高考复习易做易错题精选解析几何

合集下载

高考复习资料-数学解析几何错题精选

高考复习资料-数学解析几何错题精选

高考复习易做易错题优选分析几何1. 若直线 yk(x 1) 与抛物线 yx 2 4x 3 的两个交点都在第二象,则k 的取值范围是______________. 解答: (-3, 0)易错原由:找不到确当的解答方法。

此题最好用数形联合法。

2. 若双曲线x2y 21 的离心率为5,则两条渐近线的方程为a 2b 24XY 0 BX Y CX Y 0 DX Y 0A16160 344 399解答: C易错原由:审题不仔细,混杂双曲线标准方程中的 a 和题目中方程的a 的意义。

3. 椭圆的短轴长为2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离是85B4C8 D4 3A5 335答: D 53 解易错原由:短轴长误以为是b4.过定点( 1, 2)作两直线与圆 x 2y 2 kx 2 yk 2150 相切,则 k 的取值范围是A k>2B -3<k<2C k<-3 或 k>2 D以上皆不对解答: D易错原由:忽视题中方程一定是圆的方程,有些学生不考虑D 2E 24F 05.设双曲线x 2 y 2 1(a b 0) 的半焦距为 C ,直线 L 过 (a,0),(0, b) 两点,已知原点到a2b2直线 L 的距离为3C ,则双曲线的离心率为4A2B2或2 3C2 D2 333解答: D易错原由:忽视条件a b 0 对离心率范围的限制。

6.已知二面角l的平面角为,PA, PB , A , B 为垂足,且 PA=4, PB=5,A B到二面角的棱 l 的距离为别为 x, y,当变化时,点 ( x, y) 的轨迹是以下图形中设 、的A B C D解答: D易错原由:只注意找寻x, y 的关系式,而未考虑实质问题中x, y 的范围。

7.已知点 P 是抛物线y22x 上的动点,点P 在 y 轴上的射影为M,点 A的8.若曲线y x2 4 与直线y k ( x2) +3有两个不一样的公共点,则实数k的取值范围是A0 k 1 B0 k 3C 1 k3D 1 k 0 44解答: C易错原由:将曲线y x2 4 转变为x2y24时不考虑纵坐标的范围;此外没有看清过点 (2,-3)且与渐近线 y x 平行的直线与双曲线的地点关系。

