《机械工程学报》论文模板

合集下载

机械工程学报论文格式模板

机械工程学报论文格式模板
段后回车换行 1 次
Received September 8, 2008; revised January 18, 2009; accepted February 23, 2009; published electronically March 6, 2009
Abstract: A particular emphasis is put on a novel wearable exoskeleton arm, ZJUESA, with 6 degrees of freedom, 字号 8 磅,段后回车换行 1 次 which is used for the robot teleoperation with the force-feedback in the unknown environment. In this external structure mechanism, the 3-revolution-prismatic-spherical (3RPS) parallel mechanism is devised from the concept of the human upper-limb anatomy and applied for the shoulder 3-DOF joint. Meanwhile, the orthogonal experiment design method is introduced for its optimal design. Aiming at enhancing the performance of teleoperation, the force feedback is employed by the pneumatic system on ZJUESA to produce the vivid feeling in addition to the soft control interface. Due to the compressibility and nonlinearity of the pneumatic force feedbacy controller for the precise force control is proposed and realized based on the Mega8 microcontroller units as the units 字号 9 磅,段后回车换行 1 次 feedback, the of the distributed control system on ZJUESA. With the results of several experiments for master-slave control with force feasibility of ZJUESA system and the effect of its hybrid fuzzy controller are verified. Key words: exoskeleton arm, teleoperation, pneumatic force-feedback, hybrid fuzzy control 一级标题字号 12 磅, 段前空 1 行,段后回车换行 1 次 字号 9 磅,段后

机械工程学报格式模板

机械工程学报格式模板

Chinese Journal of Mechanical Engineering(中国机械工程学报)论文排版要求一、排版步骤对论文全部内容套模板进行排版操作,排版结果必须符合以下“排版基本要求”、“排版细则”和“论文模板”。

重点检查以下各项的排版是否正确:页面设置,页眉(文字,页码),DOI,题目,作者(姓名、单位名称),脚注,日期信息,摘要,关键词,各级标题,正文文字及段落,插图,表格,数学式,References (参考文献),Biographical notes(作者简介),Appendix(附录),页面底部。

二、排版基本要求1页面设置必须符合要求,见排版细则中的“页面设置”,注意栏宽必须为85 mm,工具栏“格式”中的段落设置,“缩进和间距”的“自动调整右缩进”和“与网格对齐”两项均不要勾选。

2论文首页页眉的文字是本刊名称、卷期年;单码页面页眉的文字是本刊名称,双码页面页眉的文字是论文第一作者及论文题目。

页眉文字与页眉线之间的行距全刊必须一致。

3单码页面的页码在右侧,双码页面的页码在左侧。

4DOI按照最终排版结果的论文首页面实际期号和页码填写,期号前补“0”,页码不足三位数字的前面补“0”。

5作者右上角标的星号位置全刊必须一致,如果还有与其并列的数字上标,则要与该数字上标保持平齐。

6正文字号10磅,正文中段落文字首行一律缩进0.35 cm;如果包含上下标符号或较为复杂的数学式时,应调整该段落为多倍行距,“设置值”为1.1~1.2,使段内文字不出现叠盖现象。

7插图整体左右居中排。

对图中文字进行字体、字号修改时,未要求修改的内容保持原样。

例如:曲线或引线的位置、刻度的位置、比例尺的线长等等。

8表格整体左右居中排。

表格的幅面要根据表头和表身内文字的多少而定,文字较少时表格左右长度不必占满整个栏宽,且各列间不要留过多的空白。

一栏内能够排下的表格不要转行排也不要通栏排,一栏内排不下但通栏能够排下的表格不要转行通栏排。

机械工程类论文4100字_机械工程类毕业论文范文模板

机械工程类论文4100字_机械工程类毕业论文范文模板

机械工程类论文4100字_机械工程类毕业论文范文模板机械工程类论文4100字(一):机械工程类职业学院管理信息化解决方案论文【摘要】管理信息化是信息化背景下管理工作发展的一个重要方向,随着现代信息技术的日益成熟,信息化技术也被广泛应用于各个行业生产、管理、研发等多个方面,并且在其中发挥着非常积极的作用。

但是就现阶段机械工程类职业学院管理相关工作而言,在实际的发展过程中,信息化水平并不是特别高,这样必然会对机械工程类专业长效发展产生巨大的影响。

论文重点针对机械工程类职业学院管理信息化中的实训教学管理信息化的解決方案进行了探究。

【关键词】管理;信息化;机械工程类职业学院;解决方案1引言机械工程类职业学院是现阶段我国培养机械工程类高等职业人才的主要场所,其管理水平的高低直接对职业人才培养质量产生较大影响。

随着现代社会发展,对于高素质、高水平机械工程职业人才需求数量及质量的提升,机械工程类职业学院对于学院管理工作重视程度也越来越高。

在信息时代背景下,如何做好机械工程类职业学院管理信息化相关工作,也成为现阶段学院发展的一项重点。

2机械工程类职业学院管理信息化现状分析2.1管理信息化系统相关技术相对落后经过多年的实践与探索,高等职业学院也开始了信息化建设,并且取得了较为优异的成绩。

但是对于机械工程类职业学院管理信息化而言,其在实际的工作过程中,由于受其专业特点、技术应用等诸多因素的制约,导致机械工程类职业学院的信息化建设水平并不是特别高,有的学院尽管已经完成了信息化建设,但是在其技术应用方面,依然相对落后,尤其是学院管理信息化方面[1]。

在这种技术相对落后的管理信息化背景下,也必然会对管理工作产生严重的影响。

2.2学院领导对于管理信息化重视程度不足对于机械工程类职业学院而言,其属于一类实践能力以及专业技能要求较高的专业,因此,在进行人才培养以及学院建设方面,其工作重点也大多数放在专业技术培养以及重点学科建设方面,并未对管理工作引起足够的重视,尽管现阶段已经将现代先进的管理理念以及方法应用其中,但在实施过程中,也多数的流于形式[2],这样就很难真正发挥出管理工作在学院发展中的积极作用。

机械论文:机械工程论文范文10篇

机械论文:机械工程论文范文10篇

机械论文:机械工程论文范文10篇本文是一篇机械工程论文,机械工程是以有关的自然科学和技术科学为理论基础,结合生产实践中的技术经验,研究和解决在开发、设计、制造、安装、运用和维修各种机械中的全部理论和实际问题的应用学科。

机械工程是工学研究生教育一级学科,工程研究生教育一个领域。

(以上内容来自百度百科)今天为大家推荐一篇机械工程论文,供大家参考。

机械工程论文范文篇一第一章绪论1.1 微型纯电动汽车的研究背景就在中美两国政府投巨资搞电动汽车项目的同时,中国的微型纯电动汽车却在没有任何政府资助,甚至在各地方限制政策压力下,顽强地发展起来。

