高中数学用二分法求方程的近似解复习2
02-第一节 方程解的存在性及方程的近似解-课时2 利用二分法求方程的近似解高中数学必修一北师大版

5 + 5 = 0
【解析】 对于A,设 = ln + ,则
1
e2
=
1
ln 2
e
+
1
e2
= −2 +
1
e2
< 0, 1 = 1 > 0,所以
1
e2
1 < 0,
又 的图象是一条连续的曲线,所以根据零点存在定理可知,
∃1 ∈
1
,1
e2
,使得 1 = 0,故A正确;对于B,设 = e − 3,则
适区间.
第五章 函数应用
第一节 方程解的存在性及方程的近
似解
课时2 利用二分法求方程的近似解
过基础 教材必备知识精练
知识点1 二分法的概念及适用条件
1.下面关于二分法的叙述中,正确的是( B
)
A.用二分法可求所有函数零点的近似值
B.用二分法求方程的近似解时,可以精确到小数点后的任一位
C.二分法无规律可循,无法在计算机上完成
2
1
9
因为 − = > 0 ,所以
4
8
1
所以0 ∈ − , 0 .
4
1
1
因为 − = > 0,所以
8
32
1
所以0 ∈ − , 0 .
8
1
1
1
因为 − − 0 = < = 0.2,
8
8
5
1
所以所求区间为 − , 0 .
8
1
−
4
⋅ 0 < 0,
1
−
8
⋅ 0 < 0,
【归纳总结】 (1)对于单调函数 ,若能找到1 ,2 ,使得
2022-2023高一上期末复习重难点函数的应用(二)(解析版)

2022-2023高一上期末复习重难点函数的应用(二)一、单选题1.关于用二分法求方程的近似解,下列说法正确的是( )A .用二分法求方程的近似解一定可以得到()0f x =在[],a b 内的所有根B .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的重根C .用二分法求方程的近似解有可能得出()0f x =在[],a b 内没有根D .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的精确解 【答案】D【分析】根据二分法求近似解的定义,可得答案.【解析】利用二分法求方程()0f x =在[],a b 内的近似解,即在区间[],a b 内肯定有根存在,而对于重根无法求解出来,且所得的近似解可能是[],a b 内的精确解. 故选:D.2.函数f (x )=x 2﹣4x +4的零点是( ) A .(0,2) B .(2,0)C .2D .4【答案】C【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点. 【解析】由f (x )=x 2﹣4x +4=0得,x =2, 所以函数f (x )=x 2﹣4x +4的零点是2, 故选:C .3.若函数()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,则()()11f f -⋅的值( ) A .大于零 B .小于零C .等于零D .不能确定【答案】D【分析】由题意,分类讨论()()1,1f f -不同情况下的正负,从而得出不同的结论.【解析】因为()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,若()()10,10-<>f f (或()()10,10-><f f ),此时()()110f f -⋅<;若()10f -=(或()10f =),此时()()110-⋅=f f ;若()()10,10->>f f (或()()10,10-<<f f ),此时()()110f f -⋅>,所以()()11f f -⋅的值不能确定. 故选:D4.函数()()ln 1f x x x=+-的零点所在的大致区间是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【分析】计算区间端点处函数值,根据零点存在定理确定.【解析】()()21ln 11ln 2201f =+-=-<,()()2ln 21ln 31022f =+-=->由()21201f x x x'=+>+,则()f x 在()0,∞+上单调递增. 所以函数()()2ln 1f x x x=+-的零点所在的大致区间是()1,2故选:B5.函数()22xf x x =+的零点所在的区间为( )A .0,1B .1,0C .1,2D .()2,3【答案】B【分析】根据函数解析式,判断()1f -、()0f 等函数值的符号,由零点存在性定理即可确定零点所在的区间.【解析】()3102f -=-<,()010f =>,且函数为增函数,由函数零点存在定理,()f x 的零点所在的区间是1,0.故选:B.6.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( )A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】作出f (x )图像,判断y =m 与y =f (x )图像有3个交点时m 的范围即可.【解析】∵()()g x f x m =-有3个零点, ∴()()0g x f x m =-=有三个实根,即直线y m =与()y f x =的图像有三个交点. 作出()y f x =图像,由图可知,实数m 的取值范围是(0,1). 故选:C.R (2,2)-内的零点个数至少为( )A .1B .2C .3D .4【答案】C【分析】根据奇函数()f x 的定义域为R 可得(0)0f =,由(2)(1)0f f -=≠和奇函数的性质可得(2)(1)0f f <、(2)(1)0f f --<,利用零点的存在性定理即可得出结果.【解析】奇函数()f x 的定义域为R ,其图象为一条连续不断的曲线, 得(0)0f =,由(2)(1)0f f -=≠得(2)(1)0f f -=≠, 所以(2)(1)0f f <,故函数在(12),之间至少存在一个零点,由奇函数的性质可知函数在(21)--,之间至少存在一个零点, 所以函数在(22)-,之间至少存在3个零点. 故选:C8.已知定义在R 上的函数()f x 的图像连续不断,若存在常数R λ∈,使得()()0f x f x λλ++=对于任意的实数x 恒成立,则称()f x 是“回旋函数”.若函数()f x 是“回旋函数”,且2λ=,则()f x 在[]0,2022上( ) A .至多有2022个零点 B .至多有1011个零点 C .至少有2022个零点 D .至少有1011个零点 【答案】D【分析】根据已知可得:()()2200f f +=,当()00f ≠时利用零点存在定理,可以判定区间()0,2内至少有一个零点,进而判定()2,4,()4,6,…,()2020,2022上均至少有一个零点,得到()f x 在[]0,2022上至少有1011个零点.可以构造“回旋函数”,使之恰好有1011个零点;当()00f =时,可以得到()()()0220220f f f ==⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点.从而排除BC,判定D 正确;举特例函数()0f x =,或者构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,可以排除A .【解析】因为()()220f x f x ++=对任意的实数x 恒成立,令0x =,得()()2200f f +=.若()00f ≠,则()2f 与()0f 异号,即()()200f f ⋅<,由零点存在定理得()f x 在()0,2上至少存在一个零点.由于()()220f k f k ++=,得到()20()f k k Z ≠∈,进而()()()220f k f k f k +=-<⎡⎤⎣⎦,所以()f x 在区间()2,4,()4,6,…,()2020,2022内均至少有一个零点,所以()f x 在[]0,2022上至少有1011个零点.构造函数()1,022(2),222()x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有1011个零点.若()00f =,则()()()()()024620220f f f f f ====⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点. 综上所述,()f x 在[]0,2022上至少有1011个零点,且可能有1011个零点,故C 错误,D 正确; 可能零点各数个数至少1012,大于1011,故B 错误;对于A,[解法一]取函数()0f x =,满足()()220f x f x ++=,但()f x 在[]0,2022上处处是零点,故A 错误.[解法二] 构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有2023个零点,故A 错误. 故选:D .9.对于函数()f x ,若()00f x x =,则称0x 为函数()f x 的“不动点”;若()()00f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数()()2R f x x a a =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是( )A .14⎛⎤-∞ ⎥⎝⎦,B .34∞⎛⎫-+ ⎪⎝⎭, C .3144⎛⎤- ⎥⎝⎦,D .3144⎡⎤-⎢⎥⎣⎦,【答案】D【分析】函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解,然后利用判别式即得. 【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解, 由()f x x =,得20x x a -+=有解,所以140a -≥,解得14a ≤. 由()()1221f x x f x x ⎧=⎪⎨=⎪⎩,,得212221x a x x a x ⎧+=⎨+=⎩,,两式相减,得()()121221x x x x x x -+=-,因为12x x ≠,所以211x x =--,消去2x ,得21110x x a +++=,因为方程21110x x a +++=无解或仅有两个相等的实根,所以()1410a -+≤,解得34a ≥-,故a 的取值范围是3144⎡⎤-⎢⎥⎣⎦,.故选:D.10.已知()313log f x x x =-时,当0a b c <<<时,满足()()()0f a f b f c ⋅⋅<,则关于以下两个结论正确的判断是( )①函数()y f x =只有一个零点;②函数()y f x =的零点必定在区间(a ,b )内. A .