案】14 .(江苏省兴化市2014届高三第一学期期中调研测试)已知函数()a ax x y3log 221+-=在[)+∞,2上为减函数,则实数a 的取值范围是__★__.【答案】(]4,4-5 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知函数1()l o g (01)a xf x a b x-=+<<为奇函数,当(1]x a ∈-,时,函数()f x 的值域是(1]-∞,,则实数a b +的值为______.【答案】26 .(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知函数f (x )=log a (x 2-ax+2)在(2,+∞)上为增函数,则实数a 的取值范围为________. 【答案】 (1,3]7 .(江苏省梁丰高级中学2014届第一学期阶段性检测一)已知512a -=,函数()l o g (1)a f x x =-,若正实数m 、n 满足 ()()f m f n >,则m 、n 的大小【答案】m>n8 .(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)若))3((.2),1(1,2,2)(21f f x xg x e x f x 则⎪⎩⎪⎨⎧≥+<=-的值为_______; 【答案】29 .(江苏省苏州市2013-2014学年第一学期高三期中考试数学试卷)已知函数||)(a x ex f -=(a为常数),若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 ___.【答案】(]1,∞-10.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)函数224l o g ([2,4])l o g y x x x=+∈的最大值是______.【答案】511.(江苏省梁丰高级中学2014届第一学期阶段性检测一)若函数()xf x a x a =--(a>0且a ≠1)有两个零点,则实数a 的取值范围是___________【答案】}1|{>a a12.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)函数212()l o g (23)f x x x =--+的单调递增区间是_____________; 【答案】(1,1)-13.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)已知函数nmy x =,其中,m n是取自集合{1,2,3}的两个不同值,则该函数为偶函数的概率为______.【答案】1314.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)若点(,9)a 在函数3xy=的图像上,则6tanπa 的值为______. 【答案】315.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)把函数xy 2=图象上所有点向_____平移一个单位可得12+=x y 的图象;16.(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)若函数2log 1y ax =-的图象对称轴是直线2x =,则非零实数a 的值为______.【答案】1217.(江苏省启东中学2014届高三上学期期中模拟数学试题)方程lg(2)1x x +=有____个不同的实数根【答案】218.(江苏省阜宁中学2014届高三第一次调研考试数学(理)试题)设定义在区间[],m m -上的函数()21log 12nx f x x+=-是奇函数,且()()1144f f -≠,则mn 的范围为________.【答案】4[2,2)19.(江苏省泗阳中学2014届高三第一次检测数学试题)定义“正对数”:0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩现有四个命题:①若0,0a b >>,则ln ()ln b a b a ++=; ②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ()ln ln aa b b+++≥-; ④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有_____ _____.(写出所有真命题的编号) 【答案】①③④ 20.(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)函数y =log a (x +1)+2(a >0,a ≠1)的图象恒过一定点是________. 【答案】(0,2)21.(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则f (x )=________.【答案】 12x22.