微型纯电动汽车发展速度远快于其它类型的电动汽车,已成为一个成长和发展中的产业,这与社会的需求和其自身的特点是密切相关的。

城市的公共交通系统需要微型纯电动汽车。

未来的大都市普遍以快速公共交通系统为主,如公共汽车系统、轨道交通系统等。

从人们的住所到公共汽车站或者是地铁站或者是轻轨车站的短距离出行通常是步行,或是以自行车、两轮或三轮摩托车等作为交通代步工具。

然而,随着生活节奏的加快和人们生活水平的提高,时间观念更加深入人心,使用自行车已经不能满足通勤者时间上的需求,需要寻找一种新型的交通工具。

微型纯电动汽车是最好的选择。

微型纯电动汽车具有无污染、低噪声、小体积、低速度和易驾驶等优点,使得它可以穿梭于城市的各种道路,能够直接到达出租车都不能到达的深居小巷,这更是其它大型交通工具所不能企及的。

微型纯电动汽车的最高时速一般为60km/h,虽然比一般小汽车的速度慢,但比步行或骑自行车要快得多,完全能够满足通勤者上下班时节约时间的要求。

因此纯微型电动汽车作为代步工具是相当合适的。

另外,微型纯电动汽车的低速度也提高了它在居住区行驶时的安全性。

驾驶微型纯电动汽车,比驾驶小汽车简单得多,即使老人或者下肢残疾的人,也能操纵自如。

因此,微型纯电动汽车不仅适合于通勤者的快速交通需要,也能为非通勤者的短距离慢速交通提供方便。

机械工程毕业论文范文(通用3篇)

机械工程毕业论文范文(通用3篇)

机械工程毕业论文范文(通用3篇)1目前机械专业教学中存在的问题教学内容创新性不足,理论与实践相脱节机械专业的课程包括机械制造、机械绘图、机械设计、电工与电子、模具制造、数控车床、PLC编程等,这些课程都需要在实践中学习和掌握,如果单纯采用传统的课堂教学方式,学生只能盲目地学习书本中的理论,而不能融入先进的案例,就会使学生的创新与实践应用能力逐步下降。

而目前很多机械专业教师依然采用这种以教为主的教学模式,未能够结合项目教学法、实践教学方法、实验教学法等多种教学方式,通过增加教学内容的创新性来培养学生的实践创新能力,出现严重的理论教学与学生实践操作间的脱节情况,导致学生学习兴趣下降,教学效果不理想。

教学方法落后,缺乏实践性目前很多高校依然采用传统的教学模式,单纯注重理论知识的传授,而忽视了学生实践操作能力的培养,造成学生在学习过程中盲目追求理论分数高低,最终不能用其所学理论去指导实践的情况,更无从谈及实践中的创新能力培养。

因此,作为一项以培养学生实践操作能力为主的课程,应当加大课程教学中的实践环节比重,改变传统以课堂理论知识传授为主的教学方式,发展创新教育,为学生在实践中培养创新能力提供有力条件。

“工学结合”教学策略与模式有待进一步完善目前,部分高校依然墨守成规,忽视教学在校园教育发展中的重要作用。

尤其是在人才培养的过程中,未能够与企业及社会发展需求相适应,对机械专业“工学结合”的教学模式与实习实训的重视程度较低,让学生不能够在实践实习中进一步巩固所学理论知识,从而激发起创新灵感。

2机械专业创新教育相关意见培养适合当今企业及社会需要的机械专业应用型、创新型人才,一方面要求高校教育能够充分重视学生专业知识的掌握情况,另一方面也要求高校教育能够与人才实际需求紧密结合,培养一批具有扎实基础知识与较强实践创新能力的机械专业人才。