①②均对 B .①对,②错 C .①错,②对 D .①②均错 【答案】B【分析】由题可得函数在()0,∞+上为增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭,再结合零点存在定理及符号法则即可判断.【解析】因为13y x =和13log y x=-均为区间()0,∞+上的严格增函数,因此函数1313log y x x =-也是区间()0,∞+上的严格增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭.所以()y f x =只有一个零点,①对.因为()()()0f a f b f c ⋅⋅<, 所以()()(),,f a f b f c 的符号为两正一负或者全负,又因为0a b c <<<, 所以必有()0f a <,()0f b <,()0f c <或者()0f a <,()0f b >,()0f c >.当()0f a <,()0f b <,()0f c <时,零点在区间(),c +∞内;当()0f a <,()0f b >,()0f c >时,零点在区间(a ,b )内,所以②错. 故选:B .11.函数()21,25,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数()()()g x f x t t R =-∈有3个不同的零点a ,b ,c ,则222a b c ++的取值范围是( ) A .[)16,32 B .[)16,34C .(]18,32D .()18,34【答案】D【分析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,利用图象得出,,a b c 的性质、范围,从而可求得结论.【解析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,如图,则1221a b -=-,45c <<,222a b +=,2(16,32)c∈,所以1822234a b c <++<. 故选:D .【点睛】关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.12.已知函数()2log ,01,0x x f x x x ⎧>⎪=⎨+≤⎪⎩若()()()()1234f x f x f x f x ===(1234,,,x x x x 互不相等),则1234x x x x +++的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎡⎤-⎢⎥⎣⎦C .10,2⎡⎫⎪⎢⎣⎭D .10,2⎛⎤⎥⎝⎦【答案】D【分析】先画函数图象,再进行数形结合得到122x x +=-和2324log log x x =,结合对勾函数单调性解得441x x +的范围,即得结果. 【解析】作出函数()y f x =的图象,如图所示:设1234x x x x <<<,则()12212x x +=⨯-=-.因为2324log log x x =,所以2324log log x x -=, 所以()2324234log log log 0x x x x +==,所以341x x =,即341x x=.当2log 1x =时,解得12x =或2x =,所以412x <≤.设34441t x x x x =+=+, 因为函数1y x x =+在()1,+∞上单调递增,所以441111212x x +<+≤+,即34522x x <+≤, 所以1234102x x x x <+++≤. 故选:D.二、多选题13.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确到0.01时,所需二分区间的次数可以为( ) A .5 B .6C .7D .8【答案】CD【分析】由原来区间的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n,由10.012n ≤即可求解. 【解析】由题意,知区间[]0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确到0.01, ∴10.012n≤,解得7n ≥, 故选:CD .A .已知方程8x e x =-的解在()(),1k k k Z +∈内,则1k =B .函数()223f x x x =--的零点是()1,0-,()3,0C .函数3x y =,3log y x =的图像关于y x =对称D .用二分法求方程3380x x +-=在()1,2x ∈内的近似解的过程中得到()10f <,()1.50f >,()1.250f <,则方程的根落在区间()1.25,1.5上 【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数3x y =与函数3log y x =互为反函数判断选项C.【解析】对于选项A ,令()=8xf x e x +-,因为()f x 在R 上是增函数,且()()2170,260f e f e =-<=->,所以方程8x e x =-的解在()1,2,所以1k =,故A 正确;对于选项B ,令2230x x --=得=1x -或3x =,故函数()f x 的零点为1-和3,故B 错误; 对于选项C ,函数3x y =与函数3log y x =互为反函数,所以它们的图像关于y x =对称,故C 正确; 对于选项D ,由于()()()()1.2550,1 1.250f f f f ⋅<⋅>,所以由零点存在性定理可得方程的根落在区间()1.25,1.5上,故D 正确.故选:ACD15.(多选)已知函数f x 在区间[],a b 上的图象是一条连续不断的曲线,若0f a f b ⋅<,则在区间[],a b 上( )A .方程()0f x =没有实数根B .方程()0f x =至多有一个实数根C .若函数()f x 单调,则()0f x =必有唯一的实数根D .若函数()f x 不单调,则()0f x =至少有一个实数根【答案】CD【分析】根据零点存在定理可得答案.【解析】由函数零点存在定理,知函数()f x 在区间[],a b 上至少有一个零点, 所以若函数()f x 不单调,则()0f x =至少有一个实数根,若函数()f x 单调,则函数()f x 有唯一的零点,即()0f x =必有唯一的实数根, 故选:CD .16.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,令()()h x f x k =-,则下列说法正确的是( )A .函数()f x 的单调递增区间为()0,+∞B .当(]43k ,∈--时,()h x 有3个零点C .当2k =-时,()h x 的所有零点之和为-1D .当(),4k ∈-∞-时,()h x 有1个零点 【答案】BD【分析】画出()f x 的图象,然后逐一判断即可. 【解析】()f x 的图象如下:由图象可知,()f x 的增区间为()()1,0,0,-+∞,故A 错误当(]43k ,∈--时,()y f x =与y k =有3个交点,即()h x 有3个零点,故B 正确; 当2k =-时,由2232x x +-=-可得12x =-±,由2ln 2x -+=-可得1x = 所以()h x 的所有零点之和为1212--+=-,故C 错误;当(),4k ∈-∞-时,()y f x =与y k =有1个交点,即()h x 有1个零点,故D 正确; 故选:BD三、填空题17.函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【分析】由函数零点解出a 的值后再计算另一个零点,或利用韦达定理计算即可. 【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.R ③当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-;④()f x 恰有两个零点,请写出函数()f x 的一个解析式________【答案】2()1f x x =- (答案不唯一)【分析】由题意可得函数()f x 是偶函数,且在(0,)+∞上为增函数,函数图象与x 轴只有2个交点,由此可得函数解析式【解析】因为x ∀∈R ,()()f x f x =-,所以()f x 是偶函数,因为当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-, 所以()f x 在(0,)+∞上为增函数, 因为()f x 恰有两个零点,所以()f x 图象与x 轴只有2个交点,所以函数()f x 的一个解析式可以为2()1f x x =-, 故答案为:2()1f x x =- (答案不唯一) 19.已知()f x 是定义域为()(),00,∞-+∞的奇函数,函数()()g x f x x=+,()11f =-,当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立.现有下列四个结论:①()g x 在()0,∞+上单调递增;②()g x 的图象与x 轴有2个交点;③()()1326f f +-<;④不等式()0g x >的解集为()()1,00,1-.___________【答案】②③【分析】根据给定条件,探讨函数()g x 的性质,再逐一分析各个命题即可判断作答. 【解析】因当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立,则()()122111f x f x x x ->-恒成立, 即()()121211f x f x x x +>+恒成立,因此()()12g x g x >恒成立,则()g x 在()0,∞+上单调递减, 而()f x 是()(),00,∞-+∞上的奇函数,1y x=是()(),00,∞-+∞上的奇函数,则()g x 是()(),00,∞-+∞上的奇函数,因此函数()g x 是()(),00,∞-+∞上的奇函数,且在()0,∞+上单调递减,命题①不正确;因()11f =-,即()()11101g f =+=,()10g -=,显然()g x 在(),0∞-上单调递减,于是得()g x 的图象与x 轴有2个交点,命题②正确;显然()()32g g <,即()()113232f f +<+,则()()1326f f -<,因此()()1326f f +-<,命题③正确;因奇函数()g x 在(),0∞-,()0,∞+上单调递减,且()1(1)0g g -==,则当()0,1x ∈时,()0g x >,当(),1x ∈-∞-时,()0g x >,不等式()0g x >的解集为()(),10,1-∞-⋃,命题④不正确. 