七年级数学下册第六章实数说课稿2新版新人教版.doc

合集下载

人教版七年级数学下册6.3.2《实数的运算》说课稿

人教版七年级数学下册6.3.2《实数的运算》说课稿

人教版七年级数学下册6.3.2《实数的运算》说课稿一. 教材分析人教版七年级数学下册6.3.2《实数的运算》这一节主要介绍了实数的基本运算规则,包括加法、减法、乘法、除法以及乘方等。

本节内容是学生进一步学习数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析七年级的学生已经初步掌握了实数的概念,对实数有一定的认识。

但是,对于实数的运算规则,部分学生可能还不太熟悉。

因此,在教学过程中,需要针对学生的实际情况,耐心讲解,让学生充分理解实数的运算规则。

三. 说教学目标1.知识与技能目标:使学生掌握实数的基本运算规则,能够熟练地进行实数的加法、减法、乘法、除法以及乘方等运算。

2.过程与方法目标:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。

3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力和数学素养。

四. 说教学重难点1.教学重点:实数的基本运算规则。

2.教学难点:实数运算中的异号运算和零的运算。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过复习实数的概念,引出实数的运算。

2.讲解实数的加法运算:讲解实数加法的运算规则,并通过例题进行演示。

3.讲解实数的减法运算:讲解实数减法的运算规则,并通过例题进行演示。

4.讲解实数的乘法运算:讲解实数乘法的运算规则,并通过例题进行演示。

5.讲解实数的除法运算:讲解实数除法的运算规则,并通过例题进行演示。

6.讲解实数的乘方运算:讲解实数乘方的运算规则,并通过例题进行演示。

7.综合练习:布置一些实数运算的题目,让学生进行练习。

8.课堂小结:对本节课的内容进行总结,强调实数运算的规则。

9.布置作业:布置一些实数运算的题目,让学生进行巩固。

七. 说板书设计板书设计如下:加法:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

实数的说课稿范文.doc

实数的说课稿范文.doc

简单的说,实数就是有理数和无理数的总称。

那末,以下是给大家提供的实数的说课稿,供大家阅读参考。

恭敬的各位领导、评委老师:大家好!今天我为大家说课的内容是新人教版七年级数学(下册)第六章第三节“实数”的第一个课时。

下面我就教材分析,学情分析,教法学法分析,教学媒体,课堂结构,教学过程,教学评价几个方面来对这节课进行阐述。

1、教材的地位和作用本节课是在数的开方的根抵上引进无理数的概念,并将数从有理数范围扩充到实数范围。

在中学阶段,大多数问题是在实数的范围内研究的,它也是进一步二次根式、一元二次方程以及函数等知识的根抵。

因此,让学生正确而深刻地理解实数是非常重要的。

无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数美的有效载体,也是开展学生逻辑思维能力的重要内容。

2、教学重难点根据教学大纲对这局部内容的要求及本课的特点,结合学生实际情况,我把本节课的教学重难点确定为:重点:了解无理数和实数的概念;知道实数与数轴上的点具有一一对应的关系。