详解十五道高中立体几何典型易错题

详解十五道高中立体几何典型易错题

例1 设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A .1B .2C .3D .4分析:命题①是假命题.因为底面是矩形的直平行六面体才是长方体.底面是矩形,侧棱不垂直于底面,这样的四棱柱仍是斜平行六面体;命题②是假命题.底面是菱形,底面边长与棱长相等的直四棱柱不是正方体; 命题③是假命题.因为有两条侧棱垂直于义面一边不能推出侧棱与底面垂直. 命题④是真命题,如图所示,平行六面体1111-D C B A ABCD 中所有对角线相等,对角面11BDD B 是平行四边形,对角线D B BD 11=,所以四边形11BDD B 是矩形,即BD BB ⊥1,同理四边形11ACC A 是矩形,所以AC AA ⊥1,由11//BB AA 知⊥1BB 底面ABCD ,即该平行六面体是直平行六面体.故选A .说明:解这类选择题的关键在于理清各种棱柱之间的联系与区别,要紧扣底面形状及侧棱与底面的位置关系来解题.下面我们列表来说明平行四边形与平行六面体的性质的“类比”,由此,我们可以发现立体几何与平面几何许多知识是可以进行类比的.见表表例2 如图,正四棱柱1111-D C B A ABCD 中,对角线81=BD ,1BD 与侧面C C BB 11所成角为 30,求:(1)1BD 与底面ABCD 所成角;(2)异面直线1BD 与AD 所成角;(3)正四棱柱的全面积.分析:正四棱柱是一种特殊的长方体,它的两底面ABCD 、1111D C B A 是正方形,长方体中有比较多的线面垂直关系,而线面垂直关系往往是解决立体几何问题的关键条件.题中无论是已知线面成角,还是求线面成角,都要把它们转化为具体的角,落实线面成角,先要找线面垂直关系.异面直线1BD 与AD 所成角通过11//D A AD ,落实为具体的B D A 11∠.正四棱柱各个面都是矩形,求面积只要用矩形面积公式. 解:(1)在正四棱柱C A 1中,∵⊥11C D 面C C BB 11,∴11BC D ∠是B D 1与侧面C C BB 11所成角,即 3011=∠BC D .∵ 81=BD ,∴ 411=C D ,341=BC ,∵ 1111D C B A 是正方形,∴41111==C D C B ,⊥D D 1平面ABCD ,∴ BD D 1∠是B D 1与底面ABCD 所成角,在Rt △DB D 1中,2411==D B BD ,81=BD , ∴22cos 11==∠BD BD BD D ,∴ 451=∠BD D , 即1BD 与底面ABCD 所成角为 45.(2)∵11//D A AD ,∴B D A 11∠是1BD 与AD 所成角(或补角).∵⊥11A D 平面B B AA 11,∴ B A A D 111⊥,Rt △B D A 11中,411=D A ,81=BD , ∴21cos 11=∠B D A ,∴ 6011=∠B D A ,即异面直线AD 与1BD 所成角为 60.(3)Rt △11C BB 中,411=C B ,341=BC .∴ 241=BB ,∴ ()()12232244244442+=⨯+⨯+⨯=全S .说明:长方体是一种特殊的棱柱,充分感受其中丰富的线面垂直、线线垂直关系是灵活解题的关键,各种垂直关系是解决立体几何中证明和计算的重要条件.典型例题三例3 如图,已知长方体1111-D C B A ABCD 中,棱长51=AA ,12=AB ,求直线11C B 与平面11BCD A 的距离.分析:求直线到平面的距离,首先要找直线上的点到平面的垂线,而找平面的垂线的一个很有用的思路是,找平面内一条直线与某一平面垂直,这里我们不难看出,长方体中有⊥CB 平面11BB AA ,这样,只要作B A H B 11⊥,又有CB H B ⊥1,得到⊥H B 1平面11A BC D . 解:长方体1AC 中,有⊥BC 平面11BB AA ,过1B 作B A H B 11⊥于H ,又有H B BC1⊥,∴ ⊥H B 1平11A BCD ,即H B 1是11C B 到平面11BCD A 的距离.在Rt △11A BB 中,由已知可得,51=BB ,1211=B A ,∴ 131=B A ,∴13601=H B . 即H B 1是11C B 到平面11BCD A 的距离为1360. 说明:长方体中有棱与面的线面垂直关系,正方体除此之外,还有对角线与对角面的线面垂直关系,比如,求正方体1AC 中,11C A 与面BD C 1所成角.这里,要找11C A 与BD C 1所成角,必须找1A 到平面BD C 1的垂线,因为⊥BD 面C C AA 11,在对角面1AC 内,过1A 作11OC H A ⊥于H ,则H A BD 1⊥,所以⊥H A 1面BD C 1,可以得到O C A 11∠为11C A 与面BD C 1所成角,在对角面C C AA 11中可计算2arctan 11=∠O C A .