故答案为:②③20.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()11y f x =,()22y f x =,()33y f x =,则在区间[]13,x x 上()f x 可以用二次函数()()()()111212f x y k x x k x x x x =+-+--来近似代替,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-.若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π的近似值是_______. 【答案】2425##0.96【分析】根据题意先求出123,,y y y ,进而求出12,,k k k ,然后求得()f x ,最后求得2sin 5π的近似值. 【解析】函数()sin y f x x ==在10x =,22x π=,3x π=处的函数值分别为()100y f ==,212y f π⎛⎫== ⎪⎝⎭,()30y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--, 故()22224442f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭, 即2244sin x x x ππ≈-+,所以2224242sin 555πππππ⎛⎫≈-⨯+⨯= ⎪⎝⎭2425. 故答案为:2425.四、解答题21.已知函数()()()ln 3ln 3f x x x =++-.(1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点. 【答案】(1)证明见解析; (2)22-和22【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<,∴函数的定义域为{}33x x -<<,且定义域关于原点对称, 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=,∴291x -=,解得22x =±. ∴函数()f x 的零点为22-和22.22.已知函数3f x a =-(0a >且1a ≠),若函数y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集. 【答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可; (2)解不等式即可求出解集.【解析】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24), 所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0. 所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32, 所以x ≥1.则f (x )≥6的解集为[1,+∞).23.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格P (元)与时间t (天)的函数关系是()()20025,,452530,,t t t N P t t N ⎧+<<∈⎪=⎨≤≤∈⎪⎩日销售量Q (件)与时间t (天)的函数关系是()40030,Q t t t =-+<≤∈N . (1)设该商品的日销售额为y 元,请写出y 与t 的函数关系式(商品的日销售额=该商品每件的销售价格×日销售量);(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大.【答案】(1)()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)日销售额的最大值为900元,且11月10日销售额最大.【分析】(1)根据题目条件中给出的公式,直接计算,可得答案; (2)根据二次函数的性质,结合取值范围,可得答案. (1)由题意知()()()()()2040025,,45402530,,t t t t N y P Q t t t N ⎧+-<<∈⎪=⋅=⎨⨯-≤≤∈⎪⎩即()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)当025t <<,t ∈N 时,()222080010900y t t t =-++=--+, 所以当10t =时,max 900y =;当2530t ≤≤,t ∈N 时,180045y t =-,所以当25t =时,max 675y =. 因为900675>,所以日销售额的最大值为900元,且11月10日销售额最大.24.已知函数f x 是定义在R 上的偶函数,且当0x ≤时,f x x mx =+,函数f x 在轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有4个不相等的实数根,求实数a 的取值范围.【答案】(1)()222,02,0x x x f x x x x ⎧+≤=⎨->⎩ (2)()1,0-【分析】(1)利用()20f -=可求0x ≤时()f x 的解析式,当0x >时,利用奇偶性()()=f x f x -可求得0x >时的()f x 的解析式,由此可得结果;(2)作出()f x 图象,将问题转化为()f x 与y a =有4个交点,数形结合可得结果. (1)由图象知:()20f -=,即420m -=,解得:2m =,∴当0x ≤时,()22f x x x =+;当0x >时,0x -<,()()2222f x x x x x ∴-=--=-,()f x 为R 上的偶函数,∴当0x >时,()()22f x f x x x =-=-;综上所述:()222,02,0x x x f x x x x ⎧+≤=⎨->⎩;(2)()f x 为偶函数,f x 图象关于y 轴对称,可得()f x 图象如下图所示,()0f x a -=有4个不相等的实数根,等价于()f x 与y a =有4个不同的交点, 由图象可知:10a -<<,即实数a 的取值范围为()1,0-. 25.已知函数()()20f x ax bx c a =++>,且()12a f =-.(1)求证:函数()f x 有两个不同的零点;(2)设1x ,2x 是函数()f x 的两个不同的零点,求12x x -的取值范围.【答案】(1)证明见解析 (2))2,⎡+∞⎣【分析】(1)根据()12a f =-可得32ac b =--,再代入证明判别式大于0即可;(2)根据韦达定理化简可得21222b x x a ⎛⎫-=++ ⎪⎝⎭,进而求得范围即可.(1)∵()12a f abc =++=-,∴32ac b =--.∴()232a f x ax bx b =+--.对于方程()0f x =,()222223464222a b a b b a ab a b a ⎛⎫∆=---=++=++ ⎪⎝⎭,∴0∆>恒成立.又0a >,∴函数()f x 有两个不同的零点. (2)由1x ,2x 是函数()f x 的两个不同的零点,得1x ,2x 是方程()0f x =的两个根.∴12b x x a+=-,1232b x x a =--.∴()2221212123442222b b b x x x x x x a a a ⎛⎫⎛⎫⎛⎫-=+-=----=++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴12x x -的取值范围是)2,⎡+∞⎣.26.已知函数33f x a =+⋅为偶函数.(1)求实数a 的值;(2)设函数()()33x g x f x x -=+--的零点为0x ,求证:()0529210f x <<.【答案】(1)1a = (2)证明见解析【分析】(1)由()()f x f x -=可得答案;(2)求出()g x ,利用函数()g x 在R 上单调性得3030log 2log 2.51x <<<<. 再利用单调性定义判断出()f x 在()0,+∞上单调递增,利用单调性可得答案. (1)由()()f x f x -=,得3333x x x x a a --+⋅=+⋅,()223131-=⋅-x xa ,所以1a =,此时()33-=+x x f x ,x R ∈时,()()33--=+=x xf x f x ,()f x 为偶函数,所以1a =; (2) 由(1)得()33x x f x -=+,所以()333333xx x x g x x x --=++--=+-,因为函数()g x 在R 上单调递增,且()3log 2g 32log 230=+-<,()3log 2.5g 332.5log 2.53log 30.50=+->-=,所以3030log 2log 2.51x <<<<,又对任意120x x <<,()()1211221212123333333333x x x x x x x x x x f x f x ----=+--=--⋅()12121331033x x x x⎛⎫=--< ⎪⋅⎝⎭,所以()()12f x f x <,即()f x 在()0,+∞上单调递增, 所以()()()303log 2log 2.5f f x f <<, 即()0529210f x <<. 27.给出下面两个条件:①函数()的图象与直线只有一个交点;②函数()的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______.(1)求()f x 的解析式;(2)若对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,求实数m 的取值范围;(3)若函数()()()213232x xg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.【答案】(1)选①()22f x x x =-,选②()22f x x x =-(2)(],16-∞-(3)311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭【分析】(1)利用已知条件求出a 、b 的值,可得出()22f x x x c =-+.选①,由题意可得出()11f =-,可得出c 的值,即可得出函数()f x 的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数()f x 的解析式;(2)3log h x =,[]2,3h ∈-,由参变量分离法可得出()min 2m f h ≤-⎡⎤⎣⎦,结合二次函数的基本性质可求得实数m 的取值范围;(3)令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()22f x x x c =-+.