针对于此,笔者对机械专业教育创新提出几点意见。

创新实践教学体系机械专业以培养技能型人才为主,实践是其人才培养过程的关键环节,要求高校教育能够加强学生理论知识学习与实践应用的结合。

中国机械工程学报(英文版)论文模板

中国机械工程学报(英文版)论文模板

ZHANG Jiafan1, 3, *, FU Hailun2, DONG Yiming1, ZHANG Yu1, YANG Canjun112 Zhejiang Province Instituteof Metrology,Hangzhou 310027, China3Abstract:and high head have been developed overseas. However, low efficiency and large size are the common disadvantages for the magnetic drive pump. In order to study the performance of high-speed magnetic drive pump, FLUENT is used to simulate the inner flow field of magnetic drive pumps with different rotate speeds, and get velocity and pressure distributions of inner flow field. According to analysis the changes of velocity and pressure to ensure the stable operation of pump and avoid cavitation. Based on the analysis of velocity and pressure, this paper presents the pump efficiency of magnetic drive pumps with different rotated speeds by calculating the power loss in impeller and volute, hydraulic loss, volumetric loss, mechanical loss and discussing the different reasons of power loss between theKey words:1At first look at modern society, more and more robotsand automated devices are coming into our life and servemechatronic devices replacelower levels, essentiallylevels just as the term humanwhich is coined byGOERTZ,et al[2]widely developed in the fields of robothaptic interface to enhance theoperator, also in the excitingplanning, personnel training, and50305035), National Hi-tech Research andChina(863 Program, Grant No. ##), BeijingFoundation of China((Grant No. ##), and ZhejiangScience Foundation of China((Grant No. ##)DUBEY, et al[3], to incorporatesensor and model into humancontrolled teleoperation systems. In their approach, thehuman operator was retained at all phases of the operation,and was assisted by adjusting system parameters whichredundant robotic arms[4]. In recent work[5–6],signal has been used to control thearm and many new concepts were applied in–10]. Several researchers from Koreaand Technology(KIST) introduced[11–12].new exoskeleton-type master arm, inbrakes with the torque sensor beamsreflection[14]. Likewise, the authorsout a 2-port network model to describe the bilateral[15–17].this research, a wearable exoskeleton arm, ZJUESA,system is designed and ateleoperation control system isY ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation·2·explained. This system includes three main levels: ① supervisor giving the command through the exoskeleton arm in safe zone with the operator interface; ② slave-robot working in hazardous zone; ③ data transmission between supervisor-master and master-slave through the Internet or Ethernet. In section 2, by using the orthogonal experiment design method, the design foundation of ZJUESA and its optimal design are presented. Then in section 3, we describe a novel hybrid fuzzy control system for the force feedback on ZJUESA. Consequently, the force feedback control simulations and experiment results analysis are presented in section 4, followed by discussions and conclusions.2 Configuration of the Exoskeleton ArmSystemThe master-slave control is widely employed in the robotmanipulation. In most cases, the joystick or the keyboard isthe routine input device for the robot master-slave controlsystem. The system presented in this paper is shown in Fig. 1.In the system the exoskeleton arm —ZJUESA replaces the joystick as the command generator. It is an externalstructure mechanism, which can be worn by the operator, and can transfer the motions of human upper arm to slave manipulator position-control-commands through the Internet or Ethernet between the master and slave computers. With this information, the slave manipulator mimics the motion of the operator. At the same time, the force-feedback signals, detected by the 6-axis force/torque sensor on the slave robot arm end effector, are sent back to indicate the pneumatic actuators for the force-feedback on ZJUESA to realize the bilateral teleoperation.Since ZJUESA is designed by following the physiological parameters of the human upper-limb, with such a device the human operator can control the manipulator more comfortably and intuitively than the system with the joystick or the keyboard input.3 Design of the Exoskeleton ArmWhat we desire is an arm exoskeleton which is capable of following motions of the human upper-limb accurately and supplying the human upper-limb with proper force feedback if needed. In order to achieve an ideal controlling performance, we have to examine the structure of the human upper-limb.3.1 Anatomy of human upper-limb3.1.1 Upper-limbRecently, various models of the human upper-limbanatomy have been derived. The biomechanical models of the arm that stand for precise anatomical models including muscles, tendons and bones are too complex to be utilized in mechanical design of an anthropomorphic robot arm. From the view of the mechanism, we should set up a morepracticable model for easy and effective realization.Fig. 2 introduces the configuration of human upper-limband its equivalent mechanical model, which is a 7-DOFstructure, including 3 degrees of freedom for shoulder(flexion/extension, abduction/adduction and rotation), 1 degree of freedom for elbow (flexion/extension) and 3 degrees of freedom for wrist (flexion/ extension, abduction/adduction and rotation)[18]. The details about the motion characteristics of these skeletal can be obtained in Refs. [18-20]. Compared to the mechanical model, the shoulder and wrist can be considered as spherical joints and the elbow as a revolution joint. It is a good approximate model for the human arm, and the base for the design and construction of exoskeleton arm-ZJUESA.Fig. 2. Configuration of human upper limband its equivalent mechanical model3.2 Mechanism of the exoskeleton armBecause the goal of this device is to follow motions of the human arm accurately for teleoperation, ZJUESA ought to make the best of motion scope of the human upper-limb and limit it as little as possible. A flexible structure with the same or similar configuration of human upper-limb is an ideal choice. Based on the anatomy of human upper-limb, the joint motion originates from extension or flexion of the图题字号9磅,行距固定值11磅,段前0.3行,段后回车换行1次;图中字号8磅 图题后遇标题时,段后回车换行2次 图前段落,段后回车换行1次双码页面页眉字号8磅,单倍行距,段后1.2磅三级标题字号10磅,斜体,段前0.5行 二级标题字号10磅图片及表格要求: 图表类型 分辨率 灰度 < 150 | > 225 彩色 < 150 | > 225位图 < 600 | > 900CHINESE JOURNAL OF MECHANICAL ENGINEERING·3·muscle and ligament with each other to generate torque around the bones. Compared with the serial mechanism, the movements of the parallel mechanism are driven by the prismatics, which act analogically to the human muscles and ligament. Besides, using the parallel mechanism not only realizes the multi-DOF joint for a compact structure and ligament. Besides, using the parallel mechanism not only realizes the multi-DOF joint for a compact structure of human upper-limb. The 3RPS parallel mechanism is one of the simplest mechanisms. Fig. 3 explains the principle of the 3RPS parallel mechanism. KIM, et al [11], introduced it into the KIST design. Here we follow this concept. The two revolution degrees of freedom embodied in the 3RPS are for flexion/extension, abduction/adduction at shoulder. Its third translation degree of freedom along z axis can be used for the dimension adjustment of ZJUESA for different operators. The prismatic joints are embodied by pneumatic actuators, which are deployed to supply force reflective capability. Also displacement sensors are located along with the pneumatic actuators and the ring-shaped joints to measure their linear and angular displacements. At elbow, a crank-slide mechanism composed of a cylinder and links is utilized for flexion/extension. At wrist, since the abduction/ adduction movement is so limited and can be indirectly reached by combination of the other joints, we simplify the configuration by ignoring the effect of this movement. As shown in Fig. 4, the additional ring the same as that at shoulder for the elbow rotation. Thus our exoskeletonarm-ZJUESA has 6 degrees of freedom totally.Fig. 3. 3RPS parallel mechanismFig. 