自变量和函数
变量与函数-完整版课件

问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而 变化?当一个变量取定一个值时,另一个变量的值是唯一确定 的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
活动六:升华概念
问 我市白天乘坐出租车收费标准如下:乘坐里程不超
题 过3公里,一律收费8元;超过3公里时,超过3公里
探
的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x为整数),相对应的收费为y(元).
究
(1)请分别写出当0<x≤3和x>3时,表示y与x
的关系式,并直接写出当x=2和x=6时对应的y值;
活动四:辨析概念
问
题 问题4:下列曲线中,表示y不是x的函数是( ), 探 怎样改动这条曲线,才能使y是x的函数?
究
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
选B. 将第一象限或第三象限的曲线去掉等,只要满足“对 于x的每一个确定的值,y都有唯一确定的值与其对应”,都 能使y是x的函数.
活动五:运用概念
问
问题4:如何确定函数值?
作业布置
1.完成教材第75页练习第2题,习题19.1第1~5题及第10、11题.
2. 下列图形中的曲线不表示y是x的函数的是( )
y
y
y
y
O
x
O
x
O
x
O
x
A
B
八年级上册函数知识点总结

八年级上册函数知识点总结函数是数学中重要的基本概念之一。
学习函数不仅是数学学习的重点之一,而且在学习物理、化学、经济等科学中也具有重要作用。
函数的概念和应用是本章的重点内容。
下面就来一起回顾一下八年级上册主要的函数知识点。
一、函数的概念函数是一种对应关系,它把一个数集中的每个数都唯一地对应到另一个数集中的一个数上。
在函数中,我们通常用符号 y=f(x) 来表示,其中 x 称为自变量,y 称为因变量,f(x) 称为函数名。
二、函数的表示方法函数可以用图像、显式公式、隐式公式、数据表、文字语言等方式表示。
1. 图像表示法:函数图像是函数概念的直观反映,函数的图像通常在平面直角坐标系中表示,自变量通常在横轴上,因变量在纵轴上。
2. 显式公式:显式函数公式是指用已知的代数式或数式,直接表达出 y 与 x 之间的关系式。
例如:y=2x+3。
3. 隐式公式:隐式函数公式是指不用具体的公式把y 表达出来,而是通过给定的条件解出 y 与 x 之间的关系式。
例如:x^2+y^2=4。
4. 数据表:将函数的各种数值列成一张表格,其中自变量和函数值成对出现。
可以用表格的方式来表示函数。
5. 文字语言:对函数的描述可以用文字语言来表示,例如:函数 y=2x+3 表示一个自变量为 x 的函数,因变量 y 等于自变量 x 的两倍加上 3。
三、函数的性质和分类1. 单调性:函数单调增加表示随着自变量的增加,因变量也相应地增加;函数单调减少表示随着自变量的增加,因变量反而减少。
2. 奇偶性:当函数中自变量为 x 和 -x 时,如果有函数值f(x)=f(-x),那么函数具有偶对称性;如果有函数值 f(x)=-f(-x),那么函数具有奇对称性。
3. 周期性:如果一个函数 f(x+T)=f(x),其中 T>0,那么函数就具有周期性。
4. 分类:函数也可以根据函数名中的代数式或数式的特征分类。
例如,一次函数 f(x)=kx 、二次函数 f(x)=ax^2+bx+c、反比例函数f(x)=k/x、指数函数 f(x)=a^x、对数函数 f(x)=loga(x) 等。
函数值及自变量的取值范围