难点:对无理数的认识。

3、教学目标知识与技能:了解无理数和实数的概念;知道实数与数轴上的点具有一一对应的关系。

过程与方法:通过无理数的引入,经历数系从有理数扩展到实数的过程,培养从特殊到普通、具体到抽象的逻辑思维能力;渗透数形结合及分类的思想。

情感与态度:了解无理数的产生过程,使学生感受丰富的数学文化,体验数学生活及应用于生活的意识,更好的激发学习兴趣。

新的《课程标准》对学生掌握实数要求不高,但实数的知识却贯通中学数学始终,所以我们只能逐步加深学生对实数的认识。

在学习本节课前,学生已掌握平方根、立方根同时也初步接触过等具体的无理数。

无理数的概念比拟抽象,特殊是无理数在数轴上的表示、实数与数轴上的一一对应关系都需要一个渐进的理解过程。

要让学生充分讨论与思量,归纳与总结,历经知识开展与运用。

七年级数学下册6实数教案新版新人教版

七年级数学下册6实数教案新版新人教版

第六章实数6.1平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示.难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78.(3)∵0.012=0.0001,∴0.0001的算术平方根是0.01,即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.6.1平方根(2)能用夹值法求一个数的算术平方根的近似值,会用计算器.重点夹值法估计一个数的算术平方根的大小.难点夹值法估计一个数的算术平方根的大小.一、创设情境,引入新课师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、讲授新课师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:面积为2的大正方形.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2. ∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:适时启发,点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体:【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.6.1平方根(3)数的开方意义、平方根的意义、平方根的表示法.重点平方根.难点正确理解平方根的意义.一、创设情境,引入新课师:如果一个数的平方等于9,这个数是多少?学生思考、讨论.生:3.师:除此之外,还有没有别的数的平方也等于9呢?生:-3.师:所以,若一个数的平方等于9,这个数是3或-3.二、讲授新课师:请同学们填表.展示课件:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.用字母表示为:如果x2=a,则x叫做a的平方根.例:3和-3是9的平方根,简记为±3是9的平方根.求一个数a的平方根的运算,叫做开平方.师:请同学们看图.展示课件:师:平方与开平方有何联系? 生:平方与开平方互为逆运算.师:我们可以根据这种运算关系,来求一个数的平方根.请同学们做题: 【例】 求下列各数的平方根: (1)100;(2)916;(3)0.25.解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为(±34)2=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.师:正数、负数、0的平方根有何特点? 生讨论、交流. 师生共同分析:正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根. ∵负数的平方是正数,∴在我们所认识的数中,任何一个数的平方都不会是负数. ∴负数没有平方根. ∵02=0,∴0的平方根是0.归纳:①正数有两个平方根,它们互为相反数; ②负数没有平方根; ③0的平方根是0.师:正数a 的平方根表示为±a ,读作“正、负根号a ”. 如:±9=±3,±25=±5.师:a 只有当a ≥0时有意义,a <0时无意义,为什么? 生:负数没有平方根. 师:请大家做题. 求下列各式的值:(1)144;(2)-0.81;(3)±121196. 学生活动:尝试独立完成,一生上黑板板演. 教师活动:巡视、指导、纠正. 师生共同完成:(1)∵122=144,∴144=12.(2)∵0.92=0.81,∴-0.81=-0.9. (3)∵(±1114)2=121196,∴±121196=±1114. 三、随堂练习课本第46页、第47页第1、2、3、4题. 四、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.1.提供足够的时间,让学生理解平方根的意义.掌握正数、0、负数的平方根的特点. 2.多提供适量的有代表性的习题,随堂练习. 3.易出错的题目随堂订正.6.2 立方根掌握立方根的定义;正数、负数、0的立方根的特点;用计算器求立方根.重点掌握立方根的定义.难点运用所学知识解决问题.一、创设情境,引入新课要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是多少? 师:设这种包装箱的边长为x m ,则 x 3=27这就是要求一个数,使它的立方等于27. ∵33=27, ∴x =3.即这种包装箱的边长为3 m .师:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.即:如果x 3=a ,那么x 叫做a 的立方根. ∵33=27,∴3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师:请看大屏幕.根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点? ∵23=8,∴8的立方根是(2);∵(0. 5)3=0. 125,∴0.125的立方根是(0.5);∵(0)3=0,∴0的立方根是(0);∵(-2)3=-8,∴-8的立方根是(-2);∵(-23)3=-827,∴-827的立方根是(-23).师生共同归纳:正数的立方根是正数. 负数的立方根是负数. 0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗? 生:每一个数均有一个立方根,而负数没有平方根.师:一个数a的立方根表示法:3a,读作“三次根号a”.其中a是被开方数,3是根指数.如38表示8的立方根,即38=2.3-8表示-8的立方根,即3-8=-2.3a中的根指数3不能省略.注:算术平方根的符号a,实际上省略了2a中的根指数2,因此a也可读作“二次根号a”.师:请同学们填空:∵3-8=________,-38=________.∴3-8________-38.∵3-27=________,-327=________.∴3-27________-327.一般地,3-a________-3a.师:请同学们做题:【例】求下列各式的值:(1)364;(2)-318;(3)3-2764.解:(1)364=4;(2)-318=-12;(3)3-2764=-34.其实,很多有理数的立方根是无限不循环小数.如32、33等都是无限不循环小数,可以用有理数、近似数表示它们.师:请同学们用计算器求出一个数的立方根.学生活动:用计算器求一些数的立方根.师:请同学们观看大屏幕.用计算器计算…,30.000216,30.216,3216,3216000,…,你能发现什么规律?用计算器计算3100(精确到0.001),并利用你发现的规律求30.1,30.0001,3100000的近似值.师:同学们发现了什么规律?学生讨论、交流并发言.师生共同归纳:被开方数的小数点向左(右)每移动三位,其立方根的小数点相应地向左(右)移动一位.二、随堂练习课本第51页练习.三、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.教学设计着重于把立方根与开立方进行类比教学,注重概念的形成过程,让学生在新概念的形成过程中,逐步理解新概念,通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念.让学生通过实例和抽象类比来理解立方根与平方根概念的联系与区别.6.3实数第1课时实数了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.重点理解实数的概念.难点运用所学知识解决问题.一、创设情境,引入新课师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现? 3,-35,478,911,1190,59生1:3=3.0 -35=-0.6 478=5.875911=0.81 1190=0.12 59=0.5 生2:这些有理数都可以写成有限小数或者无限循环小数. 二、讲授新课 师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.例如:2、-5、32、33等都是无理数.π=3. 14159265……也是无理数.师:有理数和无理数统称实数.实数⎩⎪⎨⎪⎧有理数 有限小数或无限循环小数无理数 无限不循环小数师:像有理数一样,无理数也有正负之分.无理数⎩⎨⎧正无理数 2,33,π,……负无理数 -2,-33,-π,……师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.请大家观看大屏幕: 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?师:从图中可以看出,OO ′的长是多少? 生1:这个圆的周长为π. 师:O ′的坐标是多少? 生2:O ′的坐标是π.师:所以无理数π可以用数轴上的点表示出来. 师:如何在数轴上表示±2呢? 学生活动:小组合作交流.教师活动:巡视、检查,适时点拨. 师生共同完成:归纳:每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.师:实数与数轴上的点有何关系?师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.师:平面直角坐标系中的点与有序实数对之间也是一一对应的.右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.师:请同学们做题:2的相反数是________,-π的相反数是________,0的相反数是________,|2|=________,|-π|=________,|0|=________.师:同学们有什么发现?生:与有理数一样.师生共同归纳:数a的相反数是-a(a表示任意一个实数).一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.【例】(1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33分别是什么数的相反数;(3)求3-64的绝对值;(4)已知一个数的绝对值是3,求这个数.解:(1)因为-(-6)=6,-(π-3.14)=3.14-π,所以,-6,π-3.14的相反数分别为6,3.14-π.(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.(3)因为3-64=-364=-4,所以|3-64|=|-4|=4.(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3.三、随堂练习课本第56页第1、2、3题.四、课堂小结通过本节课的学习,同学们有哪些收获?请与同伴交流.本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.。