4. Prototype of the exoskeleton arm-ZJUESA 3.3 Optimization design of ZJUESAAs nentioned above, the best design is to makethe workspace of ZJUESA as fully cover the scope of the human upper-limb motion as possible. We employ the 3RPS parallel mechanism for the shoulder, whose workspace mainly influences the workspace of ZJUESA. The optimal design of 3RPS parallel mechanism for the shoulder is the key point of ZJUESA optimal design. However, it is a designing problem with multi-factors, saying the displacement of the prismatics (factor A ), circumradius ratio of the upper and lower platforms (factor B ), initial length of the prismatics (factor C ), and their coupling parameters (factor A *B , A *C and B *C ) (Table 1) and multi-targets, namely, its workspace, weight, size. So,we use the orthogonal experiment design method with foregoing 6 key factors and Eq. (1) gives the expressionof the optimal target function of this problem: 0, , x r Q F L R θθ⎛⎫=- ⎪⎝⎭, (1)where L 0 is the initial length of the prismatics, R is the circumradius of the lower base in 3RPS mechanism, r is thecircumradius of the upper base in 3RPS mechanism, θ is the expected reachable angle around axis, and xθ is thereachable angle around axis.Table 1. Factors and their levels mm Level rank A B C A *B A *C B *C1 60 0.5 150 - - -2 80 0.438 160 - - -3100 0.389 170 - - - 4 --180---The orthogonal experiment design is outlined because of the ease with which levels can be allocated and its efficiency. The concept of orthogonal experiment design is discussed in Ref. [21] to obtain parameters optimization, finding the setting for each of a number of input parameters that optimizes the output(s) of the design. Orthogonal experiment design allows a decrease in the number of experiments performed with only slightly less accuracy than full factor testing. The orthogonal experiment design concept can be used for any complicated system being investigated, regardless of the nature of the system. During the optimization, all variables, even continuous ones, are thought of discrete “levels ”. In an orthogonal experiment design, the levels of each factors are allocated by using an orthogonal array [22]. By discretizing variables in this way, a design of experiments is advantageous in that it can reduce the number of combinations and is resistant to noise and conclusions valid over the entire region spanned by the control factors and their setting.Table 2 describes an orthogonal experiment design array for 6 key factors [23]. In this array the first column implies the number of the experiments and factors A , B , C , A *B ,表题字号9磅,字体加粗,段后0.3行表中字号8磅,行距固定值11磅,段后回车换行1次数学式前段落,段后回车换行1次表前段落,段后回车换行1次 单码页面页眉字号10.5磅,单倍行距,段后1.2磅 图序与图题间空两格Table 后空一格,表序与表题间空两格缩写点后空一格页码文字周围的图文框宽 1.1 cm ,高0.4 cm ,相对于“页面”水平距离18 cm ,相对于“段落”垂直距离0.4 cm另行排的数学式必须居中,单倍行距,段后回车换行1次Y ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation·4·A *B and B *C are arbitrarily assigned to columnsrespectively. From Table 2, 36 trials of experiments are needed, with the level of each factor for each trial-runindicated in the array. The elements represent the levels of each factors. The vertical columns represent the experimental factors to be studied using that array. Each of the columns contains several assignments at each level for the corresponding factors. The levels of the latter three factors are dependent on those of the former three factors. The elements of the column IV , namely factor A *B , are determined by the elements in the columns I, II, and elements of column V , factor A *C , has the relationship with the elements of columns I, III, and the column VI, factor B *C , lies on the columns II, III.Table 2. Orthogonal experiment design array L36for 6 key factorsExperiment No.A B C A *B A *C B *C Result Q 1 1 1 1 1 1 1 Y 1 2 1 1 2 1 2 2 Y 2 3 1 1 3 1 3 3 Y 3 4 1 1 4 1 4 4 Y 4 5 1 2 1 2 1 5 Y 5 6 1 2 2 2 2 6 Y 6 33 3 3 1 9 9 9 Y 33 34 3 3 2 9 10 10 Y 34 35 3 3 3 9 11 11 Y 35 3633491212Y 36The relation between column IV and columns I, II is that: if level of A is n and level of B is m , the level of A *B is 3(n –1)+m , where n=1, 2, 3 and m=1, 2, 3. All the cases can be expressed as follows:(1, 1)→1 (1, 2)→2 (1, 3)→3; (2, 1)→4 (2, 2)→5 (2, 3)→6; (3, 1)→7 (3, 2)→8 (3, 3)→9.The first element in the bracket represents the corresponding level of factor A in Table 1 and the latter means the corresponding level of the factor B . Factor A *B has totally 9 levels, as factor A and factor B have 3 levels, respectively.Likewise, the relation between column V and columns I, III is(1, 1)→1 (1, 2)→2 (1, 3)→3 (1, 4)→4; (2, 1)→5 (2, 2)→6 (2, 3)→7 (2, 4)→8; (3, 1)→9 (3, 2)→10 (3, 3)→11 (3, 4)→12.Also the relation between column VI and columns II, III is(1, 1)→1 (1, 2)→2 (1, 3)→3 (1, 4)→4; (2, 1)→5 (2, 2)→6 (2, 3)→7 (2, 4)→8;(3, 1)→9 (3, 2)→10 (3, 3)→11 (3, 4)→12.The optimal design is carried out according to the first three columns:1211121235*36*1/91/91/90000000000000,0000001/3000000001/3A A B C B C I Y I Y I Y I Y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)max{}min{}i ij ij K I I =-, (3) where i = A , B , C , A *B , A *C , B *C ; j is the number of i rank. By calculation of the 3RPS parallel mechanism [24–35], the relationship between the target Q and each factor can be obtained, as shown inFig. 5.Fig. 5. Relation between levels of factors and QAccording to the plots in Fig. 5, we can get the superiority and the degree of the influence (sensitivity) of each design factor. The factor with bigger extreme difference K i , as expressed in Eq. (3) has more influence on Q . In this case, it can be concluded that the sensitivity of the factors A *B and A *C are high and factors B *C and C have weak influence, since K A *B and K A *C are much bigger than K B *C and K C . And the set A 3B 1, A 2C 1, A 2, B 1, C 1, B 1C 1 are the best combination of each factor levels. But there is a conflict with former 3 items in such a set. As their K i have little differences between each other, the middle course is chosen. After compromising, we take the level 2 of factor A , the level 1 of factor B and the level 1 of factor C , namely d =80 mm, r /R =0.5, L 0=150 mm [32].It is interesting to know how good the results derived from the above 36 trials are, when compared with all other possible combinations. Because of its mutual balance of orthogonal arrays, this performance ratio can be guaranteed by the theorem in non-parametric statistics [13]. It predicts双数页码周围的图文框,相对于“页面”水平距离1.8 cm量名称与量符号间空一格缩写点与后续文字间空一格CHINESE JOURNAL OF MECHANICAL ENGINEERING·5·that this optimization is better than 97.29% of alternatives. Combined with the kinematics and dynamics simulation of the 3RPS parallel mechanism and ZJUESA with chosen design parameters by ADAMS, we perform the optimal design. Table 3 indicates the joint range and joint torque of each joint on ZJUESA. It is apparent that ZJUESA can almost cover the workspace of human upper-limb well so that it can follow the motion of human operation upper-limb with little constrain, as shown in Fig. 6.Table 3. Joint ranges and joint torques for each jointon ZJUESAJoint on ZJUESA Joint range θ/(°) Joint torque T /(N ·m) Joint density ρm / (kg ·m –3)Flexion/extension(shoulder) -60-60 36 - Abduction/adduction -50-60 36 - Rotation(shoulder) -20-90 18 - Flexion/extension(elbow) 0-90 28 - Rotation(wrist) -20-90 13 - Flexion/extension(wrist) 0-6028 - Abduction/ adduction(wrist)-Fig. 6. Motion of exoskeleton arm following the operator4 Hybrid Fuzzy-Controller for the ForceFeedback On ZjuesaIn master-slave manipulation, besides the visual feedback and man-machine soft interface, the force feedback is another good choice to enhance the control performance. If the slave faithfully reproduces the master motions and the master accurately feels the slave forces, the operator can experience the same interaction with the teleoperated tasks, as would the slave. In this way the teleoperation becomes more intuitive.In our bilateral teleoperation system with ZJUESA, a 6 axis force/torque sensor is mounted on the end effector of the slave manipulator and detects the force and torque acting on the end effector during performing the work. This information is transferred to the master site in real time.With dynamic calculation, the references of the generatingforce on actuators of ZJUESA are obtained. Hereafter, the feeling can be reproduced by means of the pneumatic system.Eq. (4) expresses the relation between the force and torque on the end effector and the torques generating on the joints: T =τJ F ,(4)where F —Force and torque on the end effector,⎛⎫= ⎪⎝⎭f F n ,τ —Torque on each joint, T 126()τττ=τ,J —Jacobian matrix of ZJUESA.By dividing the force arm, it is easy to get to the generating force on the joints, such as shoulder ring, elbow, wrist ring and wrist, as explained by Eq. (5):()TT345645673456f f f f a a a a ττττ⎛⎫== ⎪⎝⎭f , (5)where a i (i =3, 4, 5, 6) is the force arm of the shoulder ring, elbow, elbow ring and wrist joints, respectively.As for the generating force of the prismatics on the 3RPS parallel mechanism, it can be calculated as follows [35]:13RPS 23RPS 3 f F f f f ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭τG f , (6)where f F G —Jacobian matrix of 3RPS parallel mechanism,3RPS τ—Torques on 3RPS parallel mechanism,()T3RPS 12ττ=τ,f 3RPS —Force on 3RPS parallel mechanism.Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback.Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA. Fig. 7 explains the scheme of the pneumatic数学式下方的解释语及其他数学式,各行间单倍行距Y ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation ·6·cylinder-valve system for the force feedback. Therefore, with Eqs. (5), (6), the total seven force references are obtained for the pneumatic system on ZJUESA.Fig. 7. Scheme of the pneumatic cylinder-valve systemp1, v1, a1—Pressure, volume and section area of cylinder chamber 1p2, v2, a2—Pressure, volume and section area of cylinder chamber 2 m p—Mass of the pistona r—Section area of rodm L —Mass of loadThe high-speed on-off valves, working as the command components in the system, are controlled by the pulse width modification(PWM) signals from the control units, respectively. Rather than the proportional or servo valve, this is an inexpensive and widely used method in the application of position and force control in the pneumatic system [23–28]. To simplify the control algorithm, there is just one valve on work at any moment. For instance, when a leftward force is wanted, the valve V1 works and valve V2 is out of work. Under this case, we can control the pressure p1 in chamber 1 by modifying the PWM signals. Chamber 2 connects to the atmosphere at that time and the pressure p2 inside the chamber 2 of cylinder is absolutely ambient pressure, and vice versa. At each port of the cylinder, there is a pressure sensor to detect the pressure value inside the chamber for the close-loop control. And the throttle valves are equipped for limiting the flow out of the chamber to reduce piston vibrations. In our previous work, we gave out the specific mathematic models of the system, including pneumatic cylinder, high-speed on-off valve and connecting tube[33].However, the pneumatic system is not usually a well linear control system, because of the air compressibility and its effect on the flow line. Also the highly nonlinear flow brings troubles into the control. The conventional controllers are often developed via simple models of the plant behavior that satisfy the necessary assumptions, via the specially tuning of relatively simple linear or nonlinear controllers. As a result, for pressure or force control in such a nonlinear system, especially in which the chamber pressure vibrates rapidly, the conventional control method can hardly have a good performance.Fortunately, the introduction of the hybrid control method mentioned, gives out a solution to this problem. But the traditional design of the hybrid controller is always complicated and only available to the proportion or servo valve system. In our system, we figured out a kind of novel hybrid fuzzy control strategy for the high-speed on-off valves, which is much simpler and can be realized by micro control units(MCUs) in the contributed architecture. This strategy is composed of two main parts: a fuzzy controller and a bang-bang controller. The fuzzy controller provides a formal methodology for representing, manipulating, and implementing a person’s heuristic knowledge about how to control a system. It can be regarded as an artificial decision maker that operates in a closed-loop system in real time and can help the system to get the control information either from a human decision maker who performs the control task or by self-study, while the bang-bang controller is added to drive the response of the system much more quickly.Fig. 8 shows the concept of the proposed hybrid fuzzy controller. The concept of multimode switching is applied to activate either the bang-bang controller or the fuzzy controller mode.Fig. 8. Concept of the hybrid fuzzy controllerBang-bang control is applied when the actual output is far away from reference value. In this mode, fast tracking of the output is implemented. The fuzzy controller is activated when the output is near the set point, which needs accuracy control.In the fuzzy-control mode, we use pressure error ref actual()()()e t P t P t=-and its change ()e t as the input variables on which to make decisions. On the other hand, the width of the high voltage in one PWM period is denoted as the output of the controller.As mentioned above, the PC on master site works as the supervisor for real-time displaying, kinematics calculation and exchanges the control data with the slave computer and so on. For the sake of reducing the burden of the master PC, the distributed control system is introduced. Each control unit contains a Mega8 MCU of A TMEL Inc., working as a hybrid fuzzy-controller for each cylinder respectively, and forms a pressure closed-loop control. The controller samples the pressure in chamber with 20 kHz sampling rate当图题后面有注释时,图题前、后各0.3行注释文字字号8磅,单倍行距,最后一行段后回车换行1次CHINESE JOURNAL OF MECHANICAL ENGINEERING·7·by the in-built analog- digital converters. These controllers keep in contact or get the differential pressure signals from the master PC through RS232, as depicted in Fig. 9. In this mode, fast tracking of the output is implemented.Fig. 9. Distributed control system of the master arm5 Force Feedback ExperimentsFig. 10 gives out the set up of the force feedback experiments. The system includes the soft interface, data acquisition, Mega8 MCU experiment board, on-off valves, sensors of displacement and pressure, and the oscilloscope. We chose the cylinder DSNU-10-40-P produced by FESTO Inc. The soft signal generator and data acquisition are both designed in the LabVIEW, with which users may take advantage of its powerful graphical programming capability. Compared with other conventional programming environments, the most obvious difference is that LabVIEW is a graphical compiler that uses icons instead of lines of text. Additionally, LabVIEW has a large set of built-in mathematical functions and graphical data visualization and data input objects typically found in data acquisition and analysis applications.Fig. 10. Set-up of force feedback experimentThe plots in Fig. 11 give out experimental results of the chamber pressure outputs with step input signals on one joint. While at frequencies higher than 80 Hz, force is sensed through the operator’s joint, muscle and tendon receptors, and the operator is unable to respond to, and low amplitude disturbances at these frequencies. We remove reflected force signals above 80Hz band by fast Fourier transfer (FFT) and get the smoothed curve in the plots. One is obtained by using hybrid control strategy and another is obtained by using traditional fuzzy controller without bang-bang controller. Although these two curves both track the reference well with very good amplitude match (less than 5% error) and a few milliseconds misalignment in the time profile, by comparing these two curves, it can be found that the adjust time of the curve with hybrid control strategy is less than 0.03 s, which is much less than 0.05 s of other with traditional fuzzy controller. It proves effect of the hybrid control strategy.Fig. 11. Experimental results with a step signalFig. 12 shows the results of tracking a sinusoidal commander. This experiment…up to 5 Hz frequency sinusoidal command well.Fig. 12. Experiment results for sinusoidal pressure commandsY ZHANG Jiafan, et al: Novel 6-DOF Wearable Exoskeleton Arm with Pneumatic Force-Feedback for Bilateral Teleoperation ·8·After then, another two experiments are carried out torealize the bilateral teleoperation with simple motion, inwhich the slave manipulator is controlled for the shoulderabduction/ adduction(the movement of a bone away/toward the midline in the frontal plane) and extension/flexion of elbow(the movement in the sagittal plane) by theteleoperation with ZJUESA.In the first experiment, the operator performs theshoulder abduction/adduction movement with ZJUESA,when the slave robot follows and holds up the load. Withthe force feedback on ZJUESA, the operator has feeling asif he holds the load directly without the mechanicalstructure, as shown in Fig. 13. Plots in Figs. 14, 15 showthe torque and force on each joint on ZJUESA during theshoulder abduction/adduction movement from 45° to 90°(in the frontal plane) with 5 kg load. There are some remarks. In plots of Fig. 14 shoulder 3RPS-x means the torque around x-axis of 3RPS mechanism at shoulder and the same to shoulder 3RPS-y. Shoulder ring, elbow, wrist ring and wrist represent the torques on these joints, respectively. The characters shoulder 3RPS-1, shoulder 3RPS-2 and shoulder 3RPS-3 in Fig. 15 represent corresponding force on the cylinders on 3RPS parallel mechanism (referring to Fig. 3) with length L1, L2 and L3, respectively.Fig. 13. Shoulder abduction/adduction teleoperation Fig. 14. Torques on the joints of the shoulderabduction/adduction for 5 kg load liftingFig. 15. Force feedback on the cylinders of the shoulder abduction/adduction for 5 kg load liftingThe operator teleoperates the slave manipulator with force feedback as if he performs for lifting a dumbbell or raising package in daily life(Fig. 16). Fig. 17 shows the moment on each joint during the process for producing the feeling of lifting a 10 kg dumbbell. Fig. 18 depicts the force output of every pneumatic cylinder on ZJUESA.Fig. 16. Extension/flexion for elbow teleoperationFig. 17. Torques on the joints of the elbowextension/flexion for 10 kg load liftingAll these results of experiments demonstrate the effect of ZJUESA system. ZJUESA performs well by following the motions of human upper-limb with little constrain and the pneumatic force feedback system supplies a proper force feedback tracking the reference well.。