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)函数)1(1)(21-=x og x f 的定义域为____________;【答案】(1,2]23.(江苏省灌云县陡沟中学2014届高三上学期第一次过关检测数学试题)幂函数()()f x x R αα=∈过点()2,2,则()4f =____;【答案】224.(江苏省梁丰高级中学2014届第一学期阶段性检测一)计算:120lg 5lg 2lg 325log 23-+++=______________________【答案】4625.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)若函数)2(log )(22a x x x f a ++=是奇函数,则a =______.【答案】2226.(江苏省兴化市安丰高级中学2014届高三第一学期9月份月考数学试卷)=+20lg 5lg 21___★___. 【答案】1.27.(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)已知1+2x+4x·a >0对一切x ∈(-∞,1]上恒成立,则实数a 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫-34,+∞28.(江苏省徐州市2014届高三上学期期中考试数学试题)若不等式21()2()12x x mm -<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是___________.【答案】32<<-m 二、解答题29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)(本小题满分16分,第1小题7分,第2小题9分)已知奇函数()x f 的定义域为[]1,1-,当[)0,1-∈x 时,()xx f ⎪⎭⎫⎝⎛-=21.(1) 求函数()x f 在[]1,0上的值域; (2) 若(]1,0∈x ,()()12412+-x f x f λ的最小值为2-,求实数λ的值.【答案】解:(1) 设(]1,0∈x ,则[)0,1-∈-x 时,所以()x xx f 221-=⎪⎭⎫⎝⎛-=--又因为()x f 为奇函数,所以有()()x f x f -=- 所以当(]1,0∈x 时,()()xx f x f 2=--=,所以()(]2,1∈x f ,又()00=f所以,当[]1,0∈x 时函数()x f 的值域为(]}0{2,1⋃. (2)由(1)知当(]1,0∈x 时()x f (]2,1∈,所以()x f 21⎥⎦⎤ ⎝⎛∈1,21 令()x f t 21=,则121≤<t , ()=t g ()()12412+-x f x fλ12+-=t t λ41222λλ-+⎪⎭⎫ ⎝⎛-=t ①当212≤λ,即1≤λ时,()⎪⎭⎫⎝⎛>21g t g ,无最小值, ②当1221≤<λ,即21≤<λ时,()24122min -=-=⎪⎭⎫⎝⎛=λλg t g , 解得32±=λ舍去 ③当12>λ,即2>λ时,()()21m in -==g t g ,解得4=λ综上所述,4=λ30.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)(本小题满分16分)已知函数()()()2log 41,x f x kx k =++∈R 是偶函数. (1)求k 的值;(2)设函数()24log 23x g x a a ⎛⎫=⋅- ⎪⎝⎭,其中0.a >若函数()f x 与()g x 的图象有且只有一个交点,求a 的取值范围.【答案】解:(1)∵2()log (41)()x f x kx k =++∈R 是偶函数,∴2()log (41)()x f x kx f x --=+-=对任意x R ∈,恒成立 2分 即:22log (41)2log (41)x x x kx kx +--=++恒成立,∴1k =- 5分(2)由于0a >,所以24()log (2)3x g x a a =⋅-定义域为24(log ,)3+∞,也就是满足423x > 7分∵函数()f x 与()g x 的图象有且只有一个交点,∴方程224log (41)log (2)3x x x a a +-=⋅-在24(log ,)3+∞上只有一解即:方程414223x x x a a +=⋅-在24(log ,)3+∞上只有一解 9分令2,x t =则43t >,因而等价于关于t 的方程 24(1)103a t at ---=(*)在4(,)3+∞上只有一解 10分① 当1a =时,解得34(,)43t =-∉+∞,不合题意; 11分当01a <<时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =<-∴函数24()(1)13h t a t at =---在(0,)+∞上递减,而(0)1h =-∴方程(*)在4(,)3+∞无解 13分②当1a >时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =>-所以,只需4()03h <,即1616(1)1099a a ---<,此恒成立∴此时a 的范围为1a > 15分 综上所述,所求a 的取值范围为1a > 16分31.