典型例题四例4 如图,已知直三棱柱1111-D C B A ABCD 中,AC AB =,F 为侧棱1BB 上一点,a BC BF 2==,a FB =1.(1)若D 为BC 的中点,E 为AD 上不同于A 、D 的任一点,求证:1FC EF ⊥;(2)若a B A 311=,求1FC 与平面B B AA 11所成角的大小. 分析:E 点在AD 上变化,EF 为平面ADF 内变化的一组相交直线(都过定点F ),要证明F C 1与EF 垂直,必有⊥F C 1平面ADF .求1FC 与平面11A ABB 所成角的关键是找1C 到面11A ABB 的垂线,从而落实线面成角,直三棱柱中,侧棱⊥1AA 平面111C B A 给找点1C 到面1AB 的垂线创造了方便的条件.解:(1)∵AC AB =,且D 是BC 的中点,∴BC AD ⊥,又∵ 直三棱柱中⊥1BB 平面ABC ,∴1BB AD ⊥,∴ ⊥AD 平面C C BB 11,∴F C AD 1⊥.在矩形C C BB 11中,a BC BF 2==,a F B =1, ∴a DF 5=,a FC 51=,a DC 101=,∴21212DC FC DF =+,∴ 901=∠DFC ,即DF FC ⊥1,∴⊥1FC 平面ADF ,∴EF FC ⊥1.(2)过1C 作111B A H C ⊥于H ,∵⊥1AA 平面C B A 11,∴H C AA 11⊥,∴⊥H C 1平面B B AA 11,连接FH ,FH C 1∠是F C 1与平面1AB 所成角.在等腰△ABC 中,a AC AB 3==,a BC 2=,∴a AD 22=,在等腰△111C B A 中,由面积相等可得,a a H C 22231⨯=⨯, ∴a H C 3241=,又a F C 51=, 在Rt △HF C 1中,15104sin 1=∠FH C , ∴15104arcsin1=∠FH C , 即F C 1与平面1AB 所成角为15104arcsin . 说明:由于点E 在AD 上变化,给思考增加了难度,但仔细思考,它又提供了解题的突破口,使得线线垂直成为了1CF 与一组直线垂直.本题的证明还有一个可行的思路,虽然E 在AD 上变化,但是由于⊥AD 平面C C BB 11,所以E 点在平面1BC 上的射影是定点D ,EF 在平面1BC 上射影为定直线DF ,使用三垂线定理,可由DF F C ⊥1,直接证明EF F C ⊥1.三垂线定理是转化空间线线垂直为平面内线线垂直的一个有力工具,再看一个例子,正方体1AC 中,O 是底面ABCD的中心,E 是11B A 上动点,F 是1DD 中点,求AF 与OE 所成角.我们取AD 中点G ,虽然E 点变化,但OE 在面1AD 上射影为定直线G A 1,在正方形D D AA 11中,易证AF B A ⊥1,所以,OE AF ⊥,即AF 与OE 所成角为 90.典型例题五例5 如图,正三棱柱111-C B A ABC 的底面边长为4,侧棱长为a ,过BC的截面与底面成 30的二面角,分别就(1)3=a ;(2)1=a 计算截面的面积.分析:要求出截面的面积,首先必须确定截面的形状,截面与底面成 30的二面角,如果a 较大,此时截面是三角形;但是如果a 较小,此时截面与侧棱不交,而与上底面相交,截面为梯形.解:截面与侧棱1AA 所在直线交于D 点,取BC 中点E ,连AE 、DE ,△ABC 是等边三角形,∴BC AE ⊥,∵⊥1AA 平面ABC ,∴BC DE ⊥.∴DEA ∠为截面与底面所成二面角的平面角,∴ 30=∠DEA .∵等边△ABC 边长为4,∴32=AE .在Rt △DAE 中,2tan =∠=DEA AE DA .(1)当3=a 时,D 点在侧棱1AA 上,截面为△BCD ,在Rt △DAE 中,422=+=AE AD DE , ∴8442121=⨯⨯=⋅=∆DE BC S BCD . (2)当1=a 时,D 点在1AA 延长线上,截面为梯形BCMN ,∵2=AD ,11=AA ∴MN 是△DBC 的中位线, ∴684343=⨯==∆DBC BCMN S S 梯形. 说明:涉及多面体的截面问题,都要经过先确定截面形状,再解决问题的过程,本例通过改变侧棱长而改变了截面形状,我们也可以通过确定侧棱长,改变截面与底面成角而改变截面形状.典型例题六例6 斜三棱柱111-C B A ABC 中,平面⊥C C AA 11底面ABC ,2=BC ,32=AC ,90=∠ABC ,C A AA 11⊥,且C A AA 11=.(1)求1AA 与平面ABC 所成角;(2)求平面11ABB A 与平面ABC 所成二面角的大小;(3)求侧棱1BB 到侧面C C AA 11的距离.分析:按照一般思路,首先转化条件中的面面垂直关系,由C A A A 11=,取AC 的中点D ,连D A 1,则有AC D A ⊥1,从而有⊥D A 1平面ABC ,在此基础上,A A 1与底面所成角以及平面11ABB A 与底面所成二面角都能方便地找到,同时⊥D A 1底面ABC 也为寻找B 点到面C C AA 11的垂线创造了条件.