2019届高三数学一轮复习方案(定稿版)说课讲解
【精品】2019届高三数学一轮复习方案(定稿版)word版本

2019屆高三數學一輪復習方案為備戰2019年高考,合理有效利用各種資源科學備考,特制定本方案,來完成高三數學一輪復習;一、指導思想立足課本,以縱向為主,順序整理,真正落實“低起點,勤反復、滾動式復習”,抓牢三基,重視展現和訓練思維過程,總結和完善解題程序,滲透和提煉數學思想方法,加強章節知識過關,為二輪(條件允許可進行三輪)復習打下堅實的基礎,大約在2019年年初結束。
二、復習要求1、在一輪復習中,指導學生對基礎知識、基本技能進行梳理,使之達到系統化、結構化、完整化;通過對基礎題的系統訓練和規范訓練,使學生準確理解每一個概念,能從不同角度把握所學的每一個知識點、所有可能考查到的題型,熟練掌握各種典型問題的通法。
2、一輪復習必須面向全體學生,降低復習起點,在夯實“雙基”的前提下,注重培養學生的能力,包括:空間想象、運算求解、推理論證、數據處理等基本能力。
復習教學要充分考慮到本班學生的實際水平,堅決反對脫離學生實際的任意拔高和只抓幾個“優生”放棄大部分“差生”的不良做法,不做或少做無效勞動,加大分層教學和個別指導的力度,狠抓復習的針對性、實效性,提高復習效果。
3、在將基礎問題學實學活的同時,重視數學思想方法的復習。
一定要把復習內容中反映出來的數學思想方法的教學體現在一輪復習的全過程中,使學生真正領悟到如何靈活運用數學思想方法解題。
必須讓學生明白復習的最終目標是新題會解,而不是單單立足于陳舊題目的熟練。
三、一輪復習進度表1、理科2、文科1、課前預習課前學生自主完成預習:以一輪復習用書大冊子中的知識梳理、例題和練習為主,老師需要提前選題,不能出難題且題量要確保學生可以完成,如:三角函數部分的例題和練習要全部做、導數部分的例題和練習只做第1小問,對學生來說可起到熱身、預習的作用;2、檢查預習每節課前提前兩分鐘到班級并在班級巡視檢查整個班級學生的預習情況(每個班級課前每天要收2小組上來進行抽查);3、知識梳理一輪復習是面向全體學生,所以在知識梳理方面應做到面面俱到,并且在復習每個知識點時都應該附帶一個小例題,便于學生理解與應用,時間大約在5—10分鐘;4、例題講解利用25—30分鐘評講例題,注重灌輸相應思想、方法及答題規范性,即要在上課時選擇一題進行完整的板書,并根據所帶班級實際情況對所選例題做好刪減、補充工作,以及做好題后總結工作;5、當堂練習給學生3分鐘時間上黑板做練習(注意其答題規范性);6、自主整理留2分鐘左右時間讓學生自主整理。
2019版高考数学一轮复习 专题讲座三课件 文

专题讲座三 不等式恒成立问题
ppt精选
1
含参不等式恒成立问题是高考中的热点内容,它以各种形 式出现在高中数学的各部分内容中,扮演着重要的角色.解 决含参不等式恒成立问题的关键是转化与化归思想的运 用,从解题策略的角度看,一般而言,针对不等式的表现 形式,有如下四种策略.
是否存在实数 a,使得关于 x 的不等式 3x2-
logax<0 在 0<x<13时恒成立?若存在,求出 a 的取值范围;
若不存在,请说明理由.
[解]
由题意知,“关于
x
的不等式
3x2-logax<0
在
1 0<x<3
时 恒 成 立 ” 等 价 于 “3x2<logax 在 x∈ 0,13 内 恒 成
立”.若 a>1,在同一平面直角坐标系内,分别作出函数 y=3x2 和 y=logax 的大致图象,
又∵f(cos 2θ-3)+f(4m-2mcos θ)>0, ∴f(cos 2θ-3)>-f(4m-2mcos θ)=f(2mcos θ-4m),
∴cos 2θ-3>2mcos θ-4m,
ppt精选
8
即 2m(2-cos θ)>3-cos 2θ,
∵2-cos θ∈[1,3],
∴2m>3ss2θθ,
∴m 的取值范围为(4-2 2,+∞).
ppt精选
10
[规律方法] 这类问题经常用到下面的结论:若函数 f(x) 存在最小值,则 a≤(<)f(x)恒成立⇔a≤(<)f(x)min;若函数 f(x)存在最大值,则 a≥(>)f(x)恒成立⇔a≥(>)f(x)max.