(江苏省涟水中学2014届高三上学期(10月)第一次统测数学(理)试卷)已知函数]4,161[,log )(4∈=x x x f 的值域为集合A ,关于x 的不等式)(2)21(3R a x a x ∈>+的解集为B ,集合}015|{≥+-=x xx C ,集合}121|{-<≤+=m x m x D )0(>m(1)若B B A = ,求实数a 的取值范围; (2)若C D ⊆,求实数m 的取值范围.【答案】解:(1)因为14>,所以)(x f 在]4,161[上,单调递增, 所以=A )]4(),161([f f ]1,2[-=, 又由)(2)21(3R a x ax ∈>+可得:x a x 22)3(>+-即:x a x >--3,所以4ax -<,所以)4,(aB --∞=,又B B A = 所以可得:B A ⊆,所以14>-a,所以4-<a 即实数a 的取值范围为)4,(--∞ (2)因为015≥+-x x ,所以有015≤+-x x ,,所以]5,1(-=C ,对于集合C m x m x D ⊆-<≤+=}121|{有:①当121-≥+m m 时,即20≤<m 时∅=D ,满足C D ⊆②当121-<+m m 时,即2>m 时∅≠D ,所以有:⎩⎨⎧≤-->+51211m m 32≤<-⇒m ,又因为2>m ,所以32≤<⇒m 综上:由①②可得:实数m 的取值范围为]3,0(32.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知定义在R 上的函数f (x )=2x -12|x |.(1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【答案】解(1)当x <0时, f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12, ∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1), ∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞).33.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知函数()()()lg 1lg 1f x x x =+--. (1)判断并证明()f x 的奇偶性;(2)求证:()()1a b f a f b f ab +⎛⎫+= ⎪+⎝⎭;(3)已知(),1,1a b ∈-,且11a b f ab +⎛⎫= ⎪+⎝⎭,21a b f ab -⎛⎫= ⎪+⎝⎭,求()(),f a f b 的值.【答案】(1)()f x 为奇函数.因为10,10,x x +>->所以11x -<<,定义域为()1,1-,所以定义域关于原点对称,又()()()()()l g 1lg 1l g1l g 1f x x x x x -=--+=-+--⎡⎤⎣⎦()f x =-,所以()f x 为奇函数.(2)因为()()111lglg lg111a b a b abf a f b a b a b ab++++++=+=----+, 111lg lg 1111a ba b a b ab ab f a b ab a b ab ab++++++⎛⎫+== ⎪++--+⎝⎭-+,所以()()1a b f a f b f ab +⎛⎫+= ⎪+⎝⎭. (3)因为()()1a b f a f b f ab +⎛⎫+= ⎪+⎝⎭,所以()()1fa f b+=,又()()2fa fb +-=,所以()()2f a f b -=,由此可得:()()31,22f a f b ==-.34.(江苏省诚贤中学2014届高三上学期第一次月考数学试题)已知函数f (x )=log a x +1x -1,(a >0,且a ≠1).(1)求函数的定义域,并证明:f (x )=log a x +1x -1在定义域上是奇函数;(2)对于x ∈[2,4],f (x )=log a x +1x -1>log a m(x -1)2(7-x )恒成立,求m 的取值范围.【答案】解(1)由x +1x -1>0,解得x <-1或x >1, ∴函数的定义域为(-∞,-1)∪(1,+∞).当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=log a -x +1-x -1=log a x -1x +1=log a ⎝⎛⎭⎪⎫x +1x -1-1=-log a x +1x -1=-f (x ),∴f (x )=log ax +1x -1在定义域上是奇函数. (2)由x ∈[2,4]时,f (x )=log a x +1x -1>log a m(x -1)2(7-x )恒成立,①当a >1时, ∴x +1x -1>m(x -1)2(7-x )>0对x ∈[2,4]恒成立. ∴0<m <(x +1)(x -1)(7-x )在x ∈[2,4]恒成立. 