解:(1)取AC 的中点D ,连接D A 1,∵C A A A 11=,∴AC D A ⊥1,∵平面⊥C C AA 11底面ABC ,∴⊥D A 1底面ABC ,∴AC A 1∠为A A 1与底面ABC 所成角.∵C A AA 11=且C A AA 11⊥,∴ 451=∠AC A .(2)取AB 中点E ,则BC DE //,∵ 90=∠ABC ,∴AB CB ⊥,∴AB DE ⊥.连E A 1,∵⊥D A 1底面ABC ,∴E A 1在平面ABC 上射影为DE ,∴AB E A ⊥1,∴ED A 1∠为侧面B A 1与底面ABC 所成二面角的平面角. 在等腰Rt △AC A 1中,32=AC ,∴31=D A .在Rt △ABC 中,2=BC ,∴1=DE .在Rt △DE A 1中,3tan 11==∠DED A ED A , ∴ 601=∠ED A ,即侧面B B AA 11与底面ABC 所成二面角的大小为 60.(3)过B 作AC BH ⊥于H ,∵⊥D A 1底面ABC ,∴BH D A ⊥1,∴⊥BH 平面C C AA 11,在Rt △ABC 中,32=AC ,2=BC ,∴22=AB , ∴632=⋅=AD BC AB BH ,即1BB 到平面C C AA 11的距离为632. 说明:简单的多面体是研究空间线面关系的载体,而线面垂直关系又是各种关系中最重要的关系,立体几何中的证明与计算往往都与线面垂直发生联系,所以在几何体中发现并使用线面垂直关系往往是解题的关键.典型例题七例7 斜三棱柱111-C B A ABC 的底面△ABC 是直角三角形, 90=∠C ,cm 2=BC ,1B 在底面上的射影D 恰好是BC 的中点,侧棱与底面成 60角,侧面B B AA 11与侧面C C BB 11所成角为 30,求斜棱柱的侧面积与体积.分析:1B 在底面ABC 上射影D 为BC 中点,提供了线面垂直⊥D B 1平面ABC ,另外又有 90=∠C ,即BC AC ⊥,又可以得到⊥AC 平面C C BB 11,利用这两个线面垂直关系,可以方便地找到条件中的线面角以及二面角的平面角.解:∵1B 在底面ABC 上,射影D 为BC 中点.∴⊥D B 1平面ABC .∴BD B 1∠为侧棱B B 1与底面ABC 所成角,即 601=∠BD B ,∵ 90=∠C ,即BC AC ⊥,又D B AC 1⊥,∴⊥AC 平面C C BB 11,过A 作B B AE 1⊥于E ,连接CE ,则B B CE 1⊥. ∴AEC ∠是侧面B B AA 11与侧面B B CC 11所成二面角的平面角,∴ 30=∠AEC ,在直角△CEB 中,∵ 60=∠CEB ,2=BC ,∴3=CE ,在直角△ACE 中,∵ 30=∠CEA ,3=CE ,∴130tan == EC AC ,22==AC AE ,在直角△DB B 1中, 601=∠BD B ,121==BC BD , ∴221==BD BB ,360sin 11== BB D B .∴侧面积为111AA AC BB AE BB CE S ⋅+⋅+⋅=侧()()()2cm 3322332123+=⨯+=⨯++=. 体积为311cm 33212121=⨯⨯⨯=⋅⋅=⋅=∆D B BC AC D B S V ABC .说明:本例中△ACE 是斜棱柱的一个截面,而且有侧棱与该截面垂直,这个截面称为斜棱柱的直截面,我们可以用这个截面把斜棱柱分成两部分,并且用这两部分拼凑在一个以该截面为底面的直棱柱,斜棱柱的侧面积等于该截面周长乘以侧棱长,体积为该截面面积乘以侧棱长.典型例题八例8 如图所示,在平行六面体1111D C B A ABCD -中,已知a AD AB 2==,a AA =1,又︒=∠=∠=∠6011AB A DAB AD A .(1)求证:1AA ⊥截面C D B 11;(2)求对角面11ACC A 的面积.分析:(1)由题设易证111D B AA ⊥,再只需证C B AA 11⊥,即证11CD CC ⊥.而由对称性知,若C B CC 11⊥,则11CD CC ⊥,故不必证111D B AA ⊥.(2)关键在于求对角面的高.证明:(1)∵a AD C B 211==,a A A CC ==11,︒=∠=∠60111AD A C C B ,∴在C C B 11∆中,由余弦定理,得2213a C B =.再由勾股定理的逆定理,得C B C C 11⊥.同理可证:11CD C C ⊥.∴C C 1⊥平面C D B 11.又A A C C 11//,∴1AA ⊥平面C D B 11.解:(2)∵AD AB =,∴平行四边形ABCD 为菱形.AC 为BAD ∠的平分线. 作O A 1∴⊥平面AC 于O ,由AB A AD A 11∠=∠,知AC O ∈.