2019-2020年高考数学第一轮复习教案人教版

2019-2020年高考数学第一轮复习教案人教版【教学目标】正确理解和熟练掌握三垂线定理及其逆定理,并能运用它解决有关垂直问题。
【知识梳理】1.斜线长定理从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短.2.重要公式如图,已知OB ⊥平面α于B ,OA 是平面α的斜线,A 为斜足,直线AC ⊂平面α,设∠OAB =θ1,又∠CAB =θ2,∠OAC =θ.那么cos θ=cos θ1cos θ2.3.直线和平面所成的角①平面斜线与它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.②一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,那么就说直线和平面所成的角是0的角.三垂线定理和三垂线定理的逆定理的主要应用是证明两条直线垂直,尤其是证明两条异面直线垂直,此外,还可以作出点到直线的距离和二面角的平面角.在应用这两个定理时,要抓住平面和平面的垂线,简称“一个平面四条线,线面垂直是关键”.【点击双基】1.下列命题中,正确的是()(A )垂直于同一条直线的两条直线平行(B )平行于同一平面的两条直线平行(C )平面的一条斜线可以垂直于这个平面内的无数条直线(D )a 、b 在平面外,若a 、b 在平面内的射影是两条相交直线,则a 、b 也是相交直线2.直线a 、b 在平面α内的射影分别为直线a 1、b 1,下列命题正确的是()(A )若a 1⊥b 1,则a ⊥b (B )若a ⊥b ,则a 1⊥b 1(C )若a 1//b 1,则a 与b 不垂直(D )若a //b ,则a 1与b 1不垂直3.直线a 、b 在平面外,若a 、b 在平面内的射影是一个点和不过此点的一条直线,则a 与b 是()(A )异面直线(B )相交直线(C )异面直线或相交直线(D )异面直线或平行直线4.P 是△ABC 所在平面外一点,若P 点到△ABC 各顶点的距离都相等,则P 点在平面ABC 内的射影是△ABC 的()C αD A B OC A PBD M N Q l (A )外心(B )内心(C )重心(D )垂心5.P 是△ABC 所在平面外一点,若P 点到△ABC 各边的距离都相等,且P 点在平面ABC 内的射影在△ABC 的内部,则射影是△ABC 的()(A )外心(B )内心(C )重心(D )垂心6.P 是△ABC 所在平面外一点,连结PA 、PB 、PC ,若PA ⊥BC ,PB ⊥AC ,则P 点在平面ABC 内的射影是△ABC 的()(A )外心(B )内心(C )重心(D )垂心7.从平面外一点向这个平面引两条斜线段,它们所成的角为θ.这两条斜线段在平面内的射影成的角为α(90︒≤α<180︒),那么θ与α的关系是()(A )θ<α(B )θ>α(C )θ≥α(D )θ≤α8.已知直线l 1与平面成30角,直线l 2与l 1成60角,则l 2与平面所成角的取值范围是()(A )[0,60](B )[60,90](C )[30,90](D )[0,90]【典例剖析】例1.如果四面体的两组对棱互相垂直,求证第三组对棱也互相垂直.已知:四面体ABCD 中,AB ⊥CD ,AD ⊥BC ;求证:AC ⊥BD ;证法一:作AO ⊥平面BCD 于O ,连OB 、OC 、OD ,∵AB ⊥CD ,∴OB ⊥CD ,同理,由AD ⊥BC 得OD ⊥BC ,∴O 是△BCD 的垂心,∴OC ⊥BD ,从而AC ⊥BD .证法二:设=a ,=b ,=c ,则=b a ,=c a ,=c b ,∵AB ⊥CD ,AD ⊥BC ,∴a (c b )=0,c (b a )=0,则a c =a b ,a c =cb .∴a b =c b ,即a b c b =0,从而有b (c a )=0,故⊥.例2.如图,在三棱锥P ABC 中,ACB =90,ABC =60,PC 平面ABC ,AB =8,PC =6,M 、N 分别是PA 、PB 的中点,设△MNC 所在平面与△ABC 所在平面交于直线l .(1)判断l 与MN 的位置关系,并进行证明;(2)求点M 到直线l 的距离.解:(1)l //MN ,证明如下:∵M 、N 分别是PA 、PB 的中点,∴MN AB ,MN 平面ABC ,AB 平面ABC ,∴MN 平面ABC .又∵MN 平面MNC ,平面MNC 平面ABC =l ,∴MN l .(2)取AC 的中点Q ,连MQ ,则MQ PC ,而PC 平面ABC ,∴MQ 平面ABC .作QD 直线l 于D ,连MD ,则MD 直线l .线段MD 的长即为M 到直线l 的距离.在Rt△ABC 中,可求得AC =4,∴QC =2.又MQ =PC =3,∠QCD =30︒,∴QD =QC =.于是MD ==2.D C O B A abcN MPCBA例3.如图,P 是ΔABC 所在平面外一点,且PA⊥平面ABC。
2019-2020年高考数学第一轮复习教案人教版(I)