机械工程学报的latex模板

机械工程学报的latex模板《机械工程学报》是一本著名的、以机械工程学为主题的学术期刊。

在本文中,我们将逐步介绍如何使用LaTeX模板来撰写一篇符合《机械工程学报》要求的论文。

1. 下载LaTeX模板:首先,我们需要从相应的网站上下载《机械工程学报》的LaTeX模板。

可以在期刊的官方网站或其他相关网站上找到这个模板文件,并将其下载到我们的计算机上。

2. 安装LaTeX系统:安装LaTeX系统是使用LaTeX模板的先决条件。

常见的LaTeX系统有TeX Live和MiKTeX。

可以从它们的官方网站下载相应的安装程序,并按照提示进行安装。

3. 创建新的LaTeX文档:使用LaTeX模板撰写论文前,需要创建一个新的LaTeX文档。

在文本编辑器中打开这个新的文档,并将以下代码粘贴到文档开头:latex\documentclass{jmecia}这个代码行告诉LaTeX使用《机械工程学报》的模板。

4. 设置论文标题和作者信息:在LaTeX模板中,可以使用以下命令来设置论文的标题和作者信息:latex\title{文章标题}\author{Name1\inst{1}, Name2\inst{2}, Name3\inst{1}}\institute{Institute1 \and Institute2}在这个例子中,我们设置了文章标题为"文章标题",并列出了三个作者。

每个作者都被编号为1或2,并与对应的机构信息相匹配。

5. 开始写作:在完成前面的设置之后,就可以开始写作论文了。

可以使用LaTeX的各种格式设置命令设置章节标题、段落格式、引用等。

6. 添加参考文献:使用LaTeX模板撰写论文时,可以使用BibTeX来管理参考文献。

需要创建一个名为"references.bib"的BibTeX文件,并在LaTeX文档的末尾添加以下代码:latex\bibliography{references}在正文中引用参考文献时,可以使用"\cite"命令。

工程机械专业毕业论文范本

工程机械专业毕业论文范本进入21世纪,工程机械行业已成为机械行业的重要组成部分,各种工程机械在工程施工过程中被广泛地应用。

下文是店铺为大家搜集整理的关于工程机械专业毕业论文范本的内容,欢迎大家阅读参考!工程机械专业毕业论文范本篇1浅谈工程机械空调系统【摘要】随着工程机械制造工艺的发展和人们生活水平的提高,人们对工程机械驾驶室内环境的追求也越来越高。

因此,可以提高用户舒适度的空调系统也越来越显示出了它的重要地位。

总体来看,工程机械空调系统今后将会朝集成化和控制自动化方向发展。

【关键词】工程机械空调系统质量衡量前言目前就我国的工程机械空调系统而言,其与国外产品还有明显差距。

主要表现在系统的匹配、功率的换算以及元件的稳定性等方面均不如发达国家的同类产品。

出现上述问题的原因在于我国工程机械事业起步较晚,对工程机械配套的空调系统设计、匹配计算、元件认识还不够深刻,实验不够全面及充分。

因此,国内企业需要进行完善的工程机械空调系统设计和试验,准确计算驾驶室制冷或制热的功率消耗,通过试验来进行分析和验证初始设计匹配的正确性。

一.工程机械空调系统广义上的空气调节是指在一年中的任何环境条件下,将室内或者某空间内的温度、湿度、空气流速以及清洁度等始终能够维持在人体感觉较为舒适范围内。

这种技术统称为空气调节技术,用于调节空气的设备叫做空气调节装置,简称空调。

空调是对室内或某个空间内的空气进行制冷、制热、加湿、除湿、净化或过滤,并将处理后的空气通过鼓风机或其他方式送回室内,使返回室内的空气符合人们舒适度的要求工程机械空调是空气调节工程的一个分支,空调装置在工程机械上的应用,改善了工程机械的操作环境,提高了驾驶员的操作舒适度。

二.工程机械空调的作用通常,工程机械工作环境比较差,操作人员的冷的作业地区,空调的应用就显得尤为重要工程机械空调的最主要的功能是对驾驶室内空气的湿度、温度、气流流速和清洁度等影响因数进行调节,使操作人员感到舒适,并去除挡风玻璃上的雾、霜、雪,保证操作人员身体健康和行车安全。

