同步电机调速

合集下载

同步电机的变频调速系统

同步电机的变频调速系统
这类调速系统的基本结构画在图2-3中,可以实现4象限运行。控制器按需要可以是常规的,也可以采用矢量控制。
图2-3由交-交变压变频器供电的大型低速同步电动机调速系统
2.4
为了获得高动态性能,同步电动机变压变频调速系统也可以采用矢量控制,其基本原理和异步电动机矢量控制相似,也是通过坐标变换,把同步电动机等效成直流电动机,再模仿直流电动机的控制方法进行控制。但由于同步电动机的转子结构与异步电动机不同,其矢量坐标变换也有自己的特色。
(1)在电动机轴端装有一台转子位置检测器BQ(见图8-7),由它发出的信号控制变压变频装置的逆变器U I换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。调速时则由外部信号或脉宽调制(PWM)控制UI的输入直流电压。
(2)从电动机本身看,它是一台同步电动机,但是如果把它和逆变器UI、转子位置检测器BQ合起来看,就象是一台直流电动机。直流电动机电枢里面的电流本来就是交变的,只是经过换向器和电刷才在外部电路表现为直流,这时,换向器相当于机械式的逆变器,电刷相当于磁极位置检测器。这里,则采用电力电子逆变器和转子位置检测器替代机械式换向器和电刷。
(3)同步电动机和异步电动机的定子都有同样的交流绕组,一般都是三相的,而转子绕组则不同,同步电动机转子除直流励磁绕组(或永久磁钢)外,还可能有自身短路的阻尼绕组。
(4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之分,隐极式电机气隙均匀,凸极式则不均匀,两轴的电感系数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步电动机称作磁阻式同步电动机。
在同步电动机中,除转子直流励磁外,定子磁动势还产生电枢反应,直流励磁与电枢反应合成起来产生气隙磁通,合成磁通在定子中感应的电动势与外加电压基本平衡。

maxwell软件- 调速永磁同步电机

maxwell软件- 调速永磁同步电机

13调速永磁同步电机在用户已经掌握RMxprt 基本使用的前提下,我们将一些过程简化,以便介绍一些更高级的使用。

有关RMxprt 的详细介绍请参考第一部分的章节。

13.1基本原理调速永磁同步电机的转子转速是通过调节输入电压的频率来控制的。

与标准的直流无刷电机不同,这种电机不需要位置传感器。

永磁同步电机的转子上安装永磁体(有内转子与外转子之分),定子上嵌有多相电枢绕组,其极数与转子相同。

永磁同步电机既可用作发电机,也可用作电动机。

当电机工作在电动状态时,定子多相绕组可由正弦交流电源供电或由直流电源经DC/AC 变换来供电。

当电机工作在发电状态时,定子多相绕组为负载提供交流电源。

13.1.1 定子绕组正弦交流电源供电永磁同步电机分析方法与三相凸极同步电机相同,电机既可工作在发电状态也可工作在电动状态,通常采用频域矢量图来分析电机的特性。

电机发电状态矢量图如图13.1a ,电机电动状态矢量图如图13.1b 。

发电机b. 电动机图13.1 同步电机相量图图13.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。

aq1q ad 1d X X X X X X +=+=(13.1)上式中,X 1为电枢绕组漏电抗,X ad 和X aq 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。

以输入电压U 为参考矢量, I 滞后U 的角度为φ, 称φ为功率因数角, 则电流矢量为:ϕ-∠=I I(13.2)令I 滞后E 0的角度为ψ。

则可得d 轴和q 轴的电流为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=ψψcos sin I I I q d I (13.3)所以:qd 1I I -=tan ψ (13.4)13.1.1.1 发电机模型在图13.1a ,OM 所代表的矢量可表示为:)j j (aq 11X X R OM +++=I U (13.5)OM 所代表的矢量可用来确定E 0的位置。