2019-2020年高考数学第一轮复习教案人教版(I)【教学目标】掌握两平面垂直的判定和性质,并用以解决有关问题.【知识梳理】1.定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.重要提示1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面α的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β α=l,在β内作直线a⊥l,则a⊥α.2.三种垂直关系的证明(1)线线垂直的证明①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;②利用“线面垂直的定义”,即由“线面垂直⇒线线垂直”;③利用“三垂线定理或三垂线定理的逆定理”.(2)线面垂直的证明①利用“线面垂直的判定定理”,即由“线线垂直⇒线面垂直”;②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;③利用“面面垂直的性质定理”,即由“面面垂直⇒线面垂直”;④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.(3)面面垂直的证明①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;②利用“面面垂直的判定定理”,即由“线面垂直⇒面面垂直”.【点击双基】1、在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是锐角三角形,那么必有……()A、平面ABD⊥平面ADCB、平面ABD⊥平面ABCC、平面ADC⊥平面BCDD、平面ABC⊥平面BCDCB E H ASm AP n B α a γ β 2、直三棱柱ABC-A 1B 1C 1中,∠ACB=900,AC=AA 1=a ,则点A 到平面A 1BC 的距离是( )A 、aB 、 2 aC 、22a D 、 3 a 3、设两个平面α、β,直线l ,下列三个条件:① l ⊥α; ② l ∥β;③α⊥β,若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的个数是( )A 、3B 、2C 、 1D 、 04、在正方体ABCD-A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成的二面角A 1-BD-A 的正切值为 。
2019年高考数学(理)一轮复习精品资料专题65数学归纳法(教学案)含解析

2019年高考数学(理)一轮复习精品资料1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题。
1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示高频考点一算法的顺序结构例1、f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程序框图.第六步,把x=5代入y3=x2-2x-3.第七步,把y1,y2,y3的值代入y=y1+y2+y3.第八步,输出y1,y2,y3,y的值.该算法对应的程序框图如图所示:【特别提醒】(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.【变式探究】如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?【解析】(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题;(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3;高频考点二算法的条件结构例2、如图中x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分.当x1=6,x2=9,p =8.5时,x3等于( )A .11B .10C .8D .7思维点拨 依据第二个判断框的条件关系,判断是利用“x 2=x 3”,还是利用“x 1=x 3”,从而验证p 是否为8.5. 【答案】C【解析】x 1=6,x 2=9,|x 1-x 2|=3<2不成立,即为“否”,所以再输入x 3;由绝对值的意义(一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知,点x 3到点x 1的距离小于点x 3到点x 2的距离,所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“是”,此时x 2=x 3,所以p =x 1+x 32,即6+x 32=8.5,解得x 3=11>7.5,不合题意;当x 3>7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“否”,此时x 1=x 3,所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5,符合题意,故选C.【特别提醒】(1)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断; (2)对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支. 【变式探究】(2014·四川)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3【答案】C【解析】当条件x≥0,y≥0,x+y≤1不成立时输出S的值为1;当条件x≥0,y≥0,x+y≤1成立时S=2x+y,下面用线性规划的方法求此时S的最大值.高频考点三算法的循环结构例3、执行如图所示的程序框图,则输出s的值为( )A.10 B.17C.19 D.36【答案】C【特别提醒】利用循环结构表示算法,第一要确定是利用当型还是直到型循环结构;第二准确表示累计变量;第三要注意从哪一步开始循环.弄清进入或终止的循环条件、循环次数是做题的关键.