电阻应变式称重传感器设计
基于电阻应变式传感器电子秤设计

实验7 压力传感器特性与电子秤的设计一、实验目的1了解金属箔式应变片的应变效应和性能;2掌握电子秤的设计、制作和调试技巧。
二、实验要求1测量应变式传感器的压力特性,计算其灵敏度;2根据应变式传感器的压力特性设计一个量程为199.9克的电子秤三、实验仪器YJ-CGQ-I典型传感特性综合实验仪、应变传感器实验模板、实验装置、数字万用表、砝码、3.5mm连接线、1.5mm连接线、压力传感器1.应变传感器实验模板如图2所示3.实验装置如图3所示图3四、实验提示1.压力传感器金属导体的电阻随其所受机械形变(伸长或缩短)的大小而发生变化,其原因是导体的电阻与材料的电阻率以及它的几何尺寸(长度和截面)有关。
由于导体在承受机械形变过程中,其电阻率、长度和截面积都要发生变化,从而导致其电阻发生变化,因此电阻应变片能将机械构件上应力的变化转换为电阻的变化。
电阻应变片一般由敏感栅、基底、粘合剂、引线、盖片等组成。
应变片的规格一般以使用面积和电阻值来表示,如“3×10mm2,350Ω”。
敏感栅由直径约0.01mm--0.05mm高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分。
敏感栅用粘合剂将其固定在基片上。
基底应保证将构件上的应变准确地传送到敏感栅上去,故基底必须做得很薄(一般为0.03mm--0.06mm),使它能与试件及敏感栅牢固地粘结在一起;另外,它还应有良好的绝缘性、抗潮性和耐热性。
基底材料有纸、胶膜和玻璃纤维布等。
引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1mm--0.2mm低阻镀锡铜丝制成,并与敏感栅两端输出端相焊接,盖片起保护作用。
在测试时,将应变片用粘合剂牢固地粘贴在被测试件的表面上,随着试件受力变形,应变片的敏感栅也获得同样的形变,从而使电阻随之发生变化。
通过测量电阻值的变化可反映出外力作用的大小。
压力传感器是将四片电阻分别粘贴在弹性平行梁的上下两表面适当的位置,梁的一端固定,另一端自由用于加载荷外力F如图4所示。
基于电阻应变式传感器的电子秤设计

摘要电阻应变式传感器是根据应变原理,通过应变片和弹性元件将机械构件的应变或应力转换为电阻的微小变化再进行电量测量的装置。
电阻应变式传感器是传感器中应用最多的一种,广泛应用于电子秤以及各种新型结构的测量装置。
应变式传感器具有以下优点:(1)测量范围宽、精度高,如测量力可达10-1~106N、0.05% F.S,测量压力可达10~1011Pa、0.1% F.S,测量应变可达με~kμε级;(2)动态响应好,一般电阻应变片响应时间为10-7s,半导体式应变片响应时间达10-11s;(3)结构简单,使用方便,体积小,重量轻;品种多,价格低,耐恶劣环境,易于集成化和智能化。
电阻应变片传感器通过调节放大器的放大倍数,并采用A/D转换器,通过A/D转换电路把接收到的模拟信号转换成数字信号,传送到显示电路,最后由显示电路显示数据。
这种电子秤具有精确度高,操作简单,性能稳定,价格低廉,成本低,制作简单等优点。
关键字:电子秤、电子应变片、A/D转换器,显示电路LED。
目录摘要 (I)目录 (II)前言 (1)第1 章绪论 (2)1.1 课题意义 (2)1.2课题方案 (2)第2章测量电路 (3)2.1 应变式传感器的工作原理 (3)2.2 电阻应变片的特性 (4)2.2.1 电阻应变片 (4)2.2.2 横向效应 (5)2.2.3 应变片的温度误差及补偿 (6)2.3电阻应变式传感器的测量电路 (8)2.3.1 直流电桥 (8)2.3.2 交流电桥 (11)第3章应变传感器的应用 (13)3.1 柱(筒)式力传感器 (13)3.2 膜片式压力传感器 (13)第4章差动放大电路 (15)4.1仪表仪器放大器的选择 (15)4.2 差动放大电路图: (16)4.3 A/D转换 (16)4.4 A/D转换器的选择 (17)4.5 电压表部分电路图应用 (17)第5章用电阻片构成的电子秤 (19)总结 (21)参考文献 (22)前言本文简述的是由电阻应变片式传感器组成的电子秤。
基于电阻应变片的称重传感器设计.概要