选①,因为函数()f x 的图象与直线1y =-只有一个交点,所以()1121f c =-+=-,解得0c ,所以()f x 的解析式为()22f x x x =-.选②,设1x 、2x 是函数()f x 的两个零点,则122x x -=,且440c ∆=->,可得1c <, 由根与系数的关系可知122x x +=,12x x c =, 所以()21212124442x x x x x x c -=+-=-=,解得0c ,所以()f x 的解析式为()22f x x x =-.(2)解:由()32log 0f x m +≤,得()32log m f x ≤-,当1,279x ⎡⎤∈⎢⎥⎣⎦时,[]3log 2,3x ∈-,令3log h x =,则[]2,3h ∈-,所以对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,等价于()2m f h ≤-在[]2,3h ∈-上恒成立,所以()()min 22216m f h f ≤-=--=-⎡⎤⎣⎦,所以实数m 的取值范围为(],16-∞-. (3)解:因为函数()()()213232x xg x t f =--⨯-有且仅有一个零点,令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,因为()22f x x x =-,所以()221420t n tn ---=有且仅有一个正实根,当210t -=,即12t =时,方程可化为220n --=,解得1n =-,不符合题意; 当210t ->,即12t >时,函数()22142y t x tx =---的图象是开口向上的抛物线,且恒过点()0,2-,所以方程()221420t n tn ---=恒有一个正实根;当210t -<,即12t时,要使得()221420t n tn ---=有且仅有一个正实根, ()21682102021t t tt ⎧=+-=⎪⎨>⎪-⎩,解得312t +=-. 综上,实数t 的取值范围为311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.28.已知函数10f x ax bx a =++≠的图象关于直线x =1对称,且函数2y f x x =+为偶函数,函数()12x g x =-.(1)求函数()f x 的表达式;(2)求证:方程()()0f x g x +=在区间[]0,1上有唯一实数根; (3)若存在实数m ,使得()()f m g n =,求实数n 的取值范围. 【答案】(1)()()21f x x =- (2)证明见解析 (3)(],0-∞【分析】(1)根据二次函数的对称轴以及奇偶性即可求解,a b ,进而可求解析式, (2)根据函数的单调性以及零点存在性定理即可判断, (3)将条件转化为函数值域,即可求解. (1)∵()21f x ax bx =++的图象关于直线x =1对称,∴122bb a a-=⇒=-. 又()()2221y f x x ax b x =+=+++为偶函数,∴=2b -,=1a .∴()()22211f x x x x =-+=-. (2)设()()()()2112x h x f x g x x =+=-+-,∵()010h =>,()110h =-<,∴()()0?10h h <. 又()()21f x x =-,()12xg x =-在区间[]0,1上均单调递减,∴()h x 在区间[]0,1上单调递减,∴()h x 在区间[]0,1上存在唯一零点. ∴方程()()0f x g x +=在区间[]0,1上有唯一实数根. (3)由题可知()()210f x x =-≥,()121xg x =-<,若存在实数m ,使得()()f m g n =,则()[)0,1g n ∈, 即120n -≥,解得0n ≤.∴n 的取值范围是(],0-∞. 29.若函数()y f x =同时满足:①函数在整个定义域是严格增函数或严格减函数;②存在区间[],a b ,使得函数在区间[],a b 上的值域为22,a b ⎡⎤⎣⎦,则称函数()f x 是该定义域上的“闭函数”.(1)判断()2f x x =-是不是R 上的“闭函数”?若是,求出区间[],a b ;若不是,说明理由; (2)若()()211f x x t x =-≥是“闭函数”,求实数t 的取值范围;(3)若()()2222f x x kx k =-+≤在1,33⎡⎤⎢⎥⎣⎦上的最小值()g k 是“闭函数”,求a 、b 满足的条件.【答案】(1)不是,理由见解析;(2)3,14⎛⎤ ⎥⎝⎦;(3)222a b +=且11733a b ≤<≤. 【分析】(1)利用“闭函数”的定义判断函数()2f x x =-是否满足①②,由此可得出结论;(2)分析可知函数()21h m m m t =-+-在[)0,m ∈+∞有两个零点,利用二次函数的零点分布可得出关于实数t 的不等式组,由此可解得实数t 的取值范围;(3)利用二次函数的基本性质求得()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩,然后分13a b <≤、123a b <≤≤、123a b ≤<≤三种情况讨论,分析函数()g k 的单调性,结合“闭函数”的定义可得出关于a 、b 的等式,由此可得出a 、b 满足的条件.【解析】(1)函数()2f x x =-为R 上的增函数,若函数()2f x x =-为“闭函数”,则存在a 、()b a b <,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()2222f a a a f b b b⎧=-=⎪⎨=-=⎪⎩,则关于x 的方程220x x -+=至少有两个不等的实根, 因为180∆=-<,故方程220x x -+=无实根,因此,函数()f x 不是“闭函数”; (2)因为函数()21f x x t =-+为[)1,+∞上的增函数, 若函数()21f x x t =-+为[)1,+∞上的“闭函数”,则存在a 、[)()1,b a b ∈+∞<,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()222211f a a t a f b b t b⎧=-+=⎪⎨=-+=⎪⎩,所以,关于x 的方程221x t x -+=在[)1,+∞上有两个不等的实根,令210m x =-≥,设()21h m m m t =-+-,则函数()h m 在[)0,m ∈+∞有两个零点,所以,()()1410010t h t ⎧∆=-->⎪⎨=-≥⎪⎩,解得314t <≤,因此,实数t 的取值范围是3,14⎛⎤⎥⎝⎦;(3)因为()()222f x x k k =-+-.当13k <时,函数()f x 在1,33⎡⎤⎢⎥⎣⎦上单调递增,则()1192393k g k f ⎛⎫==- ⎪⎝⎭;当123k ≤≤时,()()22g k f k k ==-.综上所述,()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩. 所以,函数()g k 在1,3⎛⎫-∞ ⎪⎝⎭上为减函数,在1,23⎡⎤⎢⎥⎣⎦上也为减函数.①当13a b <≤时,则()()221929319293a g a b b g b a⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两式作差得()()()23a b a b a b -=-+,因为a b <,故23a b +=,因为13a b <<,则23a b +<,矛盾;②当123a b <≤≤时,则有222192932ab b a⎧-=⎪⎨⎪-=⎩,消去2b 可得29610a a -+=,解得13a =,不合乎题意;③当123a b ≤<≤时,则()()222222g a a b g b b a⎧=-=⎪⎨=-=⎪⎩,可得222a b +=.因此,a 、b 满足的条件为222a b +=且11733a b ≤<≤. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。
用二分法求方程的近似值

复习上节课内容:
3.1.1 方程的根与函数的零点 1、函数的零点的概念 2、零点存在判定法则 3、零点个数的求法
复习内容1:
1、函数的零点的定义:
使f(x)=0的实数x叫做函数y=f(x)的零点 (zero point)
结论: 方程f (x) 0有实数根 函数y f (x)的图象与x轴有交点 函数y f (x)有零点
复习内容2:
2、零点存在判定法则
如果函数y=f (x)在区间[a,b]上的图象是 连续不断的一条曲线,并且有f(a) f(b)<0, 那么,函数y=f(x)在区间(a,b)内有零点, 即存在c (a,b),使得f(c)=0,这个c也就是 方程f(x)=0的根.
复习内容3:
例1 求函数f(x)=lnx+2x-6的零点个数
⑷判断是否达到精确度 :即若|a-b|< ,则得到零点近似值
为a(或b)二分法求方程 3x-7x=8 的近似解(精确到0.1).
小结
这节课你学到了什么吗? 有什么收获吗?
——二分法求方程的根
作业 课本108页 第4、5题
; https:///bollzhibiao/ 布林通道 ;
例2 借助计算器或计算机用二分法求方程 2x+3x=7 的近似解(精确到0.1).
方法三: 画出y=lnx及y=-2x+6的图象
那么我们一起来总结一下二分法的解题步骤
给定精确度 ,用二分法求函数f(x)零点近似解的步骤如下:
⑴确定区间[a,b],验证 f (a) f (b) 0 ,给定精确度 ;
死不死の目标又是陆陆,气得对方声称请律师请媒体.余岚相信她说得出做得到,唯一庆幸の是自己妹子早早就离
用二分法求方程的近似解(高中数学)

[解] 因为 f(-1)>0,f(-2)<0,且函数 f(x)=x3-3x2-9x+1 的图象 是连续的曲线,根据函数零点的存在性定理可知,它在区间[-2,-1]内 有零点,用二分法逐步计算,列表如下:
22
端点(中点)
________.
11
合作探究 提素养
12
二分法的概念 【例 1】 已知函数 f(x)的图象如图所示,其中零点的个数与可以用 二分法求解的个数分别为( )
A.4,4
B.3,4
C.5,4
D.4,3
D [图象与 x 轴有 4 个交点,所以零点的个数为 4;左右函数值异号
的零点有 3 个,所以用二分法求解的个数为 3,故选 D.]