y
x 等腰三角形两底角相等。
( 3 ) 如 图 , 等 腰 直 角 △ ABC 的 直 角 边 长 与 正 方 形 MNPQ的边长均为10 cm,AC与MN在同一直线上, 开始时A点与M点重合,让△ABC向右运动,最后A 点与N点重合.试写出重叠部分面积ycm2与MA长度x cm之间的函数关系式.
我们可以由自变量结合函数本身求出因变量,此时这个因变量的值称为该自变量
函数值 对应的
;同时,我们也可以由因变量结合函数本身求出自变量的值!
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7;
(3)
y=
x
1
2
;
(4) y= x 2 .
解:(1)中x取任意实数,3x-1都有意义 .
(2)中x 取任意实数, 2x2+7都有意义 .
(3)中,x≠-2时,函数有意义.
(4)中x≥2时,函数有意义.
试一试: 求下列函数自变量的取值范围
⑴ y= x2 x 1 ⑵ y= 3 x
⑶ y= 1
⑷ y= x 2
x2
x ⑸ y=(x1)0 ⑹ y=
说明:四种基本类型的函数自变量取值范围
x 1 29
1 整式-----一切实数
2 分式-----分母不为零
偶次根式 (被开方数≥0) 3 根式-----
奇次根式 (被开方数为一切实数 ) 4 零指数-----底数≠0
练习:一
P33习题中第4题 P31练习第3题
练习二:P32第2题
2.分别写出下列各问题中的函数关系式及自变 量的取值范围:
函数值及自变量的取值范围
1、理解函数值的概念,并会求 某个自变量所对应的函数值;
概率密度函数和累积分布函数

03
累积分布函数
累积分布函数
一、定义 又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。其表达式为:
a
b S=a ×b
累积分布函数
二、累积分布函数图形
累积分布函数
三、累积分布函数的特点 1.有界性
2.单调性 如果x1<x2,则Fx(x1)< Fx(x2) 3.右连续性
概率密度函数
四、解读概率密度函数
当取值数量无限增大时,直方图外形无线趋近于概率分布图, 直方图和概率分布图相同点:1.外形相似;2.x轴为随机变量取值范围;3.研究自变量对应的应变量无意义。 直方图和概率密度函数不同点: 1.直方图x轴上数据数值可以不全覆盖;2.概率分布图x轴上数据为连续性数据,需全覆盖; 3.直方图图纵坐标为频数,当取值数量增大或分组组距越小时,纵轴覆盖数据范围越大; 4.概率分布图纵坐标分布图为密度,一般最大值不超过1。
概率密度函数
概率密度函数
概率只能小于等于1,而概率密度可以大于1,连续性随机变量在某点的概率为零,概率密度≠概率。 单纯的讲概率密度没有实际的意义,它能反映数据分布的一种趋势,必须有确定的有界区间为前提。可以把概 率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生 的概率,所有面积的和为1。 所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。 区间[a,b]上的概率可由概率密度函数在该区间上求积分得到。
概率密度函数和累积分布函数
CONTENTS
目 录
1 函数相关概念 2 概率密度函数
3 累积分布函数
01
函数相关概念
函数相关概念
一、函数三要素 1.自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 2.因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相 对应。 3.函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的 函数值。
自变量与函数学案

自变量与函数◆自变量与函数(因变量)的定义:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说________是自变量,________是________的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
(当自变量的值为a时,函数值为b)◆函数的解析式:像y=10x,s=40t这样,表示函数与自变量之间关系的式子,叫做__________________(函数关系式或函数表达式)。
知识运用:请指出之前三个问题中的自变量、函数(因变量)。
(1)“票房收入问题”中y=10x,自变量是________,________是________的函数。
(2)“行程问题”中s=40t,自变量是________,________是________的函数。
(3)“气温变化问题”中,自变量是________,________是________的函数。
◆函数的表示方法(3种):上述三个问题——“票房收入问题”、“行程问题”、“气温变化问题”分别运用了表示函数的三种方法,分别是________________、________________、________________。
例1-1 写出下列问题的函数关系式,并找出自变量和自变量的函数。
(1)某市的自来水价为5元/吨,记某户月用水量为x吨,月应交水费为y元。
(2)改变正方形的边长a,正方形的面积s随之改变。
(3)秀水村的耕地面积是5000m2,该村人均占有耕地面积y(单位:m2)随该村人数n的变化而变化。
(4)池中有水10升,每小时漏水0.5升,池中的水量v(单位:升)随时间t(单位:h)的变化而变化。
例1-2 一个三角形的底边为5,高h可以任意伸缩,三角形的面积s也随之发生了变化。
(1)面积随高h变化的关系式s =________;其中常量是________,变量是________;________是自变量,________是________的函数。
函数2