令U 滞后E 0的角度为θ,对于发电机称θ为功角,则角度ψ为θϕψ+=(13.6)对于给定的功角θ,我们有;⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-θθsin cos U U E I I X R R X 0q d q 11d (13.7)求得I d 和I q 为:⎥⎦⎤⎢⎣⎡--+-+=⎥⎦⎤⎢⎣⎡θθθθsin )cos (sin )cos (U X U E R U R U E X X X R 1I I d 0110q qd 21q d(17.8)功率角φ:θψϕ-=(13.9)输出电功率:ϕcos UI 3P 2=(13.10)输入机械功率:)(Fe Cua fw 21P P P P P +++= (13.11)式中P fw 、P Cua 、P Fe 分别为风摩损耗、电枢铜损和铁心损耗输入机械转矩:ω11P T =(13.12)ω为同步角速度rad/s13.1.1.2 电动机模型在图13.1, OM 所代表的矢量可表示为:)j j (aq 11X X R OM ++-=I U (13.5’)OM 所代表的矢量可用来确定E 0的位置。

第三章 同步电动机的变频调速控制

第三章 同步电动机的变频调速控制

30年代
铝镍钴、铁氧体

易去磁
1
2 3
90年代 60年代 后期
铁氧体 稀土永磁: SmC05
3.6~4.0 24 33 38~40
价格低 (稀土的1/10) 热稳定性好 不怕去磁 钴含量高、价格高
70年代 初期
第三代
稀土永磁: SmC017 稀土永磁: 钕铁硼 Nd-Fe-B
我国储量世界第一, 温度可达200℃?
图示位置是转子磁极轴线 从某相绕组轴线转过30°的位 置,在此瞬间触发该相晶闸管, 从产生转矩的角度看是最有利 的。在此位置下,在绕组通电 的1/3周期里,载流导体正好 处于比较强的磁场中,所产生 的转矩平均值最大,脉动最小。 从时间相位上看,晶闸管触发 瞬间正好是该感应电势交变过 零之后的30°相位处,习惯上 将此点选作晶闸管触发相位的 基准点,称为空载换流超前 角 。
结 论
0 0 、 三相式,对转矩最为有利。
矛盾:
晶闸管靠反电势自然换流,要求 0 超前,目前常取 0 60 ,或按负载的 动态调节。转矩脉动大:凸极式无换向电 机中,还存在磁阻转矩,当 超前时为 0 负值,将使输出转矩减小。

二、逆变器晶闸管的换流问题
问题的提出: 直流无换向器电机的晶闸管直接接在直流电 源上,导通后无法自行关断,换流困难。必须采取 特殊的换流措施。 解决: 在过激状态下向逆变器提供超前的无功电流, 可利用电机的反电势来实现自然换流。
优点: (1) 只要精确地控制变频电源的频率就能准确控 制转速,无需速度反馈控制。 (2) 转矩干扰只影响同步电动机的功角,不影响 电机的转速可以在极低的转速下运行,调速范围 较宽。 (3)可以调节转子励磁来调节电机的功率因数,甚 至可在 下运行。 (4) 运行在超前功率因数下,有可能利用电动机 的反电势实现负载换流,克服强迫换流的弊病 (晶闸管)。 缺点:同步电机本身结构稍微复杂

(完整)调速永磁同步电动机的电磁设计与磁场分析

(完整)调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析1 引言与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。

随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。

变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。

这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。

本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。

2 调速永磁同步电动机的电磁设计2.1 额定数据和技术要求调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等.通过改变电机的各个参数来提高永磁同步电动机的效率η、功率因数cos ϕ、起动转矩st T 和最大转矩max T .本例所设计永磁同步电动机的额定数据及其性能指标如下:计算额定数据:(1) 额定相电压:N 220V U U ==(2) 额定相电流:3N N N N N1050.9A cos P I mU ηϕ⨯== (3) 同步转速:160=1000r /min f n p= (4) 额定转矩:3N N 19.5510286.5N m P T n ⨯== 2.2 主要尺寸和气隙长度的确定永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式估算得到:2i11P D L C n '= N N N cos E K P P ηϕ'=, 6.1p Nm dp C K K AB δα=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。