本科生课程设计成绩评定表指导教师签字:年月日课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 基于电阻应变片的称重传感器设计初始条件:要求完成的主要任务:时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1.绪论 (1)1.1概述 (1)1.2设计任务分析 (1)2.方案选择与分析 (2)2.1方案选择 (2)2.1.1总体方案设计 (2)2.1.2硬件的方案设计与论证 (2)2.2弹性元件的设计 (4)2.2.1弹性元件选择 (4)2.2.2双孔梁受力分析及尺寸设计 (6)2.3电阻应变片的设计 (7)2.3.1应变片的结构选择 (7)2.3.2应变片的材料选择 (7)2.4原理简述 (9)3.检测电路设计 (11)3.1电桥电路 (11)3.2电源电路的设计 (12)3.3前级放大电路 (12)3.4检波滤波电路 (13)3.5显示电路设计 (14)4.传感器的封装与装配 (16)5.误差源分析及处理 (16)6.传感器的标定 (17)7.体会心得 (17)参考文献 (18)附录1:元器件清单 (19)附录2:参考程序 (20)附录3:零件图 (23)附录4:装配图 (24)附录5:电路图 (24)附录5:电路图 (25)1.绪论1.1概述传感器技术是利用各种功能材料实现信息检测的一门综合技术学科,是在现今科学领域中实现信息化的基础技术之一。
现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大地促进了现代传感器技术的发展。
同时我们也看到,传感器在日常生活中的运用越来越广泛,可以说它已成为了测试测量不可或缺的环节。
因此,学习、研究并在实践中不断运用传感器技术是具有重大意义的。
随着计量技术和电子技术的发展,传统纯机械结构的杆秤、台秤、磅秤等称量装置逐步被淘汰,电子称量装置电子秤、电子天平等以其准确、快速、方便、显示直观等诸多优点而受到人们的青睐。
而且随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。
第07单元 电阻应变式传感器应用——称重实验

砝码产生的实际电压变化值:
(3)观察场景模拟实验界面情况 (4)更换砝码
片有金属丝式、箔式、薄膜式之分。
(1)电子应变片的结构
金属丝式应变片的结构包括: 1)基底 2)敏感栅 3)盖层 4)引线
(2)电阻的应变效应 金属导体在外力作用下发生机械变形时,其电阻
值随着它所受机械变形(伸长或缩短)的变化而发生 变化的现象,称为金属电阻的应变效应。应变效应 图如下
原始电阻为:
⑦J2接口,测量直流电桥平衡电路输出的负端电压,即 AD623负端输入(2脚)电压;
⑧接地GND接口J4;
⑨信号AD值接口接口J3,测试经信号放大模块放大后电路 输出的电压,该电压由AD623(6脚)输出,经R3和R7分 压后采集R7的电压;
信号放大电路:
输出电压经过分压后作为A/D转换器的输入模拟电 压,即模块中信号AD值对地电压,它的为:
直流电桥电路图:
交流电桥电路:
(1)直流电桥工作原理 输出电压即为电桥输出端的开路电压,其表达式为:
(2)电阻应变片的测量电桥 电阻应变式传感器的测量直流电桥电路:
受到拉应变,电路输出电压为:
假设一只受拉,一只受压,且受力相等,使得应变 片的电阻变化大小也相等,即,电路的输出电压为:
(3)应变片直流全桥电路 将4只应变片接入电桥,且差动工作,电路构成四臂 直流电桥。当电桥四个臂的电阻发生改变而产生增 量时,假定和臂受到拉应变,和臂受到压应变,此 时若四臂电阻变化相等,即,则输出电压为:
信号放大的放大系数为:
(2)称重传感模块场景模拟界面认识
任务一 实验目的 任务二 实验原理 任务三 实验步骤
1. 启动称重传感模块 称重传感模块工作实图如图
(1)将NEWLab实验硬件平台通电并与电脑连接。
应变式传感器电子称的设计

摘要随着现代化生产的发展,电子秤在许多商业活动中已成为不可缺少的计量工具。
从生活中看到的商店购物所遇见的低重位的小型电子秤,到工厂、铁路、码头、机场的货场里发现的大吨位门式电子秤、叉车升降电子秤、汽车摆式电子秤、皮带传动式电子秤。
另外,甚至保健性体重电子秤也逐渐进入家庭。
各种各样的电子秤,只是为了适应不同应用的需求而设计的,但它们的基本构成和工作原理是相同的。
电子秤作为一个典型的自动检测系统,也可以归纳为由三大环节所组成。
关键词:计量工具;电子秤;自动检测系统。