作AB M A ⊥1于M ,连OM ,则AB OM ⊥. 在AM A Rt 1∆中,a A A AM 2160cos 1=︒⋅=, 在AOM Rt ∆中,330sec a AM AO =︒⋅=.在AO A Rt 1∆中,a AO A A O A 322211=-=. 又在ABC ∆中,由余弦定理,得a AC 32=. ∴212211a O A AC S ACC A =⋅=.说明:本题解答中用到了教材习题中的一个结论——经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.另外,还有一个值得注意的结论就是:如果一个角所在平面外一点到角的两边所在直线的距离相等,那么这一点在平面上的射影在这个角的平分线所在的直线上.典型例题九例9 如图所示,已知:直三棱柱111C B A ABC -中,︒=∠90ACB ,︒=∠30BAC ,1=BC ,61=AA ,M 是1CC 的中点.求证:M A AB 11⊥.分析:根据条件,正三棱柱形状和大小及M 点的位置都是确定的,故可通过计算求出M A 1与1AB 两异面直线所成的角.因为C C C B 111⊥,1111C A C B ⊥,所以11C B ⊥侧面C C AA 11.1AC 是斜线1AB 在平面C C AA 11的射影,设1AC 与M A 1的交点为D ,只需证得︒=∠901MDC 即可.证明:∵C C C B 111⊥,1111C A C B ⊥,C C 1与11C A 交于点1C ,∴11C B ⊥面C C AA 11.∵M 为1CC 的中点,∴262111==C C MC . 在111B C A Rt ∆中,︒=∠30111C A B ,∴221111==C B B A ,311=C A .在M C A Rt 11∆中, ()22332622211211=+⎪⎪⎭⎫ ⎝⎛=+=C A MC M A . 在11C AA Rt ∆中,33622211211=+=+=C A AA AC . 又1MDC ∆∽DA A 1∆且21=MC AA ∶, ∴22122331311=⨯==M A MD , 13313111=⨯==AC D C . 在1MDC ∆中,23122122212=+⎪⎭⎫ ⎝⎛=+D C MD , 2326221=⎪⎪⎭⎫ ⎝⎛=M C , ∴︒=∠901DM C ,11AC M A ⊥,∴11AB M A ⊥.说明:证明两直线垂直,应用三垂线定理或逆定理是重要方法之一.证明过程中的有关计算要求快捷准确,不可忽视.本题证明两异面直线垂直,也可用异面直线所成的角,在侧面C C AA 11的一侧或上方一个与之全等的矩形,平移M A 1或1AB ,确定两异面直线所成的角,然后在有关三角形中通过计算可获得证明.典型例题十例10 长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长.分析:要求长方体对角线长,只要求长方体的一个顶点上的三条棱的长即可. 解:设此长方体的长、宽、高分别为x 、y 、z ,对角线长为l ,则由题意得:⎩⎨⎧=++=++②①24)(411)(2z y x zx yz xy由②得:6=++z y x ,从而由长方体对角线性质得:5116)(2)(22222=-=++-++=++=zx yz xy z y x z y x l .∴长方体一条对角线长为5.说明:(1)本题考查长方体的有关概念和计算,以及代数式的恒等变形能力.在求解过程中,并不需要把x 、y 、z 单个都求出来,而要由方程组的①②从整体上导出222z y x ++,这需要同学们掌握一些代数变形的技巧,需要有灵活性.(2)本题采用了整体性思维的处理方法,所谓整体性思维就是在探究数学问题时,应研究问题的整体形式,整体结构或对问题的数的特征、形的特征、结构特征作出整体性处理.整体思维的含义很广,根据问题的具体要求,需对代数式作整体变换,或整体代入,也可以对图形作出整体处理.典型例题十一例11 如图,长方体1111D C B A ABCD -中,a AB =,b BC =,c BB =1,并且0>>>c b a .求沿着长方体的表面自A 到1C 的最短线路的长.分析:解本题可将长方体表面展开,可利用在平面内两点间的线段长是两点间的最短距离来解答.解:将长方体相邻两个展开有下列三种可能,如图.三个图形甲、乙、丙中1AC 的长分别为:ab c b a c b a 2)(22222+++=++bc c b a c b a 2)(22222+++=++ac c b a b c a 2)(22222+++=++∵0>>>c b a ,∴0>>>bc ab ab . 故最短线路的长为bc c b a 2222+++.说明:(1)防止只画出一个图形就下结论,或者以为长方体的对角线2221c b a AC ++=是最短线路.(2)解答多面体表面上两点间,最短线路问题,一般地都是将多面体表面展开,转化为求平面内两点间线段长.