同步电机变频调速 我

同步电机变频调速 我
梯形波永磁同步电动机的电压方程
u A Rs u 0 B uC 0
Pm 2E p I p
电磁转矩
0 Rs 0
0 iA L i 0 0 B Rs iC 0
0 L 0
0 i A eA d 0 iB eB dt L iC eC
(2)重载时有振荡,甚至存在失步危险;
问题的根源: 供电电源频率固定不变。由于改变交流电的频率较 为困难,以前一般工业设备很少采用同步电动机拖 动。 解决办法: 现代电力电子技术的发展,解决了交流电源的变压变 频问题,采用电压-频率协调控制,可解决由固定频 率电源供电而产生的问题。
对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上 升,实现软起动。 对于振荡和失步问题:
所以起动费事、重载时振荡或失步等问题也已不再是同步 电动机广泛应用的障碍。
四.同步电动机调速系统的特点
同步:同步电动机的转子转速就是旋转磁场的同步转速, 转差为0; 优点: (1)转速与电压频率严格同步; (2)可以通过控制励磁来调节其功率因数,可使功率因 数提高到1.0,甚至超前;
存在的问题:
(1)起动困难;
自控变频同步电动机调速系统
需要两套可控功率单元,系统结构复杂
自控变频同步电动机调速原理图 UI——逆变器 BQ——转子位置检测器
自控变频同步电动机调速系统
在基频以下调速时,需要电压频率协调 控制。
需要一套直流调压装置,为逆变器提供 可调的直流电源。
调速时改变直流电压,转速将随之变化 ,逆变器的输出频率自动跟踪转速。 在表面上只控制了电压,实际上也自动 地控制了频率,这就是自控变频同步电 动机变压变频调速。 采用PWM逆变器,既完成变频,又实现 调压。

运动控制系统-第6章 同步电动机变压变频调速系统

运动控制系统-第6章 同步电动机变压变频调速系统

2
当负载转矩加大为 TL4时,转子减速使角θ 增加,电磁转矩 Te减4 小,导致θ继续,最 终,同步电动机转速偏离同步转速,这种 现象称为“失步”。
2
在 的范围 内,2 同步电动机不 能稳定运行,将产 生失步现象。
Te
Te3
Te4
0
3 4
2
图6-4 在 的范围内,
2
Te1
TL1
3U s Es
m xd
sin1
0
2
当负载转矩加大为 时,转子减速使角θ增加,
当 衡,
,电磁 转 2矩 2
和TL负2 载转矩
Te 2
又达到平
TL2
Te 2
TL2
3U s Es
m xd
s in 2
同步电动机仍以同步转速稳定运行。
0
2
若负载转矩又恢复
为 TL1,则角 恢 复
3. 梯形波永磁自控变频同步电动机即无刷直 流电动机——以梯形波永磁同步电动机为 核心的自控变频同步电动机,由于输入方 波电流,气隙磁场呈梯形波分布,性能更 接近于直流电动机,但没有电刷,故称无 刷直流电动机。
无刷直流电动机实质 上是一种特定类型的
iA eA eA
同步电动机,气隙磁 场和感应电动势是梯
第6章
同步电动机变压变频 调速系统
同步电动机直接投入电网运行时,存在 失步与起动两大问题,曾一直制约着同 步电动机的应用。同步电动机的转速恒 等于同步转速,所以同步电动机的调速 只能是变频调速。
变频调速的发展与成熟不仅实现了同步 电动机的调速问题,同时也解决了失步 与起动问题,使之不再是限制同步电动 机运行的障碍。
永磁同步电动机的转子用永磁材料制 成,无需直流励磁。