AbstractWith the development of modern production, electronic scale measurement toolshas become indispensable in many commercial activities. See from the life of thestore shopping meet the low weight of small electronic scales, found to factory,railway, port, airport freight yard in large tonnage gantry electronic scales,electronic scales, forklift lifting car tilting electronic scale, belt type electronic balance. In addition, even healthy weight electronic scale is gradually entering the family. Electronic scale of all kinds, just in order to adapt to different application requirements and design, but the basic structure and working principle of them is the same. Electronic scale as a typical automatic detection system, can be summed up as three aspects.Key words: Measuring tool;electronic balance;ACS.目录1.绪论 (1)2. 设计内容及总体方案 (2)3.单元模块的具体设计 (3)4.差动放大模块 (4)5.A/D转换模块 (5)6.数码显示模块 (9)7.总结语 (11)附录 (12)1.绪论称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。
基于电阻应变片的压力传感器设计

基于电阻应变片的压力传感器设计一、设计初衷:随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。
本设计的称重传感器就是利用应变片阻值的变化量来确定弹性元件的微小应变,从而利用力,受力面积及应变之间的关系来确定力的大小,进而求得产生作用力的物体的质量。
应变片阻值的变化可以通过后续的处理电路求得。
传感器的设计主要包括弹性元件的设计和处理电路的设计。
由于传感器输出的信号是微弱信号,故需要对其进行放大处理;由于传感器输出的信号里混有干扰信号,故需要对其进行检波滤波;由于传感器输出的信号通常都伴随着很大的共模电压(包括干扰电压),故需要设计共模抑制电路。
除此之外,还要设计调零电路。
二、初始条件:采用电阻应变片设计测量力、压力、加速度、位移等物理量的传感器,设计时自行确定被测变量及测试范围,并根据测量的需要选择应变片的型号、数量、粘贴方式以及弹性元件的结构形式、相关测试电路等。
三、方案的选择此次传感器课程设计选用应变式拉压传感器。
设计中只要把应半片贴在承受负载的弹性元件上,通过测量弹性元件的应变大小即可求出对应的负载大小,而弹性元件的应变大小可以通过应变片电阻大小的变化量来求得。
故可以通过选择不同的弹性元件和测量电路来提出不同的方案。
四、方案的制定1、根据弹性体的结构形式的不同可分为:轮辐式,梁式,环式,柱式等。
在测量拉/压力上主要用到的是柱式传感器。
柱式传感器的弹性元件分为实心和空心两种,如图1.1所示。
(a是实心,b是空心)1.1 柱式传感器的弹性元件应变片将应变的变化转换成电阻相对变化ΔR/R,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。
电阻应变式称重传感器的设计