典型例题十二例12 设直平行六面体的底面是菱形,经下底面的一边及与它相对的上义面的一边的截面与底面成︒60的二面角,面积为Q ,求直平行六面体的全面积.分析:如图,由于⊥'DD 面AC .作出截面与底面所成的二面角的平面角HD D '∠后,因DH D Rt '∆中︒=∠60'HD D ,可分别求出D D '、DH 和H D '的值.又上下底面的边长是相等的,便可进一步求出全面积.解:设平行六面体为''''D C B A ABCD -,过D 作AB DH ⊥,H 为垂足,连结H D '.∵⊥'DD 平面ABCD ,∴AB H D ⊥',︒=∠60'HD D , ∴H D D D ''23=,H D DH '21=. 又在菱形ABCD 中,有CD BC AB AD ===,∴截面''D ABC 的面积为:Q AB H D S =⋅='1.侧面''DCC D 的面积为:Q AB H D AB D D DC D D S 2323'''2=⋅=⋅=⋅= 底面ABCD 的面积为:Q AB H D AB DH S 2121'3=⋅=⋅=. 所以Q S S S )132(2432+=+=全.典型例题十三例13 设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中,真命题的个数是( ).A .0B .1C .2D .3解:甲命题是真命题,因为它就是平行六面体的定义;乙命题不是真命题,因为平行六面体的侧棱不一定垂直于底面;丙命题也不是真命题,因为四棱柱的底面不一定是平行四边形.∴应选B .说明:要认真搞清平行六面体、直平行六面体、长方体等特殊四棱柱的有关概念及性质.典型例题十四例14 如图,ABC C B A -111是直三棱柱,︒=∠90BCA ,点1D 、1F 分别是11B A 、11C A 的中点.若1CC CA BC ==,则1BD 与1AF 所成角的余弦值是( ).A .1030B .21 C .1530 D .1015 解:可将异面直线所成角转化为相交直线的角,取BC 的中点E ,并连结1EF 、EA .∵11F D BC 21BE =, ∴11//BD EF ,∴A EF 1∠是1BD 与1AF 所成角.设a BC 2=,则a CC 21=,a CA 2=.∴a AB 22=,a AF 51=,a AE 5=,a D B B B BD EF 62112111=+==. ∴1030652)5()6()5(2cos 22211221211=⨯⨯-+=⨯⨯-+=∠a a a a a EF AF AE EF AF A EF ∴应选A .说明:本题主要考查棱柱的性质,以及两条异面直线所成的角、勾股定理、余弦定理等内容:对运算能力和空间想象能力也有较高的要求.典型例题十五例15 如图,已知ABC C B A -111是正三棱柱,D 是AC 的中点.(1)证明://1AB 平面1DBC ;(2)假设11BC AB ⊥,求以1BC 为棱,1DBC 与1CBC 为面的二面角α的度数.(1)证明:∵ABC C B A -111是正三棱柱,∴四边形11BCC B 是矩形.连结C B 1交1BC 于E ,则E 是C B 1的中点.连结DE .∵D 、E 分别是AC 、C B 1的中点,∴1//AB DE .又⊄1AB 平面1DBC ,⊂DE 平面1DBC ,.∴//1AB 平面1DBC .(2)解:作BC DF ⊥于F ,则⊥DF 平面C C BB 11,连结EF 则EF 是ED 在平面C C BB 11上的射影.∵11BC AB ⊥又ED AB //1.∴1BC ED ⊥.根据三垂线定理的逆定理,得1BC EF ⊥.从而DEF ∠是二面角C BC D --1的平面角,即α=∠DEF ,设1=AC ,则21=DC ∵ABC ∆是正三角形,∴在DCF Rt ∆中,有4360sin =︒=DC DF ,4160cos =︒=DC CF 取BC 的中点G ,∵EC EB =,∴BC EG ⊥.在BEF Rt ∆中,FG BF EF ⋅=2 而43=-=FC BC BF ,41=GF , ∴41432⋅=EF ,∴43=EF , ∴在DEF Rt ∆中,14343tan ===∠EF DF DEF . ∴︒=∠45DEF ,即︒=45α.从而所求二面角的大小为︒45.说明:(1)纵观近十年高考题,其中解答题大多都是以多面体进行专利权查,解答此类题,有些同学往往忽略或忘记了多面体的性质,从而解题时,思维受阻.今后要引以为戒.(2)本题考查空间的线面关系,正棱柱的概念和性质,空间想象能力、逻辑思维能力和运算能力.本题涉及到的知识面宽,有一定的深度,但入手不难,逐渐加深;逻辑推理和几何计算交织为一体;正三棱柱放倒,与课本习题不同,加强了对空间想象能力的考查;在解答过程中,必须添加适当的辅助线,不仅考查了识图,而且考查了作图.本题是一道综合性试题,较深入和全面地考查了各种数学能力,正确解答本题,要求同学们有较高的数学素质.。

