一次函数专题复习考点归纳 经典例题 练习
(完整)一次函数章节知识点复习+典型例题,推荐文档

o
x
A
B
C
D
ห้องสมุดไป่ตู้
x 2、确定自变量 取值范围的方法:
(1)关系式为整式时,自变量 x 的取值范围为全体实数;
(2)关系式有分母时,分母不等于零;
(3)关系式含有根号时,被开方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,自变量 x 的取值范围还要和实际情况相符合,使之有意义。
15、一次函数与实际问题-------将已知条件转化为点的坐标根据题意(图象)求出直线解析式,然后将问题转 化为求点的坐标
例①某种汽车油箱可储油 60 升,加满油并开始行驶,油
y(L)
箱中的剩余油量 y(升)与行驶的里程 x(km)之间的关系为 56
52 一次函数,如图:
(1)求 y 与 x 的函数关系式;
0
50 80
x(km)
(2)加满一箱油汽车可行驶多少千米?
图象与信息
y m
60
甲
50
乙
30
O2
图1
6 x h
例②甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度 y m与挖掘时间 x h 之间的关系如图 1 所示,
3 /3
10、一次函数 y=kx+b(k≠0)图像的平移-----按“上加下减,左加右减”进行(注:上、下在表达式尾部加减,
左右在 x 上加减)
向左平移 n 个单位 y=k(x+n)+b
向右平移 n 个单位 y=k(x-n)+b
向上平移 n 个单位 y =kx+b+n
向下平移 n 个单位
y =kx+b-n
(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
专题14一次函数(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题14 一次函数一、一次函数图象与系数的关系 【高频考点精讲】1.在一次函数b kx y +=中,当k >0时,y 随x 增大而增大。
(1)当b >0 时,直线交y 轴于正半轴,过一、二、三象限。
(2)当b <0 时,直线交y 轴于负半轴,过一、三、四象限。
2.在一次函数b kx y +=中,当k <0时,y 随x 增大而减小。
(1)当b >0 时,直线交y 轴于正半轴,过一、二、四象限。
(2)当b <0 时,直线交y 轴于负半轴,过二、三、四象限。
【热点题型精练】1.(2022•邵阳中考)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n2.(2022•安徽中考)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图象可能是( )A .B .C .D .3.(2022•辽宁中考)如图,在同一平面直角坐标系中,一次函数y =k 1x +b 1与y =k 2x +b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A .k 1•k 2<0B .k 1+k 2<0C .b 1﹣b 2<0D .b 1•b 2<04.(2022•柳州中考)如图,直线y 1=x +3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x +3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .65.(2022•宿迁中考)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 .6.(2022•天津中考)若一次函数y =x +b (b 是常数)的图象经过第一、二、三象限,则b 的值可以是 (写出一个即可).7.(2022•盘锦中考)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图象上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 .8.(2022•德阳中考)如图,已知点A (﹣2,3),B (2,1),直线y =kx +k 经过点P (﹣1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .二、一次函数图象上点的坐标特征 【高频考点精讲】一次函数)0(≠+=k b kx y 的图象是一条直线,它与x 轴的交点坐标是(kb-,0);与y 轴的交点坐标是(0,b ),直线上任意一点的坐标都满足函数关系式b kx y +=。
考点10 一次函数(精练)(原卷版)

考点10.一次函数(精练)限时检测1:最新各地模拟试题(40分钟)4.(2023·江苏·中考模拟)如图,在平面直角坐标系中,直线2y x b =+与直线36y x =-+相交于点A ,则关于x ,y 的二元一次方程组236y x b y x =+⎧⎨=-+⎩的解是()A .20x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .19x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩A .210k k <<B .1k <7.(2023·山东枣庄·校考一模)已知点A .25b a ≥B .b a ≤A .<2x -11.(2023·安徽滁州则以下判断正确的是(A .若0x x >A .12k ≤-B .3k ≥-13.(2023·河南周口·校联考三模)如图,在平面直角坐标系于点P ,Q ,在Rt OPQ 中从左向右依次作正方形123n A A A A ⋯,,,在x 轴上,点1B 在全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形A .1134n n ++B .212234n n --C .14.