电阻应变式称重传感器的设计《自动检测技术及仪表》课程设计题目:电阻应变式称重传感器的设计学院:专业:年级:姓名:学号:目录摘要 (2)一、称重传感器 (2)1、简介 (2)2、种类 (3)二、电阻应变式称重传感器及其设计 (3)1、电阻应变式称重传感器简介及工作原理 (3)2、传感器的设计概述 (5)3、设计传感器的工作原理 (6)4、传感器弹性元件结构 (7)5、传感器测量电路 (8)6、传感器的特性 (9)7、称重传感器常用技术参数 (11)8、传感器设计相关参数选择 (13)9、应用技术及应用领域 (16)三、总结 (17)四、参考资料 (17)1摘要称重传感器是电子衡器的核心部件,随着称重传感器技术不断发展和应用领域不断扩大,传感器越来越为人们所关注。
本文通过对传感器工作原理、分类及应用等的分析,介绍了一种基于双孔梁称重的电阻应变式传感器。
它可称量被试木材在某一时刻的重量,以计算该试材在该时刻的含水率。
该方法的准确度和稳定性不受木材材性影响,且与木材含水率不均性无关。
一、称重传感器1、简介称重传感器是知识密集、技术密集和技巧密集型的高技术产品。
研制和生产所涉及的内容多、离散大,技术密集程度高,边缘学科色彩浓,是多种学科相互交叉、相互渗透的结晶。
称重传感器是一种将质量信号转变为可测量的电信号输出的装置。
用传感器先要考虑传感器所处的实际工作环境,这点对正确选用称重传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。
在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。
随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重2量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器。
电阻应变式传感器的电子秤设计
关键 词 : 电阻式传感器 ;电子秤 ; AT 8 9 C 5 1 中图分 类号 : T P 2 1 2 文献标 志码 : A 文章编号 : 1 6 7 2 2 4 3 4 ( 2 0 1 4 ) 0 4 — 0 0 1 7 4 1 4
De s i g n o f El e c t r o n i c S c a e l Ba s e d o n S t r a i n
1 电子 秤 的设 计 方 案
本 电子秤 主要 由以下 5部 分组 成 : 传 感 器 电路 、
放大 电路 、 A/ D 转 换 电路 、 单 片 机 和 液 晶显 示 电路 , 如图 l 所示 。
传 感
器 电
型秤 的需 求越来 越 大 。早期 电子秤 一般是 通过 模 拟 电路 来 实现 的 , 随 着 电子技 术 的发 展 和 数 字 芯 片价 格 的逐渐 降低 , 模 拟控制 已经慢慢 被 数字控 制 替代 , 第l 3卷 第 4期 20 1 4年 8月 常
州
信
息
职
业
技
术
学
院
学
报
V0 1 . 1 3 NO. 4 Au g 2 01 4
J o u r n a l o fCh a n g z h o uVo c a t i o n a l Co l l e g e o fI n f o r ma t i o n Te c h n o l o g y
y W砷 : s r t a n i g a u g e t y p e r t a n s d u c e r ; e l e c r t o n i c s c a l e ; AT 8 9 C5 1
0 引 言
随着 社会 的 发展 , 家庭 和个 人 对 各 种 便 携式 小
电阻应变式力传感器制作的数显电子称
电阻应变式力传感器制作的数显电子称电阻应变式力传感器是一种测量力的非常重要的工具,它利用电阻应变的原理,将受力变形转换为电阻变化,通过对电阻变化的测量来计算受力的大小。
而数显电子称则是一种能够直接显示物品重量的电子称,它的使用非常方便。
下面将从制作电阻应变式力传感器入手,介绍如何制作一款能够测量物品重量的数显电子称。
第一步:电阻应变片的制作首先要制作的是电阻应变片,这是电阻应变式力传感器的核心部件之一。
它是一张薄膜,通常由金属材料制成。
制作过程中需要用到很多专业的工具和材料,首先要选购一块合适的电阻应变片材料。
电阻应变片材料的选择主要有两种,一种是常见的铜镍合金材料,另一种是具有更高灵敏度的铝材料。
这里我们使用铜镍合金材料,因为价格较为实惠,同时也适用于制作数显电子称。
在制作过程中,需要将电阻应变片的表面进行化学处理,以获得更好的粘附性。
一般使用三氯化铁等化学药品进行处理,并在处理后进行清洗和干燥,以便后续的工作。