解析几何易做易错题

解析几何易做易错题

高考解析几何易做易错题选一、选择题: 1. 若双曲线22221x y ab-=-的离心率为54,则两条渐近线的方程为A916X Y ±= B0169X Y ±= C 034X Y ±= D43X Y ±=解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

2. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D 易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对 解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.设双曲线22221(0)x y a b ab-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 4,则双曲线的离心率为A 2B 23解 答:D 易错原因:忽略条件0a b >>对离心率范围的限制。

5.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.若曲线y =(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是 A 01k≤≤ B 304k ≤≤C 314k-<≤D 10k -<≤解 答:C易错原因:将曲线y =转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

7. P(-2,-2)、Q(0,-1)取一点R(2,m)使︱PR ︱+︱RQ ︱最小,则m=( )A 21 B 0 C –1 D -34正确答案:D 错因:学生不能应用数形结合的思想方法,借助对称来解题。

解析几何易错题3

解析几何易错题3

二填空题:1.若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.解 答: (-3, 0)易错原因:找不到确当的解答方法。

本题最好用数形结合法。

2.双曲线191622=-y x 上的点P 到点(5,0)的距离为8.5,则点P 到点(0,5-)的距离_______。

错解 设双曲线的两个焦点分别为)0,5(1-F ,)0,5(2F ,由双曲线定义知8||||||21=-PF PF所以5.16||1=PF 或5.0||1=PF剖析 由题意知,双曲线左支上的点到左焦点的最短距离为1,所以5.0||1=PF 不合题意,事实上,在求解此类问题时,应灵活运用双曲线定义,分析出点P 的存在情况,然后再求解。

如本题中,因左顶点到右焦点的距离为9>8.5,故点P 只能在右支上,所求5.16||1=PF3.直线xCosx+y —1=0的倾斜角θ的取值范围为__________。