《机械工程学报》论文模板

《机械工程学报》论文模板
下面是一个适用于《机械工程学报》的论文模板,长度超过1200字:标题:在这里填写论文标题
摘要:在这里写摘要,总结研究目的、方法、结果和结论。

关键词:在这里填写关键词,用逗号分隔。

引言:在这里介绍研究背景、目的和意义。

解释为什么这项研究是重
要的,并引用相关的文献来支持你的观点。

方法:在这里描述你所使用的研究方法和实验设计。

包括实验设备、
样本选择、数据采集和分析方法等。

结果:在这里展示你的实验结果。

使用表格、图表或其他适当的形式
来清楚地呈现你的数据。

对结果进行客观的描述,不要加入个人感受。

讨论:在这里对结果进行解释和分析。

讨论你的结果与已有文献的一
致性或差异性,并提出可能的解释。

指出你的研究的局限性并提出改进方法。

结论:在这里总结你的研究结果,并强调研究的重要性和潜在影响。

不要重复摘要中的内容,但可以讨论进一步的研究方向。

致谢:在这里感谢给予帮助和支持的人和机构。

对于提供技术、设备、样本或经费支持的人表示感谢。

附录:在这里包含任何需要包含但对论文主体内容来说太大或太详细
的信息。

这可能包括额外的数据、图表、公式、图片或其他相关材料。

以上是基本的《机械工程学报》论文模板。

你可以根据自己的研究内容和要求进行适当的修改和调整。

记得按照学报的具体要求填写论文的各个部分,并遵循学术规范和规定。

《机械工程学报》投稿格式

《机械工程学报》和《中国机械工程学报》(原《机械工程学报(英文版)》)是由中国科学技术协会主管、中国机械工程学会主办的学术期刊。

作为中国机械工程技术领域的权威学术期刊,两刊紧密把握机械工程学科的发展方向,着重报道具有综合、基础、开发和边缘性质的科技成果和先进经验,发表具有国内、国际先进水平的学术论文。

刊登论文的主要类型包括机械工程及其相关领域的前沿性综述研究、高水平基础理论研究和高应用价值工程技术应用研究,多数属于国家或省部级资助项目。

《机械工程学报》为月刊(创刊于1953年),《中国机械工程学报》为双月刊(创刊于1988年),内容不重复。

1 投稿要求和注意事项作者所投稿件应符合以下要求:(1)论文报道的内容符合党和国家的方针、政策和路线, 充分体现科技兴国战略, 促进科技、教育并与经济紧密结合, 为振兴机械工业服务,并达到国际或国内先进水平;同时应具有科学性、创新性,有一定的个人见解和前瞻性,综述性稿件应注意时效性。

(2)论文的写作符合有关国家标准及专业技术手册。

目前我刊参照的国家标准主要包括:①GB 3100-1993 国际单位制及其应用②GB 3101-1993 有关量、单位和符号的一般规则③GB 3102.1~13-1993 量和单位④GB/T 7714-2005 文后参考文献著录规则⑤GB/T 15834-1995 标点符号用法⑥GB/T 15835-1995 出版物上数字用法的规定参照相关专业技术手册包括:《机械工程手册》和《电机工程手册》等。

(3)通过《机械工程学报》工作平台投稿,必要时可打电话或发邮件向编辑部询问有关情况。

注意不要一稿多投!(4)作者应提供详细的通信地址及联系方式(电话、E-mail等),并与编辑部密切合作,积极配合编辑部进行论文修改工作,提供与论文发表相关的各类材料。

(5)论文如有资助项目应在首页脚注处明确标出。

获省部(局)级以上基金(如“863”计划、自然科学基金等)项目资助以及获得奖励者,须提供证明复印件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于神经网络的双层辉光离子渗金属工艺预测模型(二号黑体)*董宏林1闫颖鑫2王科俊2段广仁2(四号仿宋)(1. 南京理工大学计算机科学与技术学院南京210094;(五号宋体)2. 哈尔滨工业大学航天学院哈尔滨150001)摘要(小五黑体):将人工神经网络理论和算法应用于双层辉光离子渗金属工艺的研究,在对网络进行训练的基础上,建立了双层辉光离子渗金属工艺与渗层表面成分和元素总质量分数、渗层厚度和吸收率之间的数学模型,试验结果与计算结果十分吻合。

(小五宋体)关键词(小五黑体):双层辉光人工神经网络预测模型(小五宋体)中图分类号(小五黑体):TG156(小五Times New Roman)Research on ANN-based Prediction Model Used to Double Glow PlasmaSurface Alloying Processing(小三)XXX(姓大写) Xxxxxx XXX Xxxxxx(小四)(1.College of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100081;2.School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030 )(五号)Abstract(小五黑体):The theory and the algorithm of the artificial neural network are applied in the research of the technique and the composition, the gross mass fraction of element, the thickness of surface alloying layer as well as the absorption rate is built. The calculation results are in good agreement with the experimental results.(小五)Key words(小五黑体):Double glow Artificial neural network Prediction model0 前言(四号宋体)(五号宋体)双层辉光离子渗金属技术是我国在国内外都获得专利的一项等离子表面冶金新技术[1-4],它可以在普通材料表面形成具有特殊物理、化学性质的表面合金层。

双层辉光离子多元共渗是一个非常复杂的问题,各种合金元素在源极表面溅射的特性、工件表面的沉积扩散,等离子体空间传输存在较大的差异。

而且宏观工艺参数较多,它们之间相互作用关系复杂,以往人们都是借助于经验,很难找到反映其内在规律的数学模型。

人工神经网络理论的提出与发展为研究非线性系统提供了一种强有力的工具,它已成功的应用于许多研究领域,在材料热处理学科的应用越来越受国家自然科学基金资助项目(7150080050)。

xxxxxxxx收到初稿,xxxxxxxx收到修改稿(六号宋体,此处为角注,和正文分开)到重视[5-6]。

首次以美国HAYEN公司生产的Hastelloy C—2000镍基耐蚀合金为源极,进行Ni-Cr-Mo-Cu多元共渗工艺研究。

利用人工神经网络技术,建立了双层辉光离子渗金属工艺与渗层合金成分及合金元素总质量分数、渗层厚度和吸收率之间的预测模型。

1 试验方法和试验方案(四号宋体)1.1 试验方法渗金属试验在自制双层辉光离子渗金属炉中进行,源极材料为Hastelloy C—2000合金,尺寸为130 mm×50 mm×4 mm,工件材料为20钢,尺寸为80 mm×25 mm×3 mm。