【变式探究】当m=7,n=3时,执行如图所示的程序框图,输出的S值为( )A.7B.42C.210D.840【答案】C【解析】程序框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k=k-1=4<5,输出S=210.故选C.高频考点四基本算法语句例4、阅读下面两个算法语句:图1 图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.【答案】i=4 i=2【特别提醒】解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.【变式探究】 设计一个计算1×3×5×7×9×11×13的算法.图中给出了程序的一部分,则在横线上不能填入的数是( )A .13B .13.5C .14D .14.5 【答案】A1.【2016江苏高考,26】(1)求3467–47C C 的值; (2)设m ,n N *,n≥m,求证:(m+1)C m m +(m+2)+1C m m +(m+3)+2C mm ++n –1C m n +(n+1)C m n =(m+1)+2+2C m n .【答案】(1)0(2)详见解析【解析】(1)3467654765474740.321C C 4321⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(1)(1)]C !C m m k k k k k k m m k m m n m k m m k m +++⋅++==+=+=++-++-+又因为122112C C C ,m m m k k k +++++++=所以2221C C C (1)(1)(),1,+2,.m m m k k k k m k m m n +++++=+-=+,因此12122222222232432122(1)(2)(3)(1)(1)[(2)(3)(1)](1)(1)[()(C C C C C C C C CCCC C)(CCC )](1).m m m m m m m nm m m m m m m n m m m m m m m m m m m m n n m n m m m n m m m n m m m ++++++++++++++++++++++++++++=++++++++=+++-+-++-=+1.【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩【解析】(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).下面用数学归纳法证明: ①当6n =时,()666621323f =+++=,结论成立; ②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,()2,1k +,()3,1k +中产生,分以下情形讨论:4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;5)若164k t +=+,则63k t =+,此时有()()1122223k kf k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足6n ≥的自然数n 均成立.2.【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8【解析】(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.②n a 中没有3的倍数,则n a 都不是3的倍数,对于3a 除以9的余数只能是1,4,7,2,5,8中的一个,从3a 起,n a 除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M 中的项加上前两项最多8项,则11a =时,{1,2,4,8,16,32,28,20}M =,项数为8,所以集合M 的元素个数的最大值为8.3.(2014·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.(2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立. 由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c pa -pk = 1+1p ⎝ ⎛⎭⎪⎫c a p k -1.由a k >c 1p >0得-1<-1p <1p ⎝ ⎛⎭⎪⎫c a p k-1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p=⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p k -1p>1+p · 1p ⎝ ⎛⎭⎪⎫c a p k -1=ca p k . 因此a pk +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p时,f (x )>f (c 1p)=c 1p. ①当n =1时,由a 1>c 1p>0,即a p1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.4.(2014·陕西卷) 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1 (x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx =x1+(k +1)x,即结论成立.由①②可知,结论对n ∈N +成立.