接下来,需要在电阻应变片的两侧各镀上一层铬金属,这样可以提高电极的稳定性和导电性。
镀铬的方法有很多,可以采用物理沉积或化学沉积等方法。
在完成铬层的镀覆后,还需要在铬层上镀一层非常薄的金属作为实际的电极材料。
铬层和金属层之间的接触也非常重要,需要采用高压处理的方法,以获得极好的接触效果。
第二步:力传感器模型设计完成了电阻应变片的制作后,可以进入力传感器模型的设计过程。
力传感器模型的设计需要考虑到传感器的结构形式、测量范围和灵敏度等方面。
在力传感器的结构设计中,需要考虑到力传感器的受力方式,一般采用直接受力或者杠杆受力的方式。
同时要考虑到传感器的结构强度和可靠性,以保证传感器在测量中不会出现断裂或失效的情况。
在测量范围和灵敏度设计方面,需要考虑到不同物品的重量范围和测量需求,进行最优化的设计。
第三步:电路设计和布局完成了力传感器模型的设计后,可以进入电路设计和布局阶段。
电路设计主要包括信号放大和滤波等工作。
电阻应变式称重传感器的设计论文
电阻应变式称重传感器的设计论文摘要电阻应变式称重传感器是一种常用于工业领域的重量测量装置。
本论文旨在设计一个基于电阻应变原理的称重传感器,并介绍其工作原理、设计步骤、相关特性以及应用场景。
通过本文的阅读,读者将能够了解电阻应变式称重传感器的基本概念和设计流程,以及在实际应用中的一些注意事项。
1. 引言电阻应变式称重传感器是一种常见的重量测量装置。
其基本原理是通过电阻应变效应来测量被测体的重量。
电阻应变式称重传感器广泛应用于工业生产中的称重、检测、搬运等领域。
本论文将介绍电阻应变式称重传感器的设计流程,包括传感器的结构设计、电路设计和模拟计算。
2. 电阻应变原理电阻应变效应是一种电阻随应变变化的现象。
当应变发生变化时,电阻的阻值也会相应地发生变化。
基于这一原理,可以利用电阻应变效应设计出称重传感器,并通过测量电阻的变化来得到被测体的重量。
电阻应变式称重传感器通常由弹性体和电阻应变片组成,当被测体施加压力时,弹性体会发生变形,从而导致电阻应变片的阻值发生变化。
3. 设计步骤3.1 选择合适的电阻应变片在设计电阻应变式称重传感器之前,首先需要选择合适的电阻应变片。
电阻应变片的选择要考虑到被测体的重量范围、工作环境等因素。
一般来说,应选择具有良好性能和稳定特性的商用电阻应变片。
3.2 结构设计电阻应变式称重传感器的结构设计也是非常重要的一步。
结构设计应该考虑到传感器的安装、力传递和防护等方面。
通常情况下,传感器的结构应该具有足够的刚性和稳定性,以确保传感器在测量过程中的准确性和可靠性。
3.3 电路设计电路设计是电阻应变式称重传感器设计中的重要一环。
电路设计的目标是将电阻应变片的阻值变化转换为与被测体重量成比例的电信号输出。
一般来说,电路设计应包括放大电路、滤波电路和数据处理电路等部分。
3.4 模拟计算在进行电阻应变式称重传感器的设计过程中,模拟计算也是非常重要的一环。
通过模拟计算可以评估传感器的性能以及各种参数的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言传感器是感受规定的被测量并按照一定的规律转换成可用信号(通常为电信号)的器件或装置,传感器是发展仪器仪表、自动控制和广泛应用计算机的前提条件。
《传感器原理与应用》课程主要研究各类传感器的工作原理、简单结构以及实际的应用。
本课程设计时间为两周,课程设计旨在培养学生的综合应用能力,通过本实践环节,使学生加深对理论知识的理解,加深对传感器性能、检测电路的形式与配接、信号的分析与处理等内容的了解,使学生对测控系统的应用与设计有感性认识,为后续课程、毕业设计和工程实践服务。
本文设计了一个电阻应变式的称重传感器。
电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
电阻应变式传感器是目前应用最广泛的传感器之一,已广泛地应用于航空、机械、电力、化工、建筑、医疗等领域中的力、压力、力矩以及位移、加速度等参数的测量。
目前,无论在数量上还是在应用领域上,与其他传感器相比都具有重要的地位。
其主要优点是结构简单,使用方便,灵敏度高,性能稳定,可靠,测量速度快,适合静态、动态测量。