永磁同步电动机弱磁调速控制

永磁同步电动机弱磁调速控制

1.1 永磁同步电机简介
由于高性能电机控制理论和电力电子技术以及微机控制技术的迅速发展,永磁 (PM)电机以其高效性,高转矩惯量比,高能量密度而得到了更多关注。 PM电机通常分为两类: 永磁无刷直流电机(BLDC)和永磁同步电机(PMSM)。 BLDC 通常具有梯形波反电势波形,如图1.1b)。梯形波反电势由定子集中绕组和方波充磁的 表面磁铁产生。其转子位置的测量可以非常方便地利用反电势的测量得到,控制方式 简单。但存在转矩脉动,换相间存在冲击电流,一般不太适用于高性能驱动。
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定, 即:学校有权保留并向国家有关部门或机构送交论文的复印件和电 子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学 位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、 缩印或扫描等复制手段保存和汇编本学位论文。
ωr
+
ωf

PI
Tr
+
dT −
Hystersis controller
ψf
32
4
56
1
ia
ib
Tf
ψf
1
Ψ, T
Controller
VDC ia ib
s
encoder
PMSM
(c) 直接转矩控制器 图 1.3 PMSM 的主要控制方法 1.2.1 VVVF 控制 VVVF控制策略的控制变量为电机的外部变量,即电压和频率。控制系统将参考 电压和频率输入到实现VVVF的调制器中,最后由逆变器产生一个交变的正弦电压施 加在电机的定子绕组上,使之运行在指定的电压和参考频率下。逆变器所用的调制方 式为脉冲宽度调制(PWM)。PWM可以有多种不同的实现方式,如空间矢量调制 (SVPWM)。PMSM的VVVF控制方框图如图1.3(a)所示。 这种控制方法无需从电机引入任何速度、位置或电压、电流反馈信号,属于开环 控制。这种控制系统易于实现且价格低廉。由于系统中不引入速度、位置或其它任何 反馈信号,因此不能即时捕捉电机状态,无法对电机进行精确的电磁转矩控制。由于 仅使用一个调节器实现对输入电压和磁链的调制,将导致输入电压、频率信号和电机 最终的转矩、速度反应之间的通讯速度降低,使电机的响应变慢。这种驱动系统仅适 用于风机、水泵之类无需精确控制的场合。 1.2.2 磁场定向矢量控制 Blaschke在1971年发表了第一篇有关异步电机(IM)的矢量控制(VC)的方法,之后 该方法被应用于PMSM中。这种控制方法目前已经全面发展并在工业上被认为是较成