(2023·天津河西·校考三模)若一次函数3y kx =+出一个满足条件的值).15.(2023·湖南永州·校考二模)已知一次函数y =取值范围是.19.(2023·河北·模拟预测)已知直线y-≤≤,求该函数的解析式.12820.(2023·陕西西安·校考一模)李老师计划组织学生暑假去北京研学旅行,经了解,现有甲、乙两家旅行社比较合适,报价均为每人都按八折收费;乙旅行社表示,若人数不超过仍按报价的八五折收费,则超出部分每人按七折收费,假设组团参加甲、乙两家旅行社研学旅行的人数均限时检测2:最新各地中考真题(40分钟)1.(2023年湖南省益阳市中考数学真题)关于一次函数1y x =+,下列说法正确的是()A .图象经过第一、三、四象限B .图象与y 轴交于点()0,1C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <2.(2023年湖南娄底中考数学真题)将直线 21y x =+向右平移2个单位所得直线的表达式为()A .21y x =-B .23y x =-C .23y x =+D .25y x =+3.(2023年四川省雅安市中考数学真题)在平面直角坐标系中.将函数y x =的图象绕坐标原点逆时针旋转90︒,再向上平移1个单位长度,所得直线的函数表达式为()A .=1y x -+B .1y x =+C .=1y x --D .1y x =-4.(2023年甘肃省兰州市中考数学真题)一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是()A .2B .1C .-1D .-25.(2022·湖南邵阳·中考真题)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n <B .m n >C .m n ≥D .m n≤6.(2023年宁夏回族自治区中考数学真题)在同一平面直角坐标系中,一次函数1(0)y ax b a =+≠与2(0)y mx n m =+≠的图象如图所示,则下列结论错误的是()A .1y 随x 的增大而增大B .b n <C .当2x <时,12y y >D .关于x ,y 的方程组ax y b mx y n -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩7.(2023年山东省临沂市中考数学真题)对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A.8:28B.8:3010.(2023年山东省威海市中考数学真题)时)之间的函数关系如图所示.当0≤x之间的函数表达式为.11.(2023年江苏省无锡市中考数学真题)12.(2023年湖南省郴州市中考数学真题)在一次函数16.(2022·辽宁锦州·中考真题)点()()1122,,,A x y B x y 在一次函数(2)1y a x =-+的图像上,当12x x >时,12y y <,则a 的取值范围是____________.18.(2023年四川省南充市中考数学真题)如图,直线于点A ,B ,则23OA OB +的值是(1)=a___________,b=___________;(2)请分别求出(3)当上升多长时间时,两个气球的海拔竖直高度差为(1)A,B两地之间的距离是______千米,(3)货车出发多少小时两车相距15千米?(直接写出答案即可)(1)小聪在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温︒)与加热的时间t(单位:位:C选填“正比例”“一次”“二次”“反比例(3)当加热110s时,油沸腾了,请推算沸点的温度.(3)当2,1,2a b c =-==时,即212y x =--+.①当1x ≥时,函数化简为y =______.②在图2所示的平面直角坐标系内画出函数212y x =--+的图象.(4)请写出函数y a x b c =-+(a ,b ,c 是常数,0a ≠)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)。
一次函数知识点总结及练习题

一次函数知识点总结及练习题一次函数及其图像的复习学案1、一次函数的定义一般地,形如 (k,b 是常数, ),那么y 叫做x 的一次函数.当时,y=kx +b 即,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b 满足① k ②x 指数为③ b 取题组一:(1))下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有,正比例函数有。
(2)①若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n . ②若函数1)1(2-++=k x k y 是正比例函数,则k 的值为()③已知82)3(-+=m x m y 是正比例函数,则m 的值为______.此时y 随x 的增大而,2.一次函数的图像与性质( 1)一次函数y=kx +b (k 、b 是常数,k ≠0)的图像是一条,它与x 轴的交点为,它与y 轴的交点为。
特别的,y=kx(k 是常数,k≠0) 的图像是一条过。
(2)一次函数图像的性质由k ,b 决定。
(填表)xxxxD .C. B . A .(3)图像的平移:当b>0时,将直线y=kx 的图象向平移个单位;当b<0时,将直线y=kx 的图象向平移个单位.一次函数y=k 1x +b 1的图象与y=k 2x +b 2的图象平行,则满足的条件是;反之,也成立。
小拓展:直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y 轴上同一点: b 1=b 2题组二.①一次函数y= -2x+4的图象与x 轴交点坐标是,与y 轴交点坐标是图象与坐标轴所围成的三角形面积是 .②已知直线y =3x +b 与两坐标轴围成的三角形的面积为6,则b=③一次函数y=-5x-3的图象经过的象限是④直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