内的唯一零点时,精确度为 0.001, 长度|b-a|小于精确度ε时,便可结束
则结束计算的条件是( )
计算.]
A.|a-b|<0.1
B.|a-b|<0.001
C.|a-b|>0.001
D.|a-b|=0.001
3.已知函数 y =f(x)的图象如图所 示,则不能利用二分 法求解的零点是 ________.
由于|1.75-1.687 5|=0.062 5<0.1,所以函数的正数
零点的近似值可取为1.687 5.
26
利用二分法求方程近似解的过程图示
27
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点 逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度, 用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足: (1)在区间[a,b]上连续不断; (2)f(a)·f(b)<0, 上述两条的函数方可采用二分法求得零点的近似值.
12-第五节 函数的应用(二)-课时2 用二分法求方程的近似解高中数学必修一人教A版

所以0 ∈ −1,0 .
因为
1
−
2
7
2
= > 0,所以
1
−
2
⋅ 0 < 0,所以0 ∈
1
− ,0
2
.
因为
1
−
4
9
8
= > 0 ,所以
1
所以0 ∈ − , 0 .
4
1
1
因为 − = > 0,所以
8
32
1
所以0 ∈ − , 0 .
C. 1.25
D. 1.75
【解析】 因为 1 < 0, 2 > 0, 1.5 < 0,则近似解应该落在区间
1.5,2 内,根据二分法的计算步骤,下次应计算的函数值为区间 1.5,2 中
点的函数值,即 1.75 .
4.[2024湖南长沙雨花区期末]用二分法求方程2 + − 8 = 0在[1,5]内的近
2
= ln + 1 + − 1在区间 0,1 内零点的近似值,要求精确度为0.01,
1
所以
2
≤ 0.01,解得 ≥ 7,故所需二分区间的次数最少为7.
9.已知函数 = 2 2 − 8 + + 3为上的连续函数.
(1)若函数 在区间[−1,1]内存在零点,求实数的取值范围.
似解时,经过两次二分区间后,可确定近似解所在的区间为( B
A. 1,2 或 2,3
B. 2,3
C. 1,2
)
D.不能确定
【解析】 设 = 2 + − 8,则 1 = 2 + 1 − 8 = −5 < 0,
【高中数学必修一】3.1.2二分法求方程的近似解

知识探究(一):二分法的概念
小结:
(1)用天平称 3 次就可以找出这个稍重的球.
(2)要找出稍重的球, 尽量将稍重的球所在的范围 尽量的缩小, 我们通过不断地 “平分球” 、 “锁定” 、 “淘汰”的方法逐步缩小稍重的球所在的范围, 直到满意为止.
(3)这种“平分球”的方法,就是“二分法”的体现.
新知展现
1.二分法的定义
新知展现
1.二分法的定义
对于区间[a,b]上连续不断且 f (a)· f (b)<0 的函数 y = f (x),通过不断地把函数 f (x)的 零点所在的区间一分为二,使区间的两个端 点逐步逼近零点,进而得到零点近似值的方 法叫做二分法.
新知展现
1.二分法的定义
对于区间[a,b]上连续不断且 f (a)· f (b)<0 的函数 y = f (x),通过不断地把函数 f (x)的 零点所在的区间一分为二,使区间的两个端 点逐步逼近零点,进而得到零点近似值的方 法叫做二分法.
通过“取区间中点”的方法逐步缩小零点所 在的范围(区间).
知识探究(一):二分法的概念
思考3:通过阅读教材,你知道是用什么办 法将零点所在范围(区间)缩小的?
通过“取区间中点”的方法逐步缩小零点所 在的范围(区间).
ab 一般地,我们把 x 称 2
为区间(a,b)的中点.
知识探究(一):二分法的概念
另 种 情 况 为
一样重
知识探究(一):二分法的概念
一分为二(3)
另 种 情 况 为
一样重
被选出的球为最重的球.
知识探究(一):二分法的概念
小结:
(1)用天平称 3 次就可以找出这个稍重的球.
知识探究(一):二分法的概念
3.1.1二分法求方程的近似解
已知f(2)<0,f(3)>0,求方程f(x)=lnx+2x-6=0的近根似解
-
-
+
f (2.5) 0, f (3) 0 2.5 x1 3
2
2.5
3
-
- + + f (2.5) 0, f (2.75) 0 2.5 x1 2.57
ln x 2x
f (2) 0, f
6零点在2,3
(3) 0
次数
ab 2
f ( a b) 取a
2
取b
区间长度:
ba
1 2.5
-0.084
(22.5.5,33)
0.5
2 2.75
0.512
(22..55 , 22.7.755 )
0.25
3 2.625
0.215
(2.5, 2.625)
0.125
3.1.2 用二分法求方程的近似解
数学发现之旅从这里开始……
复习思考:
1.零点存在的判定
如果函数y=f (x)在区间[a, b]上的图象是 连续不断的一条曲线,并且有f(a)f(b)<0, 那么,函数y=f(x)在区间(a,b)内有零点, 即存在c (a,b),使得f(c)=0,这个c也就是 方程f(x)=0的根.
4 2.5625
0.066
(2.5, 2.5625)
0.0625
由于|2.5625-2.5|=0.0625<0.1
f (x) ln x 2x 6
所以方程的近似解为:
x 2.5625或2.5
2.5
2.75
2
用二分法求方程的近似解
总结作业
茅盾中学 用二分法求方程的近似解
0.03
(2.5625,2.625)
新课讲解
茅盾中学 用二分法求方程的近似解
给定精确度 ,用二分法求函数f (x)零点近似值
的步骤 :
宇普西龙
1.确定区间[a,b], 验证f (a) f (b) 0;
2.求区间(a, b)的中点c;
3.计算f (c);
(1)若f (c) 0,则c就是函数的零点;
(2)若f (a) f (c) 0,则令b c(此时零点x0 (a, c)); (3)若f (c) f (b) 0,则令a c(此时零点x0 (c, b)); 4.判断是否达到精确度 :即若 | a b | ,则得到零点近似值a(或b);否
则重复2 4.
新课讲解
茅盾中学 用二分法求方程的近似解
例1、借助计算器或计算机,用二分法求方程x
3 lg x在(2,3)内的近似解(精确度0.1). 近似 值
区间
中点的值 中点的函数值
(2,3) (2.5,3) (2.5,2.75)
2.5 2.75 2.625
0.10 0.19 0.04
(2.5,2.625) 2.5625
A.(3,4) B.(0,1) C.(1,2) D.(2,3)
新课讲解
二分法 :
茅盾中学 用二分法求方程的近似解
对于区间[a,b]上连续不断且f (a) f (b) 0的函 数y f (x), 通过不断地把函数f (x)的零点所在 的区间一分为二, 使区间的两个端点逐步逼近 零点, 进而得到零点近似值的方法, 称之.