尚延臣2009年6月23日目录第 1 章电阻应变式称重传感器的原理 (1)1.1 称重传感器的组成部分 (3)1.2 工作原理 (3)第 2 章电阻应变片的设计 (4)2.1 应变片的工作原理 (5)2.2 应变片的结构选择 (5)2.2.1 电阻丝应变片 (5)2.2.2 箔式应变片 (6)2.2.3半导体应变片 (6)2.3 应变片的材料选择 (7)2.3.1 电阻敏感栅材料选择 (7)2.3.2 基底、引出线材料选择 (8)2.4 应变片的参数 (9)2.4.1 应变片基长 (9)2.4.2应变片的电阻值 (9)2.4.3 应变片的绝缘电阻、允许电流、应变极限 (9)第 3 章传感器弹性元件的设计 (11)3.1 弹性元件的选择 (11)3.2 双孔梁受力分析 (11)3.3 弹性元件材料选择 (14)3.4 双孔梁的尺寸选择 (15)第 4 章变换检测电路设计 (17)4.1 桥路的设计 (17)4.2 放大电路的设计 (18)4.3 检波、滤波电路的设计 (18)4.4 其他电路的设计与选择 (19)第 5 章传感器的工艺设计 (20)5.1应变片的粘贴工艺 (20)5.2传感器的封装 (21)5.3 传感器装配 (21)第 6 章误差源分析以及处理 (21)第 7 章小结 (23)参考文献····································· (21)电阻应变式称重传感器设计第 1 章 电阻应变式称重传感器的原理电阻应变式称重传感器用于静态、动态条件下测力或称重 , 在我国工业生产过程检测与控制、自动计量等领域已大量应用。
它是电子衡器的核心部件。
它的质量好坏是影响电子衡器计量准确度的主要因素。
在实际使用中 , 由于受到原材料及制造工艺、安装方法、使用条件及外部环境的影响 , 很容易发生故障 ,影响电子衡器计量数据的准确及稳定的运行。
因此 ,了解称重传感器的基本原理及故障原因 , 熟练掌握故障的分析判断技术 , 是快速准确地处理电子衡器的故障 , 保证其准确、稳定运行的关键。
1.1 称重传感器的组成部分称重传感器主要由电阻应变片、弹性体、检测电路三部分组成。
应变片是一种传感元件 , 它的作用是将变形转变成电阻变化;弹性体是一个有特殊形状的结构件,它的主要作用是将力转换为形变;检测电路的主要部件是惠斯登电桥,它可以比较方便地解决称重传感器的补偿问题,其功能是把电阻应变片的电阻变化转变为相应的电信号输出。
1.2 工作原理称重传感器的基本电路如图1所示可以推出:024131234()/()()i U R R R R U R R R R =-++式中 1R 、2R 、3R 、4R 为应变片电阻; i U 为传感器的输入信号; 0U 为传感器的输出信号。
当2413R R R R = 时 , 我们称之为电桥平衡 , 这时图 1 基本电路图称重传感器的输出电压0U = 0mV 。
物料重量通过电子衡器的秤体或料斗作用于称重传感器 , 称重传感器的弹性体在外力作用下产生弹性变形 , 使粘贴在它表面的电阻应变片也随同产生变形 , 电阻应变片变形后 , 它的阻值将发生变化 (增大或减小) 。
再经相应的检测电路 , 把这一电阻变化转换为电信号 (电压或电流) 输出 , 从而完成将外力变换为电信号的过程。
设1R =2R =3R =4R =R当受到重力作用后,传感器的应变片电阻发生变化,假设各桥臂阻值变化相同,变量为R ∆ , 即: 1R 、3R 分别减小R ∆ , 2R 、4R 分别增大R ∆ 时可以推出传感器的输出电压为: 0/i U RU R =∆第 2 章 电阻应变片的设计2.1 应变片的工作原理电阻应变敏感元件的转换原理是基于导线的电阻-应变效应。
由金属导体的电阻定律知,对于长度为L 、截面积为A 、电阻率为ρ的金属丝,其电阻/R L A ρ=结合材料的泊松比定律,经数学变换得金属丝电阻应变特性/(12)/x dR R d μερρ=++则金属丝灵敏系数 //(12)s x x dR Rd K ρρμεε==++故有/s x R R K ε∆=另外由于应变片存在横向效应,因而对于应变片/x R R K ε∆=其中s K K2.2 应变片的结构选择应变片的结构形式很多,但其主要组成部分基本相同。
其中较为典型的是丝式、箔式和半导体式。
2.2.1 电阻丝应变片此丝式结构应变片的结构图如图2所示图2 电阻丝应变片1—基底 2—敏感栅 3—覆盖层4—引线此丝式结构应变片的优点:制作简单、性能稳定、价格便宜、易于粘贴。
缺点:回线式应变片横向效应大,而短接式应变片焊点多,在冲击、振动条件下,易在焊接处出现疲劳破坏,对制造工艺的要求高。