八年级数学一次函数知识点总结及练习题大全(含答案)

⼋年级数学⼀次函数知识点总结及练习题⼤全(含答案)⼀次函数⼀、命题趋势本讲内容主要有:正⽐例函数的图象和性质,⼀次函数的图象和性质,图象的平移,⽤待定系数法求解析式,⼀次函数与⼀次⽅程(组)、⼀次不等式(组)的关系以及实际应⽤等。
作为初中阶段的重点内容,测试中⼀般以选择、填空为主,也有作为与其他内容融合的综合题型出现。
(⼀)、⼀次函数y=kx+b 的图象和性质 [考点归纳][答案] ⼀、⼆、三, ⼀、三、四, , ⼀、⼆、四, ⼆、三、四, 增⼤, 增⼤, 减⼩, 减⼩. [考题精粹]1、若⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,则下列不等式中总是成⽴的是()A .ab >0B .a -b >0C .a 2+b >0D .a +b >0 2、关于直线l :y = kx +k (k ≠0),下列说法不正确的是( )A .点(0,k )在l 上B .l 经过定点(-1,0)C .当k >0时,y 随x 的增⼤⽽增⼤D .l 经过第⼀、⼆、三象限 3、若k ≠0,b <0,则y =kx +b 的图象可能是()4、如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的⼀动点,以AB 为边作等腰直⾓ABC ?,使?=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表⽰y 与x 的函数关系的图象⼤致是A B C D [考题评析]k >0 ,b >0k >0 ,b <0 k <0 ,b >0 k <0,b <01、解:∵⼀次函数y =ax +b 的图象经过第⼀、⼆、四象限,∴a <0,b >0,∴a 2>0,则a 2+b >0,选项C 正确.由a <0,b >0,可得ab <0,a -b <0,⼜因a ,b 的绝对值⼤⼩不确定,所以a +b 的正负⽆法确定,因此,选项A 、B 、D 均错误.故选择C .2、解:由直线l :y = kx +k (k ≠0),当x =0时,y =k ,所以点(0,k )在l 上,即A 正确;当x =-1时,y =0,所以l 经过定点(-1,0) ,即B 正确;当k >0时,y 随x 的增⼤⽽增⼤,所以C 正确;当k >0时,l 经过第⼀、⼆、三象限,当k <0时,l 经过第⼆、三、四象限,所以D 错误.故选择D .3、解:对于y=kx+b ,当x=0时,y=b ,即y=kx+b 的图像与y 轴的交点为(0,b ),当b <0时,(0,b )在x 轴下⽅,故y=kx+b 的图像为选项B.4、解:过点C 作CD ⊥y 轴,垂⾜为D ,∵∠DAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠DAC=∠OBA 。
八年级数学《一次函数》全册知识点复习总结及经典练习汇总(含答案)
《一次函数》全册知识点复习总结及经典练习汇总知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-k b﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2);③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32-m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x的一次函数.例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.例5 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是()A.m﹤O B.m>0C.m﹤21D.m>M例7 已知一次函数y=kx+b的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S=4,求P点的坐标.△ABP例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
期末复习 《一次函数》常考题与易错题精选(50题)(解析版)
期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。
一次函数知识归纳及典例、练习题(含中考题中难)
一次函数复习知识点练习1:一次函数的意义1、已知y =(k -1)x +k 2-1是正比例函数,则k = ;2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数。
知识点2:求一次函数的解析式常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定)第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 例1 已知.函数y= -(m-2)x+(m-4)是一次函数,求其解析式二. 平移型 例2. 把直线 向下平移2个单位得到的图象解析式为___________. 三. 两点型 (即已知两点的坐标)3 已知某个一次函数的图象与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式. 四、开放型 不直接已知函数类型,但可通过探索知其类型,再用待定系数法求解析式例4 已知函数的图象过点A (1,4),B (2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程.五、点斜型 (即已知一点和自变量的系数)例 5 . 