首页
§ 3.1.2 用二分法求方程近似解
复习引入 新课讲解 课堂小结 课后作业
高考数学专题复习:利用二分法求方程的近似解
高考数学专题复习:利用二分法求方程的近似解一、单选题1.已知函数3()2xf x x=-在区间(1,2)上有一个零点0x ,如果用二分法求0x 的近似值(精确度为0.01),则应将区间(1,2)至少等分的次数为( ) A .5B .6C .7D .82.用二分法求方程2log 2x x +=的近似解时,可以取的一个区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.下列函数图象与x 轴都有公共点,其中不能用二分法求图中函数零点近似值的是( )A .B .C .D .4.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为( ) A .6B .7C .8D .95.若函数()3222f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程32220x x x +--=的一个近似根(精确度为0.05)可以是( ) A .1.25B .1.375C .1.42D .1.56.用二分法求函数()ln 26f x x x =+-在区间(2)3,内的零点近似值,至少经过( )次二分后精确度达到0.1. A .2 B .3 C .4D .57.二分法求函数的零点的近似值适合于( ) A .零点两侧函数值符号相反 B .零点两侧函数值符号相同 C .都适合D .都不适合8.已知用二分法求函数()f x 在(1,2)内零点近似值的过程中发现,(1)0f <,(1.5)0f >,(1.25)0f <,则可以确定方程()0f x =的根所在区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .无法确定9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2B .1.3C .1.4D .1.510.设()338x f x x =+-,用二分法求方程3380x x +-=近似解的过程中,有f (1)0<,(1.5)0f >,(1.25)0f <,则该方程的根所在的区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定11.用二分法求函数的零点,函数的零点总位于区间[n a ,]()n b n N ∈上,当||n n a b m -<时,函数的零点近似值02n na b x +=与真实零点a 的误差最大不超过( ) A .4mB .2m C .m D .2m12.用二分法求方程3x-=的近似解,可以取的一个区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)二、填空题13.已知方程lg 3x x =-的根在区间()2,3上,第一次用二分法求其近似解时,其根所在区间应为________.14.已知二次函数()26f x x x =--在区间[1,5]上的图象是一条连续的曲线,且()160f =-<,()5140f =>,由零点存在性定理可知函数在[1,5]内有零点,用二分法求解时,取(1,5)的中点a ,则()f a =________.15.方程310x x ++=在()1,0x ∈-上的近似解为________(精确到0.01)16.若函数()24f x x x m =-+存在零点,且不能用二分法求该函数的零点,则实数m 的取值是________. 三、解答题17.用二分法求函数33y x =-的一个正零点(精确度0.1).18.用二分法求方程ln(26)23x x 的根的近似值时,令()ln(26)23x f x x ,并用计算器得到下表:由表中的数据,求方程ln(26)23x x 的一个近似解(精确度为0.1).19.已知函数2()(1)1xx f x a a x -=+>+. (1)求证:()f x 在(1,)-+∞上为增函数.(2)若3a =,求方程()0f x =的正根(精确度为0.01).20.已知函数1()f x x=.(1)讨论函数1()f x x=在定义域上的单调性,并加以证明; (2)设()()2F x f x =-,已知0x 是()F x 的一个零点,求该零点的近似值.(精确到0.01)21.已知函数3()234f x ax ax a =++-在区间(1,1)-上有个零点. (1)求实数a 的取值范围; (2)若3233a =,用二分法求方程()0f x =在区间(1,1)-上的根.22.已知函数()2log 2f x x x =+-.(1)判断函数()f x 的零点的个数并说明理由;(2)求函数()f x 零点所在的一个区间,使这个区间的长度不超过12;(3)若10,2x ⎛⎤∈ ⎥⎝⎦,对于任意的t R ∈,不等式()221f x t mt <-+恒成立,求实数m 的取值范围.参考答案1.C 【分析】根据二分法的定义可得10.012n <,解得6n >即得. 【详解】由于每等分一次,零点所在区间的长度变为原来的12,则等分n 次后的区间长度变为原来的12n, 则由题可得10.012n <,即621002n >>,6n ∴>, 则至少等分的次数为7. 故选:C. 2.B 【分析】构造函数2()log 2f x x x =+-并判断其单调性,借助零点存在性定理即可得解. 【详解】22log 2log 20x x x x +=⇔+-=,令2()log 2f x x x =+-,()f x 在(0,)+∞上单调递增,并且()f x 图象连续,(1)10f =-<,(2)10f =>,()f x 在区间(1,2)内有零点,所以可以取的一个区间是(1,2). 故选:B 3.A 【分析】根据二分法求零点的条件,直接判断即可. 【详解】根据题意,利用二分法求函数零点的条件是:函数在零点的左右两侧的函数值符号相反,即穿过x 轴, 据此分析选项:A 选项中函数不能用二分法求零点,4.B 【分析】由题可得经过n 次操作后,区间的长度为12n,令10.012n <即可求解. 【详解】根据题意,原来区间[]0,1的长度等于1,每经过二分法的一次操作,区间长度变为原来的一半,则经过n 次操作后,区间的长度为12n,若10.012n <,即7n ≥. 故选:B . 5.C 【分析】根据零点的存在性定理求解即可. 【详解】 解:由表格可得,函数()3222f x x x x =+--的零点在()1.40625,1.4375之间;结合选项可知,方程32220x x x +--=的一个近似根(精确度为0.05)可以是1.42; 故选:C . 6.C 【分析】根据用二分法求方程的近似解的步骤计算即可. 【详解】解:开区间(2)3,的长度等于1, 每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 故有10.12n≤, 解得:4n ≥, ∴至少需要操作4次.7.A 【分析】根据连续函数零点存在性定理即可求解. 【详解】根据函数零点存在性定理知,利用二分法求函数的零点,必须满足函数图象连续不断且在零点两侧函数值符号相反. 故选:A 8.B 【分析】根据零点存在性定理可直接判断. 【详解】由(1.25)0f <,(1.5)0f >,可判断方程()0f x =的根所在区间为(1.25,1.5). 故选:B. 9.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<, (1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.4 故选:C 10.B 【分析】根据题意,分析可得(1.25)(1.5)0f f <,由二分法的定义可得答案. 【详解】根据题意,由于(1.5)0f >,(1.25)0f <, 则(1.25)(1.5)0f f ⋅<,又因为()338x f x x =+-是单调递增函数,则该方程的根所在的区间为(1.25,1.5); 故选:B . 11.B 【分析】根据函数的零点总位于区间[n a ,]()n b n N ∈上,则由0||||||22n nn nn a b a b x a a a ++-=--或0||||||22n nn nn a b a b x a a b ++-=--求解. 【详解】根据题意,函数的零点总位于区间[n a ,]()n b n N ∈上,即[n a a ∈,]n b ,零点近似值02n na b x +=, 若[n a a ∈,]2n n a b +,则0||||||||2222n n n n n n n a ba b b a mx a a a ++--=--==,即有0||2mx a -; 同理当[2n na b a +∈,]n b 时,也有0||2m x a -; 综合可得:0||2mx a -,函数的零点近似值02n n a b x +=与真实零点a 的误差最大不超过2m ;故选:B . 【点睛】本题主要考查二分法求函数的零点问题,属于基础题. 12.C 【分析】 令()3f x x=-,根据零点存在性定理,以及二分法的概念,即可得出结果.【详解】 令()3f x x=-,则()122322lg 23lg 2102f ⎛⎫=-=-⨯--=-< ⎪⎝⎭, ()3333lg302f =-=>, ∴用二分法求方程3x-=的近似解,可以取的一个区间是(2,3). 故选:C . 【点睛】本题主要考查二分法求方程近似解,熟记零点存在性定理即可,属于常考题型. 13.()2.5,3【分析】由题意构造函数()lg 3f x x x =-+,求方程的一个近似解,就是求函数在某个区间内有零点,分析函数值的符号是否异号即可. 【详解】解:令()lg 3f x x x =-+,其在定义域上单调递增, 且()2lg210f =-<,()3lg30f =>,()2.5lg 2.50.50f =-=,由f (2.5)f (3)<0知根所在区间为()2.5,3. 故答案为:()2.5,3. 14.0 【分析】根据二分法的定义得1533a +==,求出()3f 即可. 