人教版七年级数学下册第六章实数复习说课稿

人教版七年级数学下册第六章实数复习说课稿
1.通过生活中的实例引入实数的概念,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。
2.设计有趣的数学游戏,如数轴游戏,让学生在游戏中理解和掌握实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论和交流中解决问题,增强他们的合作意识和团队精神。
4.提供丰富的练习题,让学生在实践中巩固知识,提高他们的实际应用能力。
(二)学习障碍
在学习本节课之前,学生需要具备有理数、无理数等基本概念,以及简单的数学运算能力。可能存在的学习障碍主要是对实数概念的理解,尤其是无理数的概念和性质,以及实数与数轴的关系。此外,部分学生可能对数轴的理解存在困难,无法直观地理解数轴上点的坐标与实数的关系。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾所学知识,总结实数的定义、分类、性质以及实数与数轴的关系。然后,我会鼓励学生反思自己的学习过程,找出自己的不足和需要改进的地方。最后,我会根据学生的表现和反馈,给予他们个性化的建议和指导,帮助他们进一步提高。
(二)教学目标
1.知识与技能:使学生掌握实数的定义、分类、性质,能够正确理解和运用实数的相关知识。
2.过程与方法:通过复习,使学生能够运用实数的性质和概念,解决实际问题,提高学生的数学应用能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神,使学生认识到数学在生活中的重要性。
5.对学习有困难的学生给予个别辅导,鼓励他们克服困难,增强他们的自信心。
三、教学方法究式教学法。情境教学法通过生活实例引入实数概念,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。探究式教学法鼓励学生主动参与,自主探究,培养他们的独立思考能力和问题解决能力。这两种方法的理论依据是建构主义学习理论,即学习者通过主动建构知识,形成自己的认知结构。