已知一次函数 的图象过点(2,-1),求这个函数的解析式. 解:一次函数 的图象过点(2,-1)即k=1故这个一次函数的解析式为 y=x-3变式问法:已知一次函数 ,当 时,求这个函数的解析式.六. 斜截型(已知图象在y 轴上的截距和斜率)例6. 已知直线 与直线 平行,且在y 轴上的截距为2,求直线的解析式.26y x =-+3y kx =-y kx b=+2y x=-y kx b=+21y x =+解:∵直线 与直线 平行又∵直线 在y 轴上的截距为2,故直线的解析式为 变式问法:已知直线 与直线 平行,且与y 轴的交点为(0,2),求直线的解析式. 七、 图象型例7 已知某个一次函数的图象如图所示,求该函数的解析式. 解:设一次函数解析式为由图可知一次函数 的图象过点(1,0)、(0,2)故这个一次函数的解析式为 习题练习1、已知A (0,0),B (3,2)两点,经过A 、B 两点的图象的解析式为(A 、y=3xB 、y= 32xC 、y= 23x D 、y= 13x+12、如下图,直线AB 对应的函数表达式是( )A 、3y x 32=-+ B 、3y x 32=+ C 、2y x 33=-+ D 、2y x 33=+3、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;4、如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.y 2y x=-2k ∴=-2b ∴=22y x =-+y kx b=+k+b=00+b=2⎧∴⎨⎩有22k b =-⎧∴⎨=⎩22y x =-+y kx b=+y kx b=+2y x=-y kx b=+y kx b=+5、(2011浙江杭州,7,3)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是6、(2011湖南常德,16,3分)设min{x,y}表示x,y两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x,x+2},y可以表示为()A.()()2222x xyx x<⎧⎪=⎨+≥⎪⎩B.()()2222x xyx x+<⎧⎪=⎨≥⎪⎩C. y =2xD. y=x+27、(2011 浙江湖州,19,6) 已知:一次函数y kx b=+的图象经过M(0,2),(1,3)两点.(l) 求k、b的值;(2) 若一次函数y kx b=+的图象与x轴的交点为A(a,0),求a的值.8、(2011湖南郴州市,20,6分)求与直线y x=平行,并且经过点P(1,2)的一次函数解析式.9、(2011四川自贡,8,3分)已知直线l经过点A(1,0)且与直线y x=垂直,则直线l的解析式为()A.1y x=-+ B. 1y x=-- C. 1y x=+ D. 1y x=-10、(2011福建福州,19,12分)如图,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上. (1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围;(2)将线段AB 绕点B 逆时针旋转90o,得到线段BC ,请画出线段BC .若直线BC 的函数解析式为y kx b =+,则y 随x 的增大而(填“增大”或“减小”).知识点3、一次函数的图象一次函数b kx y +=的图象是一条直线,与x 轴的交点为)0,(kb-,与y 轴的交点为),0(b 正比例函数kx y =的图象也是一条直线,它过点)0,0(,),1(k 习题练习1、一次函数y=kx+b 的图象如图所示,当y <0时,x 的取值范围是( )A 、x >0B 、x <0C 、x >2D 、x <22、正比例函数y=kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )A 、B 、C 、D 、3、如图,直线(0)y kx b k =+<与x 轴交于点(30),,关于x 的不等式0kx b +>的解集是( ) A .3x <B .3x >C .0x >D .0x <4、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c的不等式k 1x +b <k 2x +c 的解集为( )A、x >1 B 、x <1 C 、x >-2 D 、x <-2上第5题图5、(2011内蒙古呼和浩特市,12,3分)已知关于x 的一次函数y mx n =+的图象如图所示,则||n m -可化简为_________________.6、(2011山东枣庄,10,3分)如图所示,函数xy =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是()第6题 第7题 第8题A .x <-1B .—1<x <2C .x >2D . x <-1或x >27、(2011贵州毕节,16,5分)已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是 。
一次函数典型例题及习题解析
一次函数的图像及应用典型例题及习题一次函数 经典题型题型考点一: 理解一次函数和正比例函数的概念与定义例1 已知函数y=(2-m)x+2m-3.求当m 为何值时, (1)此函数为正比例函数(2)此函数为一次函数学生自测1。