【详解】由于(1,5)的中点为3, 则()3f =0. 故答案为:0. 15.0.75x ≈- 【分析】设()31f x x x =++,利用二分法求函数在()1,0x ∈-上的零点的近似值即可.【详解】令()31f x x x =++,设()0f x =的根为0x ,因为()11110f -=--+<,()010f =>,()30.50.50.510f -=--+>,因为()()0.510f f -⋅-<,所以()01,0.5x ∈--,()30.750.750.7510f -=--+<,()30.50.50.510f -=--+> ()()0.50.750f f -⋅-<,所以()00.75,0.5x ∈--,()30.6250.6250.62510f -=--+>,()30.750.750.7510f -=--+<,所以()00.75,0.625x ∈--, 因为方程的解精确到0.01,所以方程的解可以是0.75x ≈-,此答案不唯一. 16.4 【分析】本题可根据题意得出函数()24f x x x m =-+仅有一个零点,然后通过判别式即可得出结果.【详解】因为函数()24f x x x m =-+存在零点且不能用二分法求该函数的零点,所以由二次函数性质易知,函数()24f x x x m =-+仅有一个零点,()2440m ∆=--=,解得4m =,故答案为:4. 17.1.5或1.4375【分析】计算可得()11320f =-=-< ,()322350f =-=>,根据零点存在定理可取区间[]1,2作为计算的初始区间,用二分法逐次计算,直到区间端点的差精确度为0.1即可.【详解】解:()11320f =-=-< ,()322350f =-=>,因此可取区间[]1,2作为计算的初始区间,用二分法逐次计算,见下表:从表中可知||1.5 1.437 50.062 50.1=-<,∴函数33y x =-精确度为0.1的零点,可取为1.5或1.4375. 18.1.3125. 【分析】由图表知()()1.25 1.3750f f ⋅<,故由二分法思想再取(1.25,1.375)的中点,当区间长度小于精确度时便得到近似解. 【详解】解:因为()()1.25 1.3750f f ⋅<,故根据二分法的思想,知函数()f x 的零点在区间(1.25,1.375)内,但区间(1.25,1.375)的长度为0.1250.1>,因此需要取(1.25,1.375)的中点1.312 5, 两个区间(1.251.3125),和(1.31251.375),中必有一个满足区间端点的函数值符号相异,又区间的长度为0.06250.1<,因此1.312 5是一个近似解. 【点睛】本题主要考查用二分法求方程的根的近似值,考查运算求解能力,熟练掌握二分法求方程根的近似值的方法是快速解题的关键. 19.(1)证明见解析;(2)0.2734375. 【分析】(1)根据定义法证明函数在所给区间的单调性,依次按取值,设定大小,作差,判断符号,可得出结果.(2)把3a =代入可得2()31x x f x x -=++,根据(1)的结论可知正根在区间(0,1)内,然后利用二分法近似求解步骤计算即可. 【详解】(1)任取12,(1,)x x ∈-+∞,且12x x <, 则210x x ->,211x x a ->,且10x a >.∴()2112110x x x xa a a a x -=-->,∵110x +>,210x +>,∴()()()2121211232201111x x x x x x x x ----=>++++.于是()()2121212122011x xx x f x f x a a x x ---=-+->++. 故函数()f x 在(1,)-+∞上为增函数.(2)由(1)知当3a =时,2()31xx f x x -=++在(1,)-+∞上单调递增, 故在(0,)+∞上也单调递增,因此()0f x =的正根最多有一个. ∵(0)10f =-<,5(1)02f =>, ∴方程的正根在(0,1)内,取(0,1)为初始区间,用二分法逐次计算, 列出下表:∵|0.27343750.28125|0.00781250.01-=<, ∴方程的根的近似值为0.2734375, 即()0f x =的正根约为0.2734375. 【点睛】本题考查利用定义法证明函数的单调性以及二分法近似求解,着重对概念的考查,识记概念,掌握步骤,属基础题.20.(1)()f x 在定义域(0,)+∞上单调递增,证明见解析;(2)0 4.86x ≈ 【分析】(1)确定函数定义域,利用定义法证明函数单调性.(2)根据零点存在定理,利用二分法计算得到答案. 【详解】 (1)1()f x x=,函数定义域为()0,∞+,函数单调递增, 设120x x <<,则()()2121211211x x f x f x x x x x ⎫⎫--=-=+⎪⎪⎭⎭, 120x x <<()()210f x f x ->,故函数在()0,∞+上单调递增.(2)()()2F x f x =-,()142204F =--<,()15205F =->,()14.5204.5F =-<,()14.75204.75F =-<, ()14.875204.875F =->,()14.8125204.8125F =-<, ()14.84375204.84375F =-<,()14.859375204.859375F =-<,()14.865204.885F =->,故0 4.86x ≈. 【点睛】本题考查了函数单调性,求函数零点,意在考查学生的计算能力和应用能力.21.(1)2,3⎛⎫+∞ ⎪⎝⎭;(2)12.【分析】(1)分别讨论0a =与0a ≠的情况,利用零点存在性定理求解即可; (2)当3233a =时,3326412()333311f x x x =+-,由()()010f f <可得函数()f x 的零点在区间(0,1)上,进而求得102f ⎛⎫= ⎪⎝⎭,即可求得方程的根【详解】(1)若0a =,则()4f x =-,与题意不符,∴0a ≠,若0a ≠,则由题意可知,()()223232f x ax a a x '=+=+,则()f x 在(1,1)-上是单调函数,故(1)(1)4(64)0f f a -⋅=--<,解得23a >, 故a 的取值范围为2,3⎛⎫+∞ ⎪⎝⎭(2)若3233a =, 则3326412()333311f x x x =+-, (1)40f ∴-=-<,12(0)011f =-<,20(1)011f =>, ∴函数()f x 的零点在区间(0,1)上,又102f ⎛⎫= ⎪⎝⎭,∴方程()0f x =在区间(1,1)-上的根为12 【点睛】考查已知零点所在区间求参数范围,考查利用二分法求方程的根,考查运算能力22.(1)一个,理由见解析;(2)31,2⎛⎫ ⎪⎝⎭;(-.【分析】(1)分析函数()y f x =的单调性,结合零点存在定理可得出结论;(2)先可求得函数()y f x =的零点所在的一个区间为()1,2,然后利用二分法可得出()y f x =的一个零点所在的区间,且这个区间的长度不超过12;(3)由题意可知,()2max 21f x t mt <-+,利用函数()y f x =的单调性求出该函数在区间10,2⎛⎤⎥⎝⎦的最大值52-,将问题转化为关于t 的不等式27202t mt -+>对任意的t R ∈恒成立,可得出∆<0,由此可解出实数m 的取值范围. 【详解】(1)由题易知:函数()y f x =的定义域为()0,+∞,且在()0,+∞上连续,()110f =-<,()210f =>,()()120f f ∴⋅<,函数2log y x =和2y x =-在()0,+∞上都是增函数, 所以,函数()2log 2f x x x =+-在()0,+∞上是增函数, 因此,函数()y f x =在()0,+∞上有且只有一个零点;(2)设函数()y f x =的零点为0x ,由(1)知:()10f <,()20f >,()01,2x ∴∈,取132x =,2223313log log log 02222f ⎛⎫=-=- ⎪⎝⎭,()3102f f ⎛⎫⋅< ⎪⎝⎭,031,2x ⎛⎫∴∈ ⎪⎝⎭且3111222-=≤, 31,2⎛⎫∴ ⎪⎝⎭即为符合条件的区间;(3)当10,2x ⎛⎤∈ ⎥⎝⎦时,对于任意的t R ∈,不等式()221f x t mt <-+恒成立等价于()2max 21f x t mt <-+,10,2x ⎛⎤∈ ⎥⎝⎦,t R ∈.由函数()y f x =在10,2⎛⎤⎥⎝⎦上是增函数,可知()max 1522f x f ⎛⎫==- ⎪⎝⎭,25212t mt ∴-+>-对任意t R ∈恒成立,27202t mt ∴-+>对任意t R ∈恒成立,2280m ∴∆=-<,解得m -<因此,m 的取值范围是(-.。
人教A版高中数学必修一第四章指数函数与对数函数第5节函数的应用(二)第2课时用二分法求方程的近似解