人教版七年级数学下册6.3实数实数的运算说课稿

人教版七年级数学下册6.3实数实数的运算说课稿
2.实数的运算规律:实数的加法、减法、乘法、除法运算,以及乘方、开方运算。
3.实数运算的应用:运用实数运算解决实际问题,如测量、计算等。
(二)教学目标
1.知识与技能:使学生掌握实数的概念、分类及运算规律,能够熟练进行实数的加法、减法、乘法、除法运算,以及乘方、开方运算。
具体目标如下:
-理解实数的概念及其分类;
1.生活实例导入:以学生熟悉的生活场景为例,如购物找零、测量长度等,提出问题,引导学生思考实数在生活中的应用,从而自然引出实数的概念。
2.悬念导入:提出一个有趣的问题或谜题,如“一个无限不循环的小数是什么?”让学生带着好奇心进入新课的学习。
3.视频或故事导入:播放一段与实数相关的视频或讲述一个相关的故事,以激发学生的兴趣。
具体如下:
-发现实数运算规律;
-运用实数运算规律解决实际问题。
二、学情分析
(一)学生特点
本节课所面向的学生为七年级学生,年龄大约在13岁左右。这个年龄段的学生正处于青春期初期,他们的认知水平正处于从具体形象思维向抽象逻辑思维过渡的阶段。学生对新事物充满好奇,学习兴趣较为广泛,但注意力容易分散。在学习习惯上,他们可能已经形成了一定的学习规律,但自律性有待提高,需要教师在教学过程中进行引导和规范。具体特点如下:
-掌握实数的运算规律;
-能够运用实数运算解决实际问题。
2.过程与方法:培养学生运用数学思维解决问题的能力,通过观察、分析、归纳、总结等方法,发现实数运算的规律。
具体目标如下:
-培养学生运用数学思维解决问题的能力;
-培养学生通过观察、分析、归纳、总结等方法发现实数运算规律的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨、细致的学习态度,提高学生的逻辑思维能力。

人教版七年级数学下册《实数》说课稿

人教版七年级数学下册《实数》说课稿

人教版七年级数学下册《实数》说课稿
一、说教材
《实数》是人教版数学七年级下册第六章的一节概念课。

本节课在学生学习了平方根以后,接触了如“π”等具体的无理数的基础上,通过学生合作探究,揭示出中像π等无限不循环小数的存在,从而引入了无理数的概念,使学生把数的概念从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且是同学们进一步学习方程、函数等知识的基础。

另外,无理数的引入,数集的扩充的教学中充满着对立与统一的辨证关系,实数和数轴上的点一一对应蕴含着数形结合的思想,通过这节课的学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯。

二、说教学目标
知识目标:让学生了解无理数,实数的概念,了解实数与数轴上的点一一对应,初步学会实数的大小比较,能对实数的分类进行初步的辩认。

能力目标:了解实数的分类,培养学生初步分类意识;用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的数学思想方法。

情感目标:通过合作探究,让学生经历无理数的产生过程;并向学生渗透“数形结合”及分类的数学思想,感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。