永磁同步电机直接转矩控制调速系统

永磁同步电机直接转矩控制调速系统
v a i r o u s i f e l d s .P MS M s p e e d r e g u l a t i o n s y s t e m b a s e d o n a d v a n c e d i g i t a l s i g n a l p r o c e s s i n g( D S P )o f T MS 3 0 2 F 2 8 3 3 5
A b s t r a c t :P e r m a n e n t m a g n e t s y n c h r o n o u s m o t o r( P MS M )s p e e d r e g u l a t i o n s y s t e m h a s b e e n w i d e l y u s e d i ‘ n
pe r f o r ma n c e i n l o w s pe ep e r ma n e n t ma g n e t s y n c h r o n o u s mo t o r ( P MS M) ;d i r e c t t o r q u e c o n t r o l ( D T C) ;l o w- p a s s
要: 永磁 同步 电机 ( P MS M) 调速 系统已广泛 应用 于各 个领域。设计 了以新 型数字 信号 处理 ( D S P ) 芯
片T M S 3 2 0 F 2 8 3 3 5为核心 , 直接转矩为控制策 略的 P M S M调速系统 。阐述 了 P MS M传 统直接转矩控 制 的原理 和实现方法 , 并采用截止频率 随转 速同步修 改 的低通滤 波器 ( L P F ) 估算 定子 磁链 和软件零 矢量 起动 限流方 案。仿真和试 验结果均表明 , 该方案解决 了起 动过流问题 , 系统具有控制 结构简单 , 动态 性能好 , 改 善了低速
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类: 分类: 它控式变频调速 自控式变频调速
它控式变频调速: 它控式变频调速:
评价
优点:在多台参数一致的小容量同步电动机需要同时起动、 优点:在多台参数一致的小容量同步电动机需要同时起动、同时 调速的场合,采用一台变频器控制多台小电动机, 调速的场合,采用一台变频器控制多台小电动机,系统对各台电动机 的供电频率相同,供电电压也相同,易于群控。 的供电频率相同,供电电压也相同,易于群控。 缺点:如果一台电动机出现失步, 缺点:如果一台电动机出现失步,将影响整个群控系统的正常工 作。
一、同步电机基本原理
同步电动机的拖动转矩 角成函数关系, 与θ角成函数关系,在 角成函数关系
额定工况下, 额定工况下,θ角 一般在30 左右。 30° 一般在30°左右。
常见的旋转磁极式同步电动机,转子分隐极式和凸极式两种结构: 常见的旋转磁极式同步电动机,转子分隐极式和凸极式两种结构:
二.同步电动机的两种调速方法
变频器只要根据转子位置角信息, 变频器只要根据转子位置角信息,按上述方程严格控 只要根据转子位置角信息 制三相定子电流的幅值、频率和相位, 制三相定子电流的幅值、频率和相位,就可以对永磁同步 电动机进行速度控制。 电动机进行速度控制。
②正弦波永磁同步电动机调速系统
③无刷直流电动机与正弦永磁同步电动机的调速系统区别
①正弦波永磁同步电动机调速原理
正弦波永磁同步电 动机常采用转子位置 动机常采用转子位置 定向的矢量控制 右图为永磁同步电动 机的矢量图。 机的矢量图。
在永磁同步电动机中, 恒定不变, 在永磁同步电动机中,由于转子磁链 恒定不变,采用转子磁 链定向方法来进行矢量控制较为适宜,并且在基频以下的控制中, 链定向方法来进行矢量控制较为适宜,并且在基频以下的控制中, 控制单元可以使用算法实现定子电流矢量与q轴重合 这样在d轴上 轴重合, 控制单元可以使用算法实现定子电流矢量与 轴重合,这样在 轴上 只有转子磁链,没有定子磁链,相当于用转子的永久磁铁实现励磁, 只有转子磁链,没有定子磁链,相当于用转子的永久磁铁实现励磁, 定子电流全部用来产生拖动转矩。 定子电流全部用来产生拖动转矩。 这时,转矩方程中, 这时,转矩方程中, i Sd = 0
1.无换向器电机调速系统 无换向器电机调速系统
①无换向器电机工作原理
三相绕组无刷直流电动机运行原理如图所示,图中A 三相绕组无刷直流电动机运行原理如图所示,图中A-A,、B-B,、C-C, 分别为三相定子绕组的首末端;中心的N 为转子永久磁极;2/3扇形片为 分别为三相定子绕组的首末端;中心的N-S为转子永久磁极;2/3扇形片为 扇形片 遮光板,装于转子上,随该N 极一起转动; 遮光板,装于转子上,随该N-S极一起转动;VP1、VP2、VP3为三个光电器 件,均由光源和感光器组成,不随转子和遮光板转动。 均由光源和感光器组成,不随转子和遮光板转动。
自控式同步电机启动和调速原理: 自控式同步电机启动和调速原理:
FS-定子电流磁场的合成旋转磁动势 Fr-转子磁动势
设在同步电动机起动(转子静止)时,FS与Fr之间的空间电夹角为θ λ 转子磁动势d轴 α ( A) 之间的夹角为 λ0 ,运转后, = λ0 + ωt
起动转矩与定、转子磁动势大小及其夹角的关系为: 起动转矩与定、转子磁动势大小及其夹角的关系为:
自控式变频调速: 自控式变频调速:
评价
优点:增加了闭环自动控制功能, 优点:增加了闭环自动控制功能,在同步电动机中安装了转子位置
检测器BQ,根据转子的实际位置来控制变频器的供电频率,保证定子旋转 检测器 ,根据转子的实际位置来控制变频器的供电频率, 磁场的转速与转子磁极的转速始终处于同步状态。 磁场的转速与转子磁极的转速始终处于同步状态。避免了它控式同步电动机 变频调速系统运行中会失步的缺点。 变频调速系统运行中会失步的缺点。
三.永磁同步电动机
小功率同步电动机常直接采用永久磁铁作为转子磁极, 小功率同步电动机常直接采用永久磁铁作为转子磁极,被称为永磁同 步电动机。永磁同步电动机( 步电动机。永磁同步电动机(Permanent Magnet Synchronous Moter)具有多种结构。下图为一种简单的永磁电动机截面图。 )具有多种结构。下图为一种简单的永磁电动机截面图。
i A = I m cos(ωt + λ0 + 90 0 ) = − I m sin(ωt + λ0 ) = − I m sin λ 0 0 0 i B = I m cos(ωt + λ0 + 90 − 120 ) = − I m sin(λ − 120 ) iC = I m cos(ωt + λ0 + 90 0 + 120 0 ) = − I m sin(λ + 120 0 )
三相半控桥式电子开关电路: 三相半控桥式电子开关电路:
三相全控桥式电子开关电路: 三相全控桥式电子开关电路:
无换向器电机=同步电机+逆变器+ 无换向器电机=同步电机+逆变器+转子位置检测器
②无换向器电机调速系统 无换向器电机调速系统
Байду номын сангаас
无换向器电机调速系统结构框图
2.正弦波永磁同步电动机调速系统 2.正弦波永磁同步电动机调速系统
i Sq = i S

