高中数学选修1-1 3.4 基本不等式 第1课时
2017年高中数学第一讲不等式和绝对值不等式1.1.2基本不等式课件新人教A版选修4_5

【归纳总结】 1.理解基本不等式的两个关键点 一是定理成立的条件是a,b都是正数;二是等号取得的 条件是当且仅当a=b时.
2(.1利 )各用项a或2 b各因a式b 为求正最.值的三个条件 (2)和或积为定值. (3)各项或各因式能取得相等的值.
3.定理1与定理2的不同点 定理1的适用范围是a,b∈R;定理2的适用范围是 a>0,b>0.
ab 等式 1 2 2 1 2 , 构造关于 ab 的不等式.
ab ab
2.如何利用“x+2y+xy=30”这个条件? 提示:由x+2y+xy=30,得y= 30 x .
x2
【解析】1.选C.因为 1 2 ab ,所以a>0,b>0,由 ab
ab 1 2 2 1 2 =2
方法一:由于2x+3y≥ 2 2x 3y 2 6ห้องสมุดไป่ตู้y, 所以2 6x≤y18,得xy≤ , 27
2
即S≤ 27,当且仅当2x=3y时,等号成立.
由
2x 2x
23y 3y,
18,
解得
x y
4.5, 3.
故每间虎笼长为4.5m,宽为3m时,可使面积最大.
方法二:由2x+3y=18,得x=93- y.
小,最小费用为2200元.
【补偿训练】动物园要围成相同面积的长方形虎笼四 间.一面可利用原有的墙,其他各面(不包括上盖和地面) 用钢筋网围成.
(1)现有36m长的材料,每间虎笼的长、宽各设计为多少 时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24m2,则每间虎笼的长、宽各 设计为多少时,可使围成四间虎笼的钢筋网总长最小?
高丽-基本不等式【2018年第9届全国高中数学优质课比赛教学设计、课件】

《基本不等式》教学设计青海省西宁市第五中学高丽一.教学内容解析基本不等式是选自人教A版数学必修5第三章第4节第1课时,是在学习了“不等关系与不等式”,“一元二次不等式及其解法”和“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究,是不等式的延续与拓展,为后面选修中不等式的学习打下了坚实的基础,在不等式的证明和求最值过程中有着广泛的应用。
本节课内容属于概念性知识,课程标准对它的要求是:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题。
因此,根据以上课标和学生实际我确定本节课的教学重点是:探索基本不等式的形成与正明,会利用基本不等式求解简单的最值问题。
在本节课中,学生通过观察,试验等方法抽象概括,归纳出基本不等式,其中渗透了数形结合的思想。
二.教学目标设置本章的课程目标是:不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容,也是数学本质的体现。
根据本节课内容特点和以上分析,我确定了以下教学目标:知识与技能目标:了解基本不等式的几何背景和证明方法,理解基本不等式的几何意义,会利用基本不等式求解简单的最大(小)值问题;过程与方法目标:了解基本不等式的形成与证明过程,初步认识分析法证明问题的思路,体会利用基本不等式求解最值的方法;情感态度与价值观目标:通过实际背景抽象推导出基本不等式,又利用它解决实际生活中的问题,体现了数学来源于生活,又应用于生活;同时培养学生分析问题,解决问题的能力,充分激发学生学习数学的兴趣和勇于探索的精神。
基本不等式可以与函数,三角函数,数列等知识相结合,在求解取值范围和最值等问题时有着广泛的应用,时培养学生思维品质的重要途径。
三.学生学情分析在此之前,学生已经学习了完全平方差公式,圆,三角形以及比较法证明不等式等相关知识,具备了初步的观察能力,分析能力;但由于数学基础相对比较薄弱,还缺乏一定的探究归纳能力以及分析问题和解决问题的能力。
高中数学选修内容复习讲义(选修1-1)