下列函数关系式中,哪些是一次函数,哪些是正比例函数? ( 1)y=-x-4 (2)y=5x2+6 (3)y=2πx (4)y=-8x 2.若是正比例函数,则b 的值是 ( )A.0B.C.D.3.若y =(m -1)x是正比例函数,则m 的值为( ) A.1B.-1C.1或-1D.或-4.若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A.m >B.m <C.m =D.m =5.若5y +2与x -3成正比例,则y 是x 的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确 6.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .7、已知函数y =(m 2-4)x 4+n +(m -2),当m 且 时,它是一次函数;当m 且n 时它是正比例函数. 8.若关于x 的函数是一次函数,则m = ,n .设函数y =(m -3)x 3-︳m ︳+m +2(1) 当m 为何值时,它是一次函数?(2)当m 为何值时,它是正比例函数?题型考点二:根据实际情况,确定一次函数解析式,求出相应的值例1 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km 处,每升高1 km,气温下降6℃.高于11km 时,气温几乎不再变化,设地面的气温为38℃,高空中xkm 的气温为y ℃. (1)当0≤x ≤11时,求y 与x 之间的关系式? (2)求当x=2、5、8、11时,y 的值。
(3)求在离地面13 km的高空处、气温是多少度?(4)当气温是一16℃时,问在离地面多高的地方?学生自测1.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).求出y与x的函数关系式2.13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.一次函数图像二经典题型题型考点一:函数图象的概念例 1.列表:2.3.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象:学生自测:1、(10分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.(3)当鞋码是40码时,鞋长是多长?题型考点二:通过图像确定函数的解析式例1.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=0学生自测1、函数y=kx-5,k取不同的值,它的图象是()A、一条经过点(0,-5)的直线B、一组互相平行的直线C、一组相交于点(0,-5)的直线D、一条与y轴的交点在x轴上方的直线2、一次函数y=ax+b,ab<0,则其大致图象正确的是()3.(2009年安徽)8.已知函数的图象如图,则的图象可能是【】4.(2009年重庆市江津区)已知一次函数的大致图像为()5.(2010陕西西安)一个正比例函数的图象经过点(2,-3),它的表达式为A.B.C. D.6、直线y=kx经过点(3,-2),那么这条直线还通过点()A、(-2,3)B、(-3,2)C、(2,3)D、(3,2)7、如果正比例函数y=kx(k≠0)的自变量取值增加1,函数y的值相应减少4,则k的值为()A、4B、-4C、D、8、一次函数y=kx+b(k≠0)图象与x轴交点坐标是,与y轴交点坐标是(4)如图,直线L是一次函数y=kx+b的图象,则k= ,b= .9. 如图,把直线向上平移后得到直线AB,直线AB经过点,且,则直线AB的解析式是( )A.B.C.D.9.(2009年桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为.10把直线向下平移2个单位得到的图像解析式为___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则||n m -可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
考点3:一次函数的增减性相关知识:一 次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,当0<k 时,y 随x 的增大而减小.规律总结:从图象上看只要图象经过一、三象限,y 随x 的增大而增大,经过二、四象限,y 随x 的增大而减小.1.写出一个具体的y 随x 的增大而减小的一次函数解析式_ _2.一次函数y=-2x+3中,y 的值随x 值增大而____ ___.(填“增大”或“减小”)3.已知关于x 的一次函数y=kx+4k-2(k ≠0).若其图象经过原点,则k=_____;若y 随x 的增大而减小,则k 的取值范围是________.4.若一次函数()22--=x m y 的函数值y 随x 的增大而减小,则m 的取值范围是( )A. 0<mB. 0>mC. 2<mD. 2>m5. (2011内蒙古赤峰)已知点A (-5,a ),B (4,b)在直线y=-3x+2上,则a b 。
(填“>”、“<”或“=”号)6.当实数x 的取值使得x -2有意义时,函数y =4x +1中y 的取值范围是( ).A .y ≥-7B .y ≥9C .y >9D .y ≤97.已知一次函数的图象经过点(0,1),且满足y 随x 增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).考点4:函数图象经过点的含义相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x ,纵坐标代y ,方程成立。
1.已知直线y kx b =+经过点(,3)k 和(1,)k ,则k 的值为( ).A.D.2. 坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?A .-1B . 2C .3D . 93. 一次函数y =2x -1的图象经过点(a ,3),则a = .4.在平面直角坐标系xOy 中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第_____象限.5.直线y =kx -1一定经过点( ).A .(1,0)B .(1,k )C .(0,k )D .(0,-1)7. 如图所示的坐标平面上,有一条通过点(-3,-2)的直线L 。