Te = pψ r i S
三相定子电流合成矢量的幅值与定子电流幅值成正比, 三相定子电流合成矢量的幅值与定子电流幅值成正比,即转矩与 定子电流幅值成正比: 定子电流幅值成正比:
永磁同步电动机在上述的转子磁链定向控制方式下, 永磁同步电动机在上述的转子磁链定向控制方式下, 定子电流的的相位, 轴超前90 因此变频器应提供的 定子电流的的相位,比 d轴超前 0,因此变频器应提供的 轴超前 定子三相电流瞬时值表达式为: 定子三相电流瞬时值表达式为:
Te = C m FS Fr sin θ
结论: 结论:
起动中只要保持使定子磁场保持超前转子磁场 , 起动 中只要保持使定子磁场保持超前转子磁场,就可以获得正 中只要保持使定子磁场保持超前转子磁场 向的起动转矩。如果在过渡过程中根据对转子磁场Fr的位置检测 向的起动转矩。 结果,通过实时控制定子电流的频率来控制定子磁场 定子电流的频率来控制 结果 , 通过实时控制 定子电流的频率 来控制 定子磁场 FS 的旋转 一个稳定的角度θ 速度, 速度,使FS保持超前于Fr一个稳定的角度θ,并且θ < 180 0 ,通过 控制定子三相电流的幅值实现 幅值的基本恒定 的基本恒定, 控制定子三相电流的幅值实现FS幅值的基本恒定,就可以对同步 定子三相电流的幅值 电动机实现匀加速起动。 电动机实现匀加速起动。
主要区别: 主要区别:变频器提供的定子电流的波形不同 正弦波永磁同步电动机控制系统中,变频器提供正弦定子电流 正弦定子电流, 正弦波永磁同步电动机控制系统中,变频器提供正弦定子电流, 无换向器电机调速系统中,变频器提供矩形波定子电流。 无换向器电机调速系统中,变频器提供矩形波定子电流。 矩形波定子电流
相关文档
最新文档