第1讲命题及其关系、充分条件与必要条件1.了解“p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫真命题,的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;②两个命题互为逆命题或互为否命题,它们的真假性[思考探究]一个命题的“否命题”与“否定”是同一个命题吗?提示:不是.命题的否命题既否定命题的条件又否定命题的结论,而命题的否定仅是否定命题的结论.3.充分条件与必要条件(1)如果p⇒q,则p是q的,q是p的;(2)如果p⇒q,q⇒p,则p是q的.1.命题真假的判定对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.2.四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假.[特别警示]当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动.※ 分别写出下列命题的逆命题、否命题、逆否命题、命题的否定,并判断它们的真假: (1)若q ≤1,则方程x 2+2x +q =0有实根;(2)若x 、y 都是奇数,则x +y 是偶数;(3)若xy =0,则x =0或y =0;(4)若x 2+y 2=0,则x 、y 全为0.1.利用定义判断(1)若p ⇒q ,则p 是q 的充分条件; (2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q p ,则p 是q 的充分不必要条件; (5)若p q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p q 且q p ,则p 是q 的既不充分也不必要条件. 2.利用集合判断记条件p 、q 对应的集合分别为A 、B ,则: 若A ⊆B ,则p 是q 的充分条件; 若A B ,则p 是q 的充分不必要条件; 若A ⊇B ,则p 是q 的必要条件; 若A B ,则p 是q 的必要不充分条件; 若A =B ,则p 是q 的充要条件;若A ⊈ B ,且A ⊉ B ,则p 是q 的既不充分也不必要条件.[特别警示] 从集合的角度理解,小范围可以推出大范围,大范围不能推出小范围. ※ 指出下列各组命题中,p 是q 的什么条件?(1) p :a +b =2,q :直线x +y =0与圆(x -a )2+(y -b )2=2相切; (2) p :|x |=x ,q :x 2+x ≥0;(3) 设l ,m 均为直线,α为平面,其中l ⊄α,m ⊂α,p :l ∥α,q :l ∥m ; (4) 设α∈)2,2(ππ-,β∈)2,2(ππ-,p :α<β,q :tan α<tan β.1.条件已知证明结论成立是充分性.结论已知推出条件成立是必要性;2.证明分为两个环节,一是充分性;二是必要性.证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明;3.证明时易出现必要性与充分性混淆的情形,这就要分清哪是条件,哪是结论.※求证:关于x的方程x2 +mx +1=0有两个负实根的充要条件是m≥2.若关于x的方程x2 +mx +1=0有两个正实根,求m的取值范围?第2讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确地对含有一个量词的命题进行否定.1.命题p∧p2.全称量词3.1.判断含有逻辑联结词的命题真假的关键是对逻辑联结词“或”、“且”、“非”含义的理解. 数学中的逻辑联结词“或”与日常生活中的“或”意义不同,日常生活中的“或”带有不能同时具备之意.数学中的逻辑联结词“且”与日常生活中的“且”意义基本一致,表示而且的意思. 数学中的逻辑联结词“非”与日常生活中的“非”意义基本一致,表示否定的意思.2.解决该类问题基本步骤为:(1)弄清构成它的命题p 、q 的真假; (2)弄清它的结构形式;(3)根据真值表判断构成新命题的真假.※ 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. 其中正确的是 ( )A. ②③B. ①②④C. ①③④D. ①②③④1.要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证p (x )成立.2.要判断一个全称命题是假命题,只要能举出集合M 中的一个x =x 0,使p (x 0)不成立即可.3.要判断一个特称命题是真命题,只要在限定的集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.※ 判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假. (1)有一个实数α,sin 2α+cos 2α≠1;(2)任何一条直线都存在斜率;(3)所有的实数a ,b ,方程ax +b =0有唯一解; (4)存在实数x ,使得2112=+-x x 。
高中数学目录(选修)

必修五第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式选修1-1 文科第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线第三章导数及其应用3.1 变化率与导数 3.2 导数的计算3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图选修2-1理科第一章常用逻辑用语1.1 命题及其关系 1.2 充分条件与必要条件1.3 简单的逻辑联结词 1.4 全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。
基本不等式教学设计

基本不等式教学设计2a b +≤”教学设计 一、教学内容解析本节内容选自《普通高中课程标准实验教科书数学必修(5)》(人教A 版)第三章第四节第一课时。
基本不等式是关于不等式的证明、求解最值问题的重要工具,在高中数学知识体系中占有重要的地位。
作为本章最后一节内容,基本不等式承前启后,即为解决最值问题提供了新的依据和方法,也为后续内容如“直接证明与间接证明”、“均值不等式(推广)”等知识的学习作好知识储备。
本节课的学习任务主要是探索几何背景赵爽弦图(勾股圆方图)中所蕴含的不等关系,通过对重要不等式(222a b ab +≥,当且仅当a b =时取“=”2a b +且a b R +∈、,当且仅当a b =时取“=”)的初步认识,在此基础之上引导学生多角度探索基本不等式的证明方法及几何意义,并在解决简单的最值问题过程中体会基本不等式的重要作用。
教学重点:基本不等式的探究过程及多角度探索基本不等式的证明方法。
突出重点的手段:教师在教学过程中要善于捕捉学生情感的兴奋点,激发他们的学习兴趣,鼓励学生大胆猜想,积极探索,以积极的评价,促使他们知难而进。
另外,以数形结合为主导思想选择知识的切入点,从学生已有的认知水平和知识基础入手,在以学生为主体的前提下教师给以适当的引导。
二、教学目标设置《课程标准》对本节内容的要求是:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。
依据《课程标准》并结合本节教学内容及学情,将本节课的教学目标确定为:1.结合赵爽弦图探究概括基本不等式,直观理解基本不等式的几何背景,体会数形结合的思想方法;2.在多角度探究基本不等式的证明方法的过程中,培养学生的探索精神和逻辑推理能力;3.通过解决简单的最大(小)值问题,深化对基本不等式的理解,感受基本不等式在解决实际问题中的作用。
三、学生学情分析学生比较熟悉勾股定理、圆的简单性质、相似三角形的性质等知识,高中阶段已经学习了基本初等函数及其性质、不等关系与不等式的性质,学生对不等式有了初步的了解和应用,对数形结合、转化与化归等数学思想方法有了一定的体会,这为本节课奠定了思想基础。
2020版高考数学不等式选讲第1讲绝对值不等式课件