7
如何书写呢?
函数的关系式是等式.
那么函数解析式的书写有没有要求呢?
通常等式的右边是含有自变量的代数 式,左边的一个字母表示函数.
根据所给的条件,写出y与x的函数关系式:
矩形的周长是18cm,它的长是y cm,宽是x cm.
8
1.下列各式中,x是自变量,请判断y是不是x的
函数?若是,求出自变量的取值范围。
(1)y=2x+4 1 y ( 3) x 2
(2)y=-2x2
( 4) y
x 3
如果当x=a时, y=b,那么b叫做 当自变量的值为a 时的函数值
解:(1)当x=3时,y=2x+4=2×3+4=10 (2)当x=3时,y=-2x2=-2×32=-18 (3)当x=3时, y
1 1 1 x 2 32
小露牛角
• 完成P26,练习1
当堂检测
1、 求下列函数中自变量x的取值范围 (1)y= (2)
(3)y =-
1、(凉山·中考)函数 是( )
的自变量x的取值范围
A.x≥﹣2且x≠2
C.x≠±2
B.x>﹣2且x≠2
D.全体实数
x 2 0 【解析】 选B.由题意知, 2 解得 x 4 0
由于池中共有300 m3每时排25 m3全部排完 只需300÷25=12(h),故自变量T的取值范 围是0≤t≤12
(3)开始排水后的第5h末,游泳池中还有多 少水? 当t=5,代入上式得Q=-5×25+300=175(m3), 即第5h末池中还有水175 m3
(4)当游泳池中还剩150 m3已经排水多少时? 当Q=150时,由150=-25 t +300,得t =6, 即第6 h末池中有水150m3
八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版

D.y=60-0.12x,0≤x≤500
感悟新知
知2-练
4. 等腰三角形的周长是40 cm,底边长y(cm)是腰长 x(cm)的函数,此函数表达式和自变量取值范围正确 的是( C ) A.y=-2x+40(0<x<20) B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20) D.y=-0.5x+20(0<x<20)
x-2 0, 解:要使函数关系式有意义,需满足 x+3 0.
解得x≥2. 故自变量的取值范围是x≥2.
感悟新知
4. 【中考·赤峰】能使式子 2 x x 1 成立的
x的取值范围是( C )
A.x≥1
B.x≥2
C.1≤x≤2
D.x≤2
知1-练
感悟新知
5. 【中考·娄底】在函数y= x 中,自变量x的取 知1-练 x2
课时导入
探究新知 你坐过摩天轮吗?想一想,如果你坐在摩天轮上,
随着时间的变化,你离开地面的高度是如何变化的?
感悟新知
知1-讲
知识点 1 函数表达式的自变量的取值范围
1. 前面讲到的“欣欣报亭1月〜6月的每月纯收入S(元) 是月份T的函数”.其中自变量T可取哪些值?当T=1.5 或T=7时,原问题有意义吗?
为0; (3)当关系式是二次根式时,其自变量的取值范围须
使被开方数为非负实数;
知1-讲
感悟新知
归纳
知1-讲
(4)当关系式有零指数幂(或负整数指数幂)时,其自 变量应使相应的底数不为0;
(5)当关系式是实际问题的关系式时,其自变量必须 有实际意义;
(6)当关系式是复合形式时,则需列不等式组,使所 有式子同时有意义.
华师版八年级数学下册17.1 第1课时 变量与函数的概念及其表示方法教案与反思