设g (x )=(x +1)(x -1)(7-x ),x ∈[2,4] 则g (x )=-x 3+7x 2+x -7,g ′(x )=-3x 2+14x +1=-3⎝ ⎛⎭⎪⎫x -732+523,∴当x ∈[2,4]时,g ′(x )>0.∴y =g (x )在区间[2,4]上是增函数,g (x )min =g (2)=15. ∴0<m <15.②当0<a <1时, 由x ∈[2,4]时, f (x )=log a x +1x -1>log a m(x -1)2(7-x )恒成立, ∴x +1x -1<m (x -1)2(7-x )对x ∈[2,4]恒成立. ∴m >(x +1)(x -1)(7-x )在x ∈[2,4]恒成立. 设g (x )=(x +1)(x -1)(7-x ),x ∈[2,4], 由①可知y =g (x )在区间[2,4]上是增函数, g (x )max =g (4)=45,∴m >45.∴m 的取值范围是(0,15)∪(45,+∞).35.(江苏省丰县中学2014届高三10月阶段性测试数学(理)试题)已知f (x )=log a1-mxx -1(a >0,a ≠1)是奇函数.(1)求m 的值;(2)讨论f (x )的单调性.【答案】解 (1)∵f (x )是奇函数,∴f (-x )+f (x )=log a 1+mx -x -1+log a 1-mx x -1=log a 1-m 2x21-x2=0对定义域内的任意x 恒成立,∴1-m 2x 21-x 2=1,∴(m 2-1)x 2=0,m =±1. 当m =1时,1-mxx -1=-1,函数无意义,∴m =-1.(2)定义法或导数法.其余无分36.(江苏省启东市2014届高三上学期第一次检测数学试题)设A 是同时符合以下性质的函数)(x f 组成的集合:①),0[+∞∈∀x ,都有]4,1()(∈x f ;②)(x f 在),0[+∞上是减函数. (1)判断函数x x f -=2)(1和x x f )21(31)(2⋅+=(x ≥0)是否属于集合A ,并简要说明理由;(2)把(1)中你认为是集合A 中的一个函数记为)(x g ,若不等式)2()(++x g x g ≤k 对任意的x ≥0总成立,求实数k 的取值范围.【答案】(1)∵x x f -=2)(1在时是减函数,]2,()(1-∞∈x f ,∴)(1x f 不在集合A 中,又∵x ≥0时,x )21(0<≤1,x )21(311⋅+<≤4,∴]4,1()(2∈x f ,且x x f )21(31)(2⋅+=在),0[+∞上是减函数,∴x x f )21(31)(2⋅+=在集合A 中(2))(x g =x x f )21(31)(2⋅+=,x x x x g x g )21(4152])21(31[])21(31[)2()(2+=⋅++⋅+=+++,在[0,+∞)上是减函数,423)]2()([m ax =++x g x g ,又由已知)2()(++x g x g ≤k 对任意的x ≥0总成立, ∴k ≥423,因此所求的实数k 的取值范围是),423[+∞ 37.(江苏省徐州市诚贤中学2014届高三8月月考数学试题)已知函数()()()2log 41,x f x kx k =++∈R 是偶函数.(1)求k 的值;(2)设函数()24log 23xg x a a ⎛⎫=⋅-⎪⎝⎭,其中0.a >若函数()f x 与()g x 的图象有且只11 有一个交点,求a 的取值范围.【答案】解:(1)∵2()log (41)()xf x kx k =++∈R 是偶函数, ∴2()log (41)()x f x kx f x --=+-=对任意x R ∈,恒成立 即:22log (41)2log (41)x x x kx kx +--=++恒成立,∴1k =-(2)由于0a >,所以24()log (2)3x g x a a =⋅-定义域为24(log ,)3+∞, 也就是满足423x > ∵函数()f x 与()g x 的图象有且只有一个交点, ∴方程224log (41)log (2)3x x x a a +-=⋅-在24(log ,)3+∞上只有一解 即:方程414223x x x a a +=⋅-在24(log ,)3+∞上只有一解 令2,xt =则43t >,因而等价于关于t 的方程 24(1)103a t at ---=(*)在4(,)3+∞上只有一解 ① 当1a =时,解得34(,)43t =-∉+∞,不合题意; ② 当01a <<时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =<- ∴函数24()(1)13h t a t at =---在(0,)+∞上递减,而(0)1h =- ∴方程(*)在4(,)3+∞无解③ 当1a >时,记24()(1)13h t a t at =---,其图象的对称轴203(1)a t a =>- 所以,只需4()03h <,即1616(1)1099a a ---<,此恒成立 ∴此时a 的范围为1a >综上所述,所求a 的取值范围为1a >。

相关文档
最新文档