三、说教学重点和难点
1/ 3。

七年级数学下册-第六章-实数教案-(新版)新人教版说课讲解

七年级数学下册-第六章-实数教案-(新版)新人教版说课讲解

师:你能举出几个例子吗?
生:能,如: 3、 5、 7等.
师:如何用计算器求出一个正有理数的算术平方根
( 或其近似值 ) .
学生活动:尝试独立完成例 2.
师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.
学生活动:用计算器小组合作完成. 第一宇宙速度: v1≈ 7.9 ×103 m/ s; 第二宇宙速度: v2≈ 1.1 ×104 m/ s.
∴ 1.41 < 2 <1.42. ∵ 1.414 2= 1.999396 , 1.415 2= 2.002225 ,
∴ 1.414 < 2< 1.415.
……
如此进行下去,可以得到 2的更精确的近似值.
其实, 2= 1.41421356 ……它是一个无限不循环小数,无限不循环小数是指小数位数 无限,且小数部分不循环的小数.
25 dm2 的正方形画
4
正方形面积
1 9 16 36
25
边长
2
13 4
6
5
师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题. 师:一般地,如果一个正数 x 的平方等于 a,即 x2= a,那么这个正数 x 叫做 a 的算术
平方根.记作 a ,读作“根号 a”, a 叫做被开方数. 规定: 0 的算术平方根是 0. 师:我们一起来做题. 展示课件: 【例】 求下列各数的算术平方根:
学生活动:小组合作操作、观察、交流.
二、讲授新课
师:将两个小正方形沿对角线剪开,得到几个直角三角形?
生: 4 个.
师:大正方形的面积多大?
生:面积为 2 的大正方形.
师:这个大正方形的边长如何求?
学生活动:尝试独立完成.
教师活动:启发,适时点拨. 师生共同归纳:设大正方形的边长为

人教版七年级数学下册6.3.1《实数的概念》说课稿

人教版七年级数学下册6.3.1《实数的概念》说课稿

人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。

本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。

教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。

但是,对于实数的定义和性质,学生可能还比较陌生。

因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。

三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。

2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。

3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。

四. 说教学重难点1.教学重点:实数的概念和性质。

2.教学难点:实数的抽象性质和实数在实际问题中的应用。

五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。

六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。

2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。

3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。

4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。

5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。

6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。

七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 实数
教学任务分析
教学流程安排
教学过程设计

征.
[活动2]
通过对数的归纳辨析,教师引出无理数和实数的概念,并引导学生学会对实数如何分类.
问题:
你能对我们学过的数进行合理的分类吗?
教师引出无理数和实数的概
念,
教师引导学生独立思考:当对
数的认识扩充到实数范围之后,怎
样在实数范围内对学过的数进行分
类整理?教师在参与讨论时启发学
生类比有理数的分类,同时鼓励学
生相互补充、完善,并帮助总结出
实数的分类结构图.



无理数
有理数
实数
实数















负无理数
负有理数
负实数

正无理数
正有理数
正实数
活动2中,教师应关注:
(1)学生对有理数和无理数的
概念以及它们之间的差异与联系的
了解程度;
(2)学生在讨论中能否发表自
己的见解,倾听他人的意见,并从
中获益;
(3)学生是否能用语言准确地
表达自己的观点.
通过对实数进行分类,
让学生进一步领会分类的
思想,培养学生从多角度思
考问题,为他们以后更好地
学习新知识作准备.同时也
能使学生加深对无理数和
实数的理解.
通过学生互相的讨论
和交流,可以深刻地体验知
识之间的内在联系,初步形
成对实数整体性的认识.
[活动3]
通过教师演示和学生活动,建立实数与数轴上的点的一一对应。

问题:
我们知道,每个有理数都可
教师提出问题.
学生独立思考后小组讨论交
流,学生借助2的得出过程进行
探究,
本次活动是从学生已
有的知识水平出发,找到数
轴上2的位置,体会无理
数也可以用数轴上的点来
表示.
借助数轴对无理数进
教学设计说明
(1) 本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义.在中学阶段,多数数学问题是在实数范围内研究.例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等.实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识.同时在本节课中充分发挥计算器的计算、验证、探究功能。

因此本节的作用十分重要.
在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

(2) 在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。

在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计—例题选择—课堂引申都是以教材内容为载体,充分开发教材的功能。

循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

(3) 计算器在本节课的教学中,起到了重要作用,体现在三个活动过程:第一个过程是利用计算器探求有理数的规律,从而引出无理数的概念;第二个过程是利用计算器估算无理数的近似值;第三个过程用计算器计算实数的值.发挥了计算器的计算功能和探究功能。

(4)本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。

(5)教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。

恰当地提出问题和
恰当地运用课堂互动策略十分重要。

在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。

相关文档
最新文档