17.1 变量与函数随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》车前学校陈道锋第1课时变量与函数的概念及其表示方法1.了解常量与变量的含义,能分清实例中的常量与变量;初步理解函数的概念,了解自变量与函数的意义;(重点)2.通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力;3.引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情.(难点)一、情境导入在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?二、合作探究探究点一:变量与常量写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式s=40t.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.解:(1)常量:6,变量:n,t;(2)常量:40,变量:s,t.方法总结:确定在该过程中哪些量是变化的,而哪些量又是不变的,数值发生变化的量称为变量,数值始终不变的量称之为常量.探究点二:函数的相关概念【类型一】识别函数下列关系式中,哪些y是x的函数,哪些不是?(1)y=x;(2)y=x2+z;(3)y2=x.解析:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变,其次看每一个x的值是否对应唯一确定的y值.解:(1)此关系式只有两个变量,且每一个x值对应唯一的一个y值,故y 是x的函数;(2)此关系式中有三个变量,因此y不是x的函数;(3)此关系式中虽然只有两个变量,但对于每一个确定的x值(x>0)对应的都有2个y值,如当x=4时,y=±2,故y不是x的函数.方法总结:由函数的定义可知在某个变化过程中,有两个变量x和y,对于每一个确定的x值,y值有且只有一个值与之对应.当x值取不同的值时,y的值可以相等,也可以不相等,但如果一个x的值对应着两个不的y值,那么y一定不是x的函数.根据这一点,我们可以判定一个关系式是否表示函数.【类型二】判断函数关系判断下列变化过程中,两变量存在函数关系的是( ) A.x,y是变量,y2=4x2B.某人的数学成绩和物理成绩C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间解析:选项中根据x(或y)每取一个值,y(或x)有两个值与其对应,故不存在函数关系,故此选项错误;选项B中数学成绩与物理成并无对应关系,故此选项错误;选项C中高不能确定,共有三个变量,故不存在函数关系,故此选项错误;选项D中速度一定的汽车所行驶的路程与时间,存在函数关系,故此选项正确.故选D.方法总结:判断函数关系时,应先看问题中是否仅有两个变量,再看一个变量是否随着另一个变的变化而变化,最后看定一个自变量的值,因变量的值是否有唯一的值与它对应.【类型三】确定实际问题中函数关系式以及自变量下列问题中哪些量是自变量?哪些量是因变量?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg的物体,它的原长为10cm,挂上重物后弹簧的长度y cm)随所挂重物的质量x(kg)的变化而变化,每挂1kg物体,弹簧伸长0.5cm;(2)设一长方体盒子高为30cm,底面是正方形,底面边长a(cm)改变时,这个长方体的体积V(cm3)也随之改变.解析:(1)根据弹簧的长度等于原长加上伸长的长度,列式即可;(2)根据长方体的体积公式列出函数关系式.解:(1)y=10+0.5x(0<x≤10),其中x是自变量,y是因变量;(2)V=30a2(a>0),其中a是自变量,V是因变量.方法总结:函数关系式中,通常等式右边的式子中的变量是自变量,等式左边的那个字母表示因变量.三、板书设计1.常量和变量的概念2.函数的概念3.函数关系式变量和函数是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.函数的概念是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来.【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自变量和函数
自变量和函数
自变量和函数是数学中非常重要的概念。
在数学中,我们经常需要对一些特定的变量进行研究和分析,这些变量被称为自变量。
而函数则是将一个或多个自变量映射到一个或多个输出值的规则或过程。
在本文中,我们将详细讨论自变量和函数的概念、性质以及如何构建和使用它们。
一、自变量
1.1 自变量的定义
在数学中,自变量指的是独立于其他因素而可以改变的变量。
通俗地说,就是我们想要探究的事物或者现象中可以改变的因素。
例如,在研究人体健康问题时,我们可能会考虑年龄、性别、饮食习惯等因素。
其中,年龄就是一个自变量,因为它可以被改变,并且可能会对人体健康产生影响。
1.2 自变量的分类
根据不同的研究对象和目标,自变量可以被分为多种类型。
下面列举
几种常见的分类方式:
(1)离散型和连续型:离散型自变量只能取有限个值或者可数个值;而连续型自变量则可以取任意实数值。
(2)定量型和定性型:定量型自变量可以用数字或者数量来描述,例如身高、体重等;而定性型自变量则只能用类别或者标签来描述,例
如性别、颜色等。
(3)因果型和相关型:因果型自变量是研究对象的原因或者影响因素,例如药物剂量、教育程度等;而相关型自变量则是与研究对象有关联
但不一定具有因果关系的因素,例如气温、天气等。
1.3 自变量的作用
自变量在数学中扮演着非常重要的角色。
它们不仅是构建函数的基础,还可以帮助我们理解和解释各种现象和问题。
在函数中,自变量通常被看作是输入值。
通过对输入值进行不同的操
作和计算,我们可以得到对应的输出值。
这样一来,我们就可以通过
改变自变量来探究函数的性质和特点。
同时,在研究各种现象和问题时,我们也经常需要对自变量进行分析。
通过观察不同自变量之间的关系和作用,我们可以更深入地了解问题
本身,并提出更有效的解决方案。
二、函数
2.1 函数的定义
在数学中,函数指的是将一个或多个自变量映射到一个或多个输出值
的规则或过程。
通俗地说,就是通过一些数学操作和计算,将输入值
转换为输出值的过程。
例如,我们可以定义一个函数 f(x) = x^2,在这个函数中,x 就是自变量,f(x) 则表示对应的输出值。
当我们将不同的 x 值带入函数中时,
就可以得到对应的 f(x) 值。
2.2 函数的性质
在数学中,函数具有以下几个基本性质:
(1)单值性:对于任意一个自变量,函数只能有唯一的输出值。
(2)定义域和值域:函数的定义域指可以输入到函数中的自变量集合;而函数的值域则指所有可能输出值组成的集合。
(3)奇偶性:如果对于任意一个自变量 x ,都有 f(-x) = f(x),则称该函数为偶函数;如果对于任意一个自变量 x ,都有 f(-x) = -f(x),则称该函数为奇函数。
(4)周期性:如果存在正常数 T ,使得对于任意一个自变量 x ,都有f(x+T) = f(x),则称该函数为周期函数。
2.3 函数图像
在数学中,我们经常使用图像来表示和分析各种数学对象和概念。
函
数也不例外,我们可以通过绘制函数图像来更直观地了解函数的性质
和特点。
例如,下面是一个简单的函数 f(x) = x^2 的图像:

在这个图像中,横轴表示自变量 x 的取值范围,纵轴则表示对应的输
出值 f(x)。
通过观察这个图像,我们可以看出该函数是一个开口向上的
抛物线,并且在 x=0 处取得最小值。
三、构建和使用函数
3.1 构建函数
构建函数通常需要遵循以下几个步骤:
(1)确定自变量和输出值的类型和范围;
(2)定义函数表达式或算法;
(3)确定定义域和值域;
(4)绘制函数图像并分析其性质。
例如,我们可以构建一个简单的三角函数 sin(x),其定义如下:(1)自变量为连续型定量型变量 x,取值范围为实数集合;
(2)输出值为连续型定量型变量 y = sin(x),取值范围为 [-1, 1] 之间的实数集合;
(3)定义域为实数集合 R,值域为闭区间 [-1, 1]。
3.2 使用函数
使用函数通常需要遵循以下几个步骤:
(1)确定自变量的取值范围和步长;
(2)将自变量带入函数表达式或算法中,计算对应的输出值;
(3)根据需要进行数据处理和分析。
例如,我们可以使用上面定义的三角函数 sin(x) 来计算不同自变量取值下的输出值,并绘制出对应的函数图像。
具体步骤如下:
(1)确定自变量 x 的取值范围为 [-π, π],步长为 0.1;
(2)将不同的 x 值带入 sin(x) 中,计算对应的 y 值;
(3)绘制出对应的函数图像,并分析其性质。
下面是一个简单的 Python 函数实现:
```python
import numpy as np
import matplotlib.pyplot as plt
def sin_function(start, end, step):
x = np.arange(start, end, step)
y = np.sin(x)
plt.plot(x, y)
plt.show()
sin_function(-np.pi, np.pi, 0.1)
```
通过调用该函数,我们可以得到如下图像:

从图像中可以看出,该三角函数是一个周期性函数,并且在 x=0 处取得最小值。
同时,它还具有奇偶性质,即 sin(-x) = -sin(x)。
四、总结
本文介绍了自变量和函数的概念、性质以及如何构建和使用它们。
自
变量是研究对象中可以改变的因素,而函数则是将一个或多个自变量映射到一个或多个输出值的规则或过程。
函数具有单值性、定义域和值域、奇偶性和周期性等基本性质,并可以通过绘制函数图像来更直观地了解其特点。
在实际应用中,我们可以通过构建和使用函数来研究各种现象和问题,并提出更有效的解决方案。