(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n xx +1d x = ⎠⎛0n⎝⎛⎭⎪⎫1-1x +1d x =n -ln (n +1),结论得证.5.(2014·重庆卷)设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.【解析】(1)方法一:a2=2,a3=2+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式.当n=1时,结论显然成立.假设n=k时结论成立,即a k=k-1+1,则a k+1=(a k-1)2+1+1=(k-1)+1+1=(k+1)-1+1,这就是说,当n=k+1时结论成立.所以a n=n-1+1(n∈N*).再由f(x)在(-∞,1]上为减函数,得c=f(c)<f(a2k+2)<f(a2)=a3<1,故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1,这就是说,当n=k+1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2. 所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。
2019届高三数学组一轮复习计划

2021 届高三数学组一轮复习方案一、背景解析近几年来的高考数学试题渐渐做到科学化、标准化,坚持了稳中求改、稳中创新的原那么。
考试题不仅坚持了观察全面、比率适合,布局合理特点,也突出体现了变知识立意为能力立意这一举措。
更加侧重观察学生进入高校学习所需的根本数学涵养,这些变化应引起我们在授课中的关注和重视。
二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
经过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必要的数学基础知识,从而培养学生思想能力,激发学生学习数学的兴趣,使学生成立学好数学的信心。
老师要在授课过程中不断认识新的授课信息,更新教育看法,研究新的授课模式,加强教改力度,正确掌握课程标准和考试说明的各项根本要求,立足根本知识、根本技术、根本思想和根本方法授课,针对学生实质,指导学法,着力培养学生的创新能力和运用数学的意识和能力。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基授课为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型加强训练,提高学生的解题能力。
为此,我们确立了一轮复习的整体目标:经过梳理考点,培养学生解析问题、解决问题的能力;使学生养成思虑慎重、解析条理、解答正确、书写标准的优异习惯,为二轮复习以致高考确立坚固的基础。
详尽要求以下:1、第一轮复习必定面向全体学生,降低复习起点,在夯实双基的前提下,侧重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据办理等根本能力。
提高学生对实责问题的阅读理解、思虑判断能力;以及数学地提出、解析和解决问题〔包括简单的实责问题〕的能力,数学表达和交流的能力,睁开独立获取数学知识的能力。
复习授课要充分考虑到本班学生的实质水平,坚决反对走开学生实质的任意拔高和只抓几个“优等生〞放弃全局部“中等生〞的不良做法,不做或少做无效劳动,加大分层授课和个别指导的力度,狠抓复习的针对性、实效性,提高复习收效。
2019版高考数学一轮复习 第三章 导数及其应用 第四节 导数与函数的综合问题实用

讲练区 研透高考· 完成情况
[全析考法]
利用导数研究生活中装的年固定成本为10 万元,每生产1千件需另投入3万元.设该公司一年内共生产该
品牌服装x千件并全部销售完,每千件的销售收入为R (x)万元,
且R (x)=191x.40--3410x3x222x0><1x0≤.10,
比较函数在区间端点和f′(x)=0的点的函 第三步
数值的大小,最大(小)者为最大(小)值 第四步 回归实际问题,给出优化问题的答案
[全练题点]
1.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以
利用原有的墙壁,其他三边需要砌新的墙壁,当砌新的墙壁
所用的材料最省时,堆料场的长和宽分别为
()
A.32米,16米
B.30米,15米
C.40米,20米
D.36米,18米
解析:要求材料最省,则要求新砌的墙壁总长最短,设堆料
厂的宽为x米,则长为
512 x
米,因此新墙总长为L=2x+
512 x
(x>0),则L′=2-
512 x2
,令L′=0,得x=±16.又x>0,∴x=
16.则当x=16时,L取得极小值,也是最小值,即用料最省,
B.2.4%
C.4% D.3.6%
解析:依题意知,存款量是kx2,银行应支付的利息是kx3,银
行应获得的利息是0.048kx2,所以银行的收益y=0.048kx2-
kx3,故y′=0.096kx-3kx2,令y′=0,得x=0.032或x=0(舍
去).因为k>0,所以当0<x<0.032时,y′>0;当0.032<x<0.048
x3 30
-
2019年高考数学第一轮复习方法

2019年高考数学第一轮复习方法2019年高考数学第一轮复习方法一、回归课本,注重基础,重视预习回归课本,自已先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。
二、提高课堂听课效率,勤动手,多动脑高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。