4.5.2 用二分法求方程的近似解教材要点要点 用二分法求方程的近似解 1.二分法对于在区间[a ,b ]上 的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间 ,使区间的两个端点逐步逼近 ,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数y =f (x )零点x 0的近似值的一般步骤 第一步:确定零点x 0的初始区间[a ,b ],验证f (a )·f (b )<0. 第二步:求区间(a ,b )的中点c . 第三步:计算f (c ),并进一步确定零点所在的区间. (1)若f (c )=0(此时x 0=c ),则c 就是函数的零点; (2)若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); (3)若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二步至第四步.状元随笔 二分就是将所给区间平均分成两部分,通过不断逼近的办法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.基础自测1.思考辨析(正确的画“√”,错误的画“×”) (1)用二分法可求所有函数零点的近似值.( )(2)用二分法求方程的近似解时,可以精确到小数点后的任一位.( ) (3)用二分法求函数的零点近似值的方法仅对函数的变号零点适用.( )(4)用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近”思想逐步缩小零点所在的区间.( )2.以下每个图象表示的函数都有零点,但不能用二分法求函数零点近似值的是( )3.用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( )A .0.9B .0.7C .0.5D .0.44.已知函数y =f (x )在区间(2,4)上连续,验证f (2)·f (4)<0,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点所在的区间为 W.题型1二分法的概念应用例1(1)下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是()(2)用二分法求方程2x+3x-7=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是W.方法归纳二分法的适用条件判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.跟踪训练1(多选)下列函数中,能用二分法求函数零点的有()A.f(x)=3x-1 B.f(x)=x2-2x+1C.f(x)=log4x D.f(x)=e x-2题型2用二分法求函数零点的近似值例2用二分法求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点.(精确度0.01)方法归纳(1)用二分法求函数零点的近似值应遵循的原则①需依据图象估计零点所在的初始区间[m,n](一般采用估计值的方法完成).②取区间端点的平均数c,计算f(c),确定有解区间是[m,c]还是[c,n],逐步缩小区间的“长度”,直到区间的两个端点符合精确度要求,终止计算,得到函数零点的近似值.(2)二分法求函数零点步骤的记忆口诀定区间,找中点,中值计算两边看.同号丢,异号算,零点落在异号间.重复做,何时止,精确度来把关口.跟踪训练2根据下表,用二分法求函数f(x)=x3-3x+1在区间(1,2)上的零点的近似值(精确度为0.1)是()C.0.127 197 26 D.1.562 5题型3用二分法求方程的近似解例3用二分法求2x+x=4在区间(1,2)内的近似解(精确度0.2).参考数据:方法归纳用二分法求方程的近似解的方法对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求函数F(x)=f(x)-g(x)的零点的近似值,然后按照用二分法求函数零点的近似值的步骤求解.跟踪训练3用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:据此数据,可得方程3-x -4=0的一个近似解(精确度为0.01)可取 W. 易错辨析 精确度理解不正确致误例4 用二分法求方程x 2-5=0的一个近似解(精确度为0.1)解析:令f (x )=x 2-5,因为f (2.2)=-0.16<0,f (2.4)=0.76>0,所以f (2.2)·f (2.4)<0,所以函数f (x )在区间(2.2,2.4)内有零点,设为x 0.取区间(2.2,2.4)的中点x 1=2.3,f (2.3)=0.29>0,因为f (2.2)·f (2.3)<0,所以x 0∈(2.2,2.3).再取区间(2.2,2.3)的中点x 2=2.25,f (2.25)=0.062 5>0, 因为f (2.2)·f (2.25)<0,所以x 0∈(2.2,2.25).因为|2.25-2.2|=0.05<0.1,所以原方程的一个近似正解可取为2.25. 易错警示 课堂十分钟1.用二分法求如图所示函数f (x )的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 42.用二分法求函数f (x )=2x -3的零点时,初始区间可选为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)3.在用二分法求方程3x +3x -8=0在(1,2)内近似根的过程中,已经得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定4.用二分法求函数y =f (x )在区间[2,4]上的近似零点(精确度为0.01),验证f (2)·f (4)<0,取区间[2,4]的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间是.5.以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=,f(1)=,f(2)=,f(3)=W.所以f(x4.5.2用二分法求方程的近似解新知初探·课前预习要点1.图象连续不断且f(a)·f(b)<0一分为二零点[基础自测]1.(1)×(2)√(3)√(4)√2.答案:C3.答案:B4.答案:(2,3)题型探究·课堂解透例1解析:(1)利用二分法求函数零点必须满足零点两侧函数值异号.在B中,不满足f(a)·f(b)<0,不能用二分法求零点,由于A、C、D中零点两侧函数值异号,故可采用二分法求零点.故选B.(2)设f(x)=2x+3x-7,f(1)=2+3-7=-2<0,f(3)=10>0,f(2)=3>0,f(x)零点所在的区间为(1,2),所以方程2x+3x-7=0有根的区间是(1,2).答案:(1)B(2)(1,2)跟踪训练1解析:f(x)=x2-2x+1=(x-1)2,f(1)=0,当x<1时,f(x)>0;当x>1时,f(x)>0,在零点两侧函数值同号,不能用二分法求零点,其余选项中在函数的零点两侧函数值异号,故选ACD.答案:ACD例2解析:经计算f(1)<0,f(1.5)>0,所以函数在[1,1.5]内存在零点x0.取(1,1.5)的中点x1=1.25,经计算f(1.25)<0,因为f(1.5)·f(1.25)<0,所以x0∈(1.25,1.5),如此继续下去,如下表:因为|1.328 125-1.320 312 5|=0.007 812 5<0.01,所以函数f(x)=x3-x-1精确度为0.01的一个近似零点可取为1.328 125.跟踪训练2解析:因为f(1.5)=-0.125<0.f(1.562 5)≈0.127 197 27>0,f(x)在(1,2)上是连续的,且|1.562 5-1.5|=0.062 5<0.1,所以区间[1.5,1.562 5]中的任何一个值可作为函数f(x)在区间(1,2)上零点的近似值.故选D答案:D例3解析:令f(x)=2x+x-4,则f(1)=2+1-4<0,f(2)=22+2-4>0.∵|1.375-1.5|=0.125<0.2,∴2x+x=4在(1,2)内的近似解可取为1.375.跟踪训练3解析:由题中图表可知f(x)=3x-x-4的零点在1.556 2和1.562 5之间,方程3x-x-4=0的近似解在1.556 2和1.562 5之间,由题意知近似解要精确到0.01,所以方程3x-x-3=0的近似解为1.56.答案:1.56[课堂十分钟]1.答案:C2.答案:C3.答案:B4.答案:(2,3)5.解析:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2用二分法求方程的近似解
教学目的:使学生了解什么是二分法,会用二分法求一个函数在给定区间内的零点。
从而求得方程的近似解。
教学重点:用二分法求方程的近似解。
教学难点:二分法的理解。
教学过程
一、复习提问
什么是函数的零点?函数在区间(a ,b )内有零点,则有什么性质?
二、新课
1、新课引入
中央电视台由李咏主持的节目《幸运52》中有一项猜商品价格的游戏,首先给出 了商品价格的范围,如果是你,你将用什么方法快速猜中商品的真实价格呢?现实中 还有这种方法运用的实例吗?
一元二次方程可以用公式求根,但没有公式可用来求方程lnx +2x -6=0的根, 联系函数的零点与相应方程的关系,能否利用函数有关知识求出它的根呢?
2、取中点法求方程lnx +2x -6=0的根
方程lnx +2x -6=0在区间(2,3)内有零点,
2
1(2+3)=2.5 f (2.5)·f (3)<0,所以零点在区间(2.5,3)内,21(2.5+3)=2.75 f (2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内。
如此下去,零点范围越来越小,当区间的端点的差的绝对值小于0.01时,可以将端点 作为零点的近似值。
P105表3-2。
对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection)。
给定精确度ε,用二分法求函数f(x)零点近似值的步骤:
1、确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;
2、求区间(a,b)的中点x1;
3、计算f(x1);
(1)若f(x1)=0,则x1就是函数的零点;
(2)若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1))
(3)若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b))
4、判断是否达到精确度ε,:即若∣a-b∣<ε,则达到零点近似值a(或b);
否则重复2――4。
一般用计算机设计一定的程序来完成求零点。
例2、借助计算机或计算器用二分法求方程2x+3x=7的近似解(精确到0.1)。
练习:P106
作业:P1081、2、3、4、5。