含绝对值不等式解法的常用方法
1.(2018· 高考全国卷Ⅱ)设函数 f(x)=5-|x+a|-|x-2|. (1)当 a=1 时,求不等式 f(x)≥0 的解集; (2)若 f(x)≤1,求 a 的取值范围.
解:(1)当 a=1 时, 2x+4,x≤-1, f(x)=2,-1<x≤2, -2x+6,x>2. 可得 f(x)≥0 的解集为{x|-2≤x≤3}. (2)f(x)≤1 等价于|x+a|+|x-2|≥4. 而|x+a|+|x-2|≥|a+2|,且当 x=2 时等号成立.故 f(x)≤1 等 价于|a+2|≥4. 由|a+2|≥4 可得 a≤-6 或 a≥2.所以 a 的取值范围是 (-∞,-6]∪[2,+∞).
2.已知函数 f(x)=|x+1|-|2x-3|. (1)画出 y=f(x)的图象; (2)求不等式|f(x)|>1 的解集.
x-4,x≤-1, 3x-2,-1<x≤3, 2 解:(1)f(x)= 3 -x+4,x> , 2 y=f(x)的图象如图所示.
(2)由 f(x)的表达式及图象知, 当 f(x)=1 时, 可得 x=1 或 x=3; 1 当 f(x)=-1 时,可得 x= 或 x=5. 3 故 f(x) > 1 的 解 集 为 {x|1 < x < 3} ; f(x) < - 1 的 解 集 为
1 xx< 或x>5. 3
所以|f(x)|>1
1 的解集为xx<3或1<x<3或x>5.
绝对值不等式性质的应用(师生共研)
3 1 设不等式|x-2|<a(a∈N )的解集为 A,且 ∈A, ∉A. 2 2
*
(1)求 a 的值; (2)求函数 f(x)=|x+a|+|x-2|的最小值.
教学设计 不等式的基本性质第一课时

课 题: 不等式的基本性质三维目标:1.知识与技能:掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。
2.过程与方法:通过实例探究不等式基本性质应用3.情感态度与价值观:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 教学重点:探索不等式的基本性质,并能灵活地掌握和应用 教学难点:能根据不等式的基本性质进行简单应用教学设计:一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为ma mb ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质

探究四
探究一不等式的基本性质
对于考查不等式的基本性质的选择题,解答时,一是利用不等式的相关
性质,其中,特别要注意不等号变号的影响因素,如数乘、取倒数、开方、平
方等;二是对所含字母取特殊值,结合排除法去选正确的选项,这种方法一般
要注意选取的值应具有某个方面的代表性,如选取 0、正数、负数等.
J 基础知识 Z 重点难点
几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要
根据本题的四个选项来进行判断.选项 A,还需有 ab>0 这个前提条件;选项
B,当 a,b 都为负数时不成立,或一正一负时可能也不成立,如 2>-3,但 22>(-3)2
1
a
b
不正确;选项 C,c2+1>0,由 a>b 就可知c2+1 > c2 +1,故正确;选项 D,当 c=0 时不
A.P≥Q
B.P>Q
C.P≤Q
1
−
a+1+ a
解析:P-Q=( a + 1 − a)-( a − a-1)=
a-1- a+1
=
D.P<Q
.
( a+1+ a)( a+ a-1)
∵a≥1,∴ a-1 < a + 1,即 a-1 − a + 1<0.
又∵ a + 1 + a>0, a + a-1>0,
a-1- a+1
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.在使用
不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.4基本不等式:√ab≤a+b
(2课时)
几何平均数.本节定理还可叙述为:两个正数的几何平均数小于等于它们的算术平均数。
探究二 、基本不等式的几何意义
1.研究代数式 的几何意义,探究其几何背景(“半弦不
大于半径”)。
通过几何画板动画演示,体会该不等式等号取到的条件
“a=b ”。
四、应用基本不等式
例1.求函数f(x)=x+1/x+1(x>-1)的最小值
例2. 若 0<x< , 求函数 y=x(1-2x) 的最大值.
例3:面积为36的矩形中,哪个矩形周长最小?
周长为36的矩形中,哪个矩形面积最大?
练习
x >0, y >0, xy =24, 求4x +6y 的最小值,并说明此时x ,y
的值.
2 已知a +b =4,求y =2a +2b
的最小值
学生通过等比数列
列等式得到G 满足
的等式,并通过等
式探究a,b 满足的
条件。
加深对等比
中项的理解。
课堂小结 1.基本不等式: a>0,b>0,√ab ≤(a+b)/2,当且仅当 a=b 时等号成立。
2.基本不等式求证过程中蕴含的数学
思想方法,如数形结合(数形统一). 3.品味数学之美,感悟数学文化.
师生一起小结 作业布置
1.书面作业:
课本P101页习题3.4 A 组 1、导学案习题 2. 拓展作业:
阅读导学案数学文化材料,感受古人的智慧体会对数学的执着追求。
思考是否还有其他证明基本不等式的方法和几何解析?
【板书设计】
§3.4基本不等式:√ab ≤
a+b 2
(第一课时)
一、重要不等式 例1
例2
1
2。