采用脉冲放电模式:源极采用直流电源,工件采用脉冲电源。

源极材料Hastelloy C—2000的质量分数:w Ni=59%,w Mo=16%,w Cr=23%,w Cu=1.6%,w C<0.01%。

671.2 试验方案(五号黑体)为了选定正交试验各个工艺参数的取值范围,先结合以往试验研究的经验,然后又进行了20余炉的摸索性试验,确定了正交工艺参数。

正交试验按照L16(45)正交表进行试验。

指标项目为渗层表面合金元素成分及总质量分数、渗层厚度和吸收率。

因素水平表如表1所示。

表1因素水平表(小五黑体)因素(六号宋体)水平1 2 3 4源极电压U/V 1 050 1 000 950 900工件电压U/V 275 250 350 300气压p/Pa 35 30 45 40极间距d/mm 15 20 25 22.52 数学模型在网络学习部分,采用三层BP神经网络来完成函数的映射。

误差逆传播神经网络是一种具有三层或三层以上的阶层型神经网络,如图所示为一个三层前馈神经网络:它包括输入层、隐含层(中间层)、输出层;输入层有i个节点,隐含层有j 个节点,输出层有t个节点。

上、下层之间各神经元实现全连接,即下层的每一单元与上层的每一单元都实现权连接,而每层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。

这以后,按减小希望输出与实际输出之间误差的方向,从输出层经各中间层逐层修正各连接权值,最后回到输入层。

图1 典型BP网络示意图(小五宋体)算法步骤:(1) 设置初始权系w(0)为较小的随机非零值。

(2) 给定输入/输出样本对,计算网络的输出:设第p组样本输入、输出分别为u p=(u1p,u2p,…,u np)d p=(d1p,d2p,…,d np) p=1,2,…,L节点i在第p组样本输入时,输出为⎥⎥⎦⎤⎢⎢⎣⎡==∑jjpijipipΙtwftxfy)()]([(1)式中I jP——在第p组样本输入时,节点i的第j个输入f是激励函数,采用Sigmoid型,即xexf+=11)((2) 可由输入层经隐层至输出层,求得网络输出层节点的输入。

(3) 计算网络的目标函数J。

设E p为在第p组样本输入时网络的目标函数,取L2范数,则[])(21)(21)(21)(2223tetydtydtEkkpkkpkpppp∑∑=-=-=(3) 式中y kp(t)——在第p组样本输入时,经t次权值调整网络的输出,k是输出层第k个节点网络的总目标函数为)()(tEtJpP∑=(4)作为对网络学习状况的评价。

判别:若J ≤ε(5) 式中ε——预先确定的,ε≥0则算法结束,否则,至步骤(4)。

(4) 反向传播计算。

由输出层,依据J按“梯度下降法”反向计算,逐层调整权值。

-=∂∂-=+)()()()()1(twtwtJηtwtwijijijij)()()()(twtwtwtEηijijp ijpΛ+=∂∂∑(6)式中η——步长或称为学习率,本文中n取1 000 000,η取0.93 计算结果与比较为检验程序的可靠性与实用性,对双层辉光离子多元共渗工艺参数:源极电压、工件电压、极间距、气压对渗层表面的合金元素总质量分数、渗层厚度、各合金元素质量分数、吸收率(工件增重/源网络训练准确可靠,同时又具有一定的推广能力,在正交试验16组数据中选择13组作为训练样本,余下的3组以及正交优化工艺作为检测样本。

经过1000 000次训练的试验数据与计算结果的比较见表2、表683。

表2预测渗层表面的成分编号质量分数w/%Ni Cr Mo Cu5 49.881 14.695 11.365 1.605 预测值51.734 16.962 11.211 1.661 12 50.514 16.691 14.071 0.912 预测值51.171 17.509 13.048 0.415 16 50.290 19.164 6.480 1.308预测值50.826 18.104 7.8130 1.33317 57.168 19.655 14.732 1.353预测值59.891 20.107 12.163 1.403从表2、表3可以看出训练样本和检测样本的网络实际输出值与期望值都很接近,说明应用神经网络描述双层辉光离子渗金属工艺参数与渗层的表面合金成分和合金总质量分数、渗层厚度、吸收率之间的映射模型是十分有效的。

表3人工神经网络训练与预测值试验编号源极电压U∕V工件电压U∕V极间距d∕mm气压p∕Pa吸收率s∕% 渗层厚度δ∕μm 元素总质量分数w∕%试验值预测值试验值预测值试验值预测值1 1 1 1 1 70.900 70.587 34.5 34.579 87.496 87.4372 1 2 2 2 61.200 60.871 36.5 36.380 89.796 89.2373 1 3 3 3 33.330 32.847 19.0 19.245 84.895 84.5084 1 4 4 4 44.650 44.401 21.0 20.871 77.579 77.3215* 2 1 2 3 48.100 47.753 25.5 24.950 77.546 76.796 17* 1 2 1 1 79.340 80.920 38.0 38.459 92.908 92.210注:*为检测样本值,试验编号17为正交优化工艺(六号宋体)4 结论(1) 。

(2) 。

(3) 。

(4) 。

参考文献(五号黑体)[1]IMLACH J, BLAIR B J, ALLAIRE P. Measured andpredicted force and stiffness characteristic of industrial magnetic bearings[J]. Trans. ASME J. Tribol., 1991, 113:784-788.[2]ANTILA M, LANTTO E, ARKKIO A. Determination offorce and linearized parameters of radial active magnetic bearings by finite element technique[J]. IEEE Trans. on Magn. 1998, 34(3):684-694.[3]MIZUNO T, ARAKI K, BLEULER H. Stability analysis ofself-sensing magnetic bearing controllers[J]. IEEE Trans.Contr. Syst. Technol., 1996, 4:572-579.[4]DA VID C, MEEKER E H, MYOUNGYU D N. Anaugmentanaugmented currents model for magnetic bearings force and linearized parameters of radial active magnetic including eddy currents, fringing, and leakage[J]. IEEE Trans. on Magn. , 1996, 32(4):3 219-3 227.[5]CHAN T H, CHEN S L. Exact linearization of avoltage-controlled 3-pole active magnetic bearing system[J].IEEE Trans. Contr. Syst. Technol., 2002, 10(4):618-625.[6] 朱祖超. 超低比转速高速离心泵的理论研究及工程实现[J].机械工程学报,2000,36(4):30-33.ZHU Zuchao. Theoretical study and engineering implementation of super-low-specific-speed highspeed centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2000,36(4):30-33.非英文的参考文献采用非英文、英文双语形式作者简介(六号黑体):徐江(通信作者),男,1973年出生,博士研究生,主要研究方向为表面改性方面的研究。

相关文档
最新文档