现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。
作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等做出简单扼要的记录,以便复习,消化,思考。
例习题的解答过程留在课后去完成,没记的地方留点空余的地方,以备自己的感悟。
三、以“错”纠错,查漏补缺这里说的“错”,是指把平时做作业中的错误收集起来。
高三复习,各类试题要做几十套,甚至上百套。
如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。
在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
查漏补缺的过程就是反思的过程。
除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。
每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:1、找不到解题着手点。
2、概念不清、似懂非懂。
3、概念或原理的应用有问题。
4、知识点之间的迁移和综合有问题。
5、情景设计看不懂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三数学一轮复习方案(定稿版)
2019届高三数学一轮复习方案
为备战2019年高考,合理有效利用各种资源科学备考,特制定本方案,来完成高三数学一轮复习;
一、指导思想
立足课本,以纵向为主,顺序整理,真正落实“低起点,勤反复、滚动式复习”,抓牢三基,重视展现和训练思维过程,总结和完善解题程序,渗透和提炼数学思想方法,加强章节知识过关,为二轮(条件允许可进行三轮)复习打下坚实的基础,大约在2019年年初结束。
二、复习要求
1、在一轮复习中,指导学生对基础知识、基本技能进行梳理,使之达到系统化、结构化、完整化;通过对基础题的系统训练和规范训练,使学生准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通法。
2、一轮复习必须面向全体学生,降低复习起点,在夯实“双基”的前提下,注重培养学生的能力,包括:空间想象、运算求解、推理论证、数据处理等基本能力。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优生”放弃大部分“差生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
3、在将基础问题学实学活的同时,重视数学思想方法的复习。
一定要把复习内容中反映出来的数学思想方法的教学体现在一轮复习
的全过程中,使学生真正领悟到如何灵活运用数学思想方法解题。
必须让学生明白复习的最终目标是新题会解,而不是单单立足于陈旧题目的熟练。
三、一轮复习进度表
1、理科
2、文科
四、一轮复习课堂模式
1、课前预习
课前学生自主完成预习:以一轮复习用书大册子中的知识梳理、例题和练习为主,老师需要提前选题,不能出难题且题量要确保学生可以完成,如:三角函数部分的例题和练习要全部做、导数部分的例题和练习只做第1小问,对学生来说可起到热身、预习的作用;
2、检查预习
每节课前提前两分钟到班级并在班级巡视检查整个班级学生的预习情况(每个班级课前每天要收2小组上来进行抽查);
3、知识梳理
一轮复习是面向全体学生,所以在知识梳理方面应做到面面俱到,并且在复习每个知识点时都应该附带一个小例题,便于学生理解与应用,时间大约在5—10分钟;
4、例题讲解
利用25—30分钟评讲例题,注重灌输相应思想、方法及答题规范性,即要在上课时选择一题进行完整的板书,并根据所带班级实际情况对所选例题做好删减、补充工作,以及做好题后总结工作;
5、当堂练习
给学生3分钟时间上黑板做练习(注意其答题规范性);
6、自主整理
留2分钟左右时间让学生自主整理。
备注:为了充分发挥老师的讲解功能,一节课中由老师讲的部分大约需要30—35分钟。
有时也要根据所上内容特点对讲解时间要持续更长。
五、预测存在的问题
1、选择填空题的速度和准确率不高;
2、学生卷面表达不规范;
3、起点高,难度大。
喜欢讲技巧性强的题目,不注重基础,不注重课本,不愿意总结通性通法;
4、不管复习效果,只要复习进度。
不管学生掌握情况,被复习计划牵着走;
5、作业留的多,批改的少。
不能进行有针对性的教学与练习;
6、忙于做题,忽略研究;
7、只管教课,不管学生心理;
8、完全依赖复习资料,没有取舍。
六、解决办法
1、针对选择填空题的速度和准确率不高进行重点突破,全国卷数学的选择填空题所占分值进一步提高,总分为80分,选择填空题的重要性不言而喻,为此我们在一轮复习的课堂中要渗透选择填空题的解答方法策略,如特殊值法、排除法等。
另外我们还要利用特定的时间进行小题针对性练习以提高速度和准确率;
2、注重学生卷面表达的训练,高考要想获得好的分数除了具有较高的数学功底外还要避免非智力因素失分。
一方面要通过试题训练减少甚至避免失误失分;还要强调书面表达,训练学生答卷时字迹工整、格式规范、推理严谨、详略得当,做到会做的题不丢分,不会的题也要得部分分;
3、教师应多的站在学生的角度思考问题和备课,不要只局限于复习资料,有时还应回归教材,充分利用教材中的典型例题、习题或其变形的题目作为课堂上的例题进行讲解,也不要一味的追求复习进度,还应关注学生的掌握情况和心理变化情况;
4、备课组长合理安排资源、充分利用集体备课时间做好教材梳理工作。
七、对老师自身的要求
1、所有教师每小周做一份高考试卷,并在每次教研时给予检查;
2、所有第一年带高三的教师力争要做到:“不听课、不上课”。