若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确? ( )A .a =3B 。
b >-2C 。
c <-3D 。
d =2考点5:函数图象与方程(组)相关知识:两个函数图象的交点坐标就是两个解析式组成的方程组的解。
1. 点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.2. 如表1给出了直线l 1上部分点(x ,y )的坐标值,表2给出了直线l 2上部分(x ,y )的坐标值.那么直线l 1和直线l 2交点坐标为___ __.考点5:图象的平移表1 表21. 在平面直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为( )A .y=x+1 B.y=x-1 C.y=x D. y=x-22. 将直线2y x =向右平移1个单位后所得图象对应的函数解析式为 ( ) A. 21y x =- B. 22y x =- C. 21y x =+ D. 22y x =+3. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D.考点6:函数图象与不等式(组)相关知识:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。
1. 如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >22. 已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是。
3. (2011吉林长春)如图,一次函数()0y kx b k =+<的图象经过点A.当3y <时,x的取值范围是 .4. (2011青海西宁)如图,直线y =kx +b 经过A (-1,1)和B (-7,0)两点,则不等式0<kx +b <-x 的解集为_ .考点7:一次函数解析式的确定常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。
(见前面函数解析式的确定) 1.已知y+m 与x+n 成正比例(m ,n 为常数)。
(1) 试说明y 是x 的一次函数(2) 当x=-3时,y=5,当x=2时,y=2,求y 与x 之间的函数关系式。
2.已知Y 与X 成正比例,Z 与X 成正比例,当Z=3时,Y=-1;当X=2/3时,Z=4,则Y 与X 的函数关系式为?第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
三. 两点型从几何的角度来看,“两点确定一条直线”,所以两个点的坐标确定直线的解析式; 从代数的角度来说,一次函数的解析式y kx b =+中含两个待定系数k 和b ,所以两个方程确定两个待定系数,因此想方设法找到两个点的坐标是解决问题的关键。
解题策略:想方设法通过各种途径找到两个点的坐标,代入函数解析式中用待定系数法求出待定系数从而求出函数解析式。
这类问题是见得最多的问题。
四、探索型 不直接已知函数类型,但可通过探索知其类型,再用待定系数法求解析式1.如图,直线l 过A 、B 两点,A (0,1-),B (1,0),则直线l 的解析式为 .2. 已知一次函数y=kx+b 的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.1. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是 ( )2. 设min {x ,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y=min{2x ,x+2},y 可以表示为( ) A. ()()2222xx y x x <⎧⎪=⎨+≥⎪⎩ B. ()()2222x x y xx +<⎧⎪=⎨≥⎪⎩C. y =2xD. y =x +2 5.已知:一次函数y kx b =+的图象经过M (0,2),(1,3)两点. (l) 求k 、b 的值;(2) 若一次函数y kx b =+的图象与x 轴的交点为A (a ,0),求a 的值.6.如图,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围; (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请画出线段BC .若直线BC 的函数解析式为y kx b =+,则y 随x 的增大而 (填“增大”或“减小”).考点8:与一次函数有关的几何探究问题.1.如图6,在平面直角坐标系中,直线4:43l y x =-+分别交x 轴、y 轴于点A B 、,将 AOB △绕点O 顺时针旋转90°后得到A OB ''△. (1)求直线A B ''的解析式;(2)若直线A B ''与直线l 相交于点C ,求A BC '△的面积.2.(2010绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.(1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16, 求此三角形面积.3.(2009年莆田)如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P→Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( ) A .N 处 B .P 处C .Q 处D .M 处4.(2011湖南衡阳)如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,那么△ABC 的面积是 .(图1)图6 C Ay xO l A 'B '考点9:一次函数图象信息题(从图像中读取信息。