2.2.2 箔式应变片此箔式应变片的结构图如图3所示图 3 箔式应变片结构图箔式应变片结构优点:(1)制造技术能保证敏感栅尺寸准确、线条均匀,可以制作成任意形状以适应不同的测量要求;(2)粘合面积大;(3)敏感栅薄而宽,粘结情况好,传递试件应变性能好;(4)散热性能好,允许通过较大的工作电流,从而增大输出信号;(5)敏感栅弯头横向效应可以忽略;(6)蠕变、机械滞后较小,疲劳寿命高。
缺点:工艺制作有些复杂。
2.2.3半导体应变片此半导体应变片结构如图4所示图4 半导体应变片结构图1—基底 2—半导体敏感条 3—外引线 4—引线连接片 5—内引线此结构式传感器优点:灵敏系数大,动态特性好缺点:重复性及温度、时间稳定性较差,应变时非线性严重,互换性差。
总结以上典型结构的优缺点比较,选择箔式应变片较好,所以我决定选择箔式应变片作为敏感元件,并且选择如图5所示结构的箔式应变片图 5 箔式应变片结构图2.3 应变片的材料选择电阻应变计主要由电阻敏感珊、基底和面胶(或覆盖层)、粘结剂、引出线五部分组成。
基底是将传感器弹性体表面的应变传递到电阻敏感栅上的中间介质,并起到敏感栅和弹性体之间的绝缘作用,面胶起着保护敏感栅的作用,粘结剂是将敏感栅和基底粘接在一起,引出线是作为联接测量导线之用。
电阻敏感栅可以将应变量转换成电阻变化。
应变计结构如图6所示图 6 所选应变片结构图1—覆盖层 2—基底 3—引线 4—粘合剂 5—敏感栅2.3.1 电阻敏感栅材料选择敏感栅合金材料的选择对制造电阻应变计性能好坏起着决定性的作用,因此它的材料选择要求如下:(1)有较高的灵敏系数,并且在较大的应用范围内保持不变;(2)有高的和稳定的电阻率;(3)电阻温度系数小,电阻—温度间的线性关系和重复性好,并有足够的热稳定性;(4)机械强度高,加工性能和焊接性能良好,与引线材料接触电势小;∆与机械应变ε具有良好而又宽广的线性关系;(5)电阻变化率/R R(6)抗氧化、腐蚀性能强,无明显机械滞后。
目前没有一种金属材料能满足上述全部要求。
因此在选用时,只能给予综合考虑,常用的电阻合金大致有以下几种:康铜、镍铬合金、铁铬铝合金、铁镍铬合金、贵重金属等。
通过查阅资料以及对这几种材料的性能、成本对比,我选择康铜作为敏感栅材料。
康铜的性能如下:合金成分/ %:Cu55,Ni45 灵敏系数Ks:1.9~2.1电阻率:0.45~0.54 电阻温度系数: ±20*10-6线膨胀系数: 15*10-6 对铜热电势/μV/℃: 43最高使用温度/℃: 静态:250 动态:400选康铜作敏感材料的理由如下:首先这种材料最为常用,电阻温度系数小且稳定,同时它的Ks值对应变值的稳定性高。
不但在变形的弹性范围内Ks值保持不变,在进入塑性范围后,亦基本保持为常数。
所以用康铜作为敏感栅的应变计灵敏系数K=2,且其测量范围大。
同时对康铜用不同的方法加工,不同的热处理,或者改变合金成分的比例,可以改变它的电阻温度系数(由负值到正值),利用这一特性可以制造温度补偿电阻应变计。
而且该材料制作的应变片尤适合长时间、大应变测量。
2.3.2 基底、引出线材料选择基底的作用是固定应变计的敏感栅,使它保持一定的几何形状,并使电阻敏感栅与弹性元件相互绝缘。
应变片基底越厚,基底材料弹性模量越小,引起的蠕变越大。
通常选用基底薄、基底材料的弹性模量较高的应变片,取基底厚度为0.03~0.05mm。
对基底材料性能的要求是:(1)机械强度高,挠性好;(2)粘贴性能好;(3)电绝缘性能好;(4)热稳定性和抗湿性好;(5)无滞后和蠕变。
玻璃纤维增强基底应变计长期稳定性好、蠕变小、滞后小、耐热性好、疲劳寿命高,最适用于高精度测力或称重传感器上,因而我们选用玻璃纤维布作为基底材料。
引出线是连接敏感栅和测量线路的丝状或带状的金属导线,一般要求引出线材料具有低的稳定的电阻率及小的电阻温度系数。
常温应变计引出线多用镀银紫铜丝或铜带。
引出线与敏感栅的连接,可以用锡焊、电弧焊、电接触焊等。
我选用了康铜材料的敏感栅,且其使用条件无特殊要求,故采用银铜作引出线。
2.4 应变片的参数2.4.1 应变片基长为了使测量误差减小,将00sin /l l ππλλ展开为级数,并略去高阶小量后,可得22001166l l f e ππλυ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭粘贴在一定材料试件(υ为常量)上的应变片,对正弦波的响应误差随栅长0l 和频率f 的增加而增大。