正确答案:θ∈[0,4π]∪[43π,π] 错误原因:由斜率范围求倾角范围在三角知识上出现错误;或忽视直线倾角的定义范围而得出其它错误答案。

4.已知直线l 1:x+y —2=0 l 2:7x —y+4=0 则l 1与l 2夹角的平分线方程为______。

正确答案:6x+2y —3=0错语原因:忽视两直线夹角的概念多求了夹角的邻补角的平分线方程。

5.过点(3,—3)且与圆(x —1)2+y 2=4相切的直线方程是:___________。

正确答案:5x+12y+21=0或x=3错误原因:遗漏了斜率不存在的情形造成漏解。

6.已知双曲线的右准线为x=4,右焦点F(10,0)离心率e=2,则双曲线方程为______。

正确答案:14816)2(22=--y x 错误原因:误认为双曲线中心在原点,因此求出双曲线的标准方程而出现错误。

7.过点(0,2)与抛物线y 2=8x 只有一个共点的直线有______条。

高考数学易错题训练:解析几何

高考数学易错题训练:解析几何

过 B,D 两点 (1)若正方形中心 M 为(2,2)时,求点 N(b,c)的轨迹方程。 (2)求证方程 f ( x) x 的两实根 x1 , x 2 满足 | x1 x 2 | 2 24.直线 l 经过 P(2,3),且在 x,y 轴上的截距相等,试求该直线方程. 25.自点 A(-3,3)发出的光线 L 射到 x 轴上,被 x 轴反射,其反射 光线所在直线与圆 x2+y2-4x-4y+7=0 相切,求光线 L 所在的直线方程. 26.如图所示,已知 P(4, 0)是圆 x2+y2=36 内的一点, A、 B 是圆上两动点,且满足∠ APB=90°,求矩形 APBQ 的顶点 Q 的轨迹方程.
三、解答题 15.设点 P(x,y)在椭圆 4 x y 4 上,求 x y 的最大、最小值.
2 2
16.已知双曲线的右准线为 x 4 ,右焦点 F (10, 0) ,离心率 e 2 ,求双曲线方程.
17.设椭圆的中心是坐标原点,长轴 x 在轴上,离心率 e 个椭圆上的最远距离是 7 ,求这个椭圆的方程. 18.已知曲线 C: y 围. 19.已知双曲线 C
F1 PF2 90 ,则 F1 PF2 的面积是(
A.1 B.
5 2
C.2
D. 5
7. 直 线 y kx 1 , 当 k 变 化 时 , 直 线 被 椭 圆 ( )
x2 y2 1截 得 的 最 大 弦 长 是 4
A.4
B.2
C.
4 3 3
D.不能确定
8.已知对称轴为坐标轴的双曲线的渐近线方程为 y
3 3 ,已知点 P (0, ) 到这 2 2
20 x 2 与 直线 L: y x m 仅有一个公共点,求 m 的范 2

解析几何易错题

解析几何易错题

解析几何易错题1.经过点A(1,2),并且在2个坐标轴上的截距的绝对值相等的直线方程有_____条2.已知两点A(-3,4),B(3,2),过点P(2,-1)的直线l 与线段AB 有公共点,求直线l 的斜率k 以及倾斜角α 的取值范围。

3.求过点(5,10),且到原点的距离为5的直线方程。

4.判断下列命题是否正确(1)y -y 1x -x 1=k 表示过点(x 1,y 1)且斜率为k 的直线方程 (2)直线y=kx+b 与y 轴交于点P(0,b),其中截距b=|OP|(3)在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +y b =1(4)方程(x 2-x 1) (y-y 1) =(y 2-y 1) (x-x 1)表示过两点P 1(x 1,y 1) 与P 2(x 1,y 1)的直线5.已知直线l 经过点P(3,1),且被两平行直线l 1:x+y+1=0和 l 2:x+y+6=0截得的线段之长为5,求直线l 的方程。

6.a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行的_____条件。

7.a 1a 2b 1b 2=-1是两条直线a 1x+b 1y+c 1=0和 a 2x+b 2y+c 1=0垂直的_____条件 8.定义在 R 上的函数 f (x ) = 13 x 3 + 12 ax 2 + 2bx + c ,在(0,1) 内有一个极大值点,在(1,2)内有一个极小值点,则 b -2a -1的范围是______ 9.在坐标平面内,由不等式组 ⎩⎨⎧ y ≥| x -2 | y ≤-| x | + a所确定的平面区域的面积为 52 ,则a = 。

10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是______11.若曲线y=1+4-x 2 (-2≤x≤2)与直线y=k(x-2)+4有两个交点,求实数k 的取值范围。

高考解析几何复习易做易错题选

高考解析几何复习易做易错题选

高考解析几何复习易做易错题选直线注意倾斜角范围、设直线方程时注意斜率是否存在、注意截距的概念以及直线的方向向量概念;注意二元二次方程表示圆的充要条件、善于利用切割线定理、垂径定理等平面中圆的有关定理解题;注意将圆上动点到定点、定直线的距离转化为圆心到它们的距离;判断二元一次不等式表示的平面区域常采用“选点法”:线定界、点定域;注意:①最优解唯一时,一定是可行域的某一个顶点;②有无数个最优解时落在区域某边上;利用平移法求目标函数的最值,并不是线性目标函数所在的直线与原点距离最大(小)时所经过的可行域上的点为取得最大(小)值的点,应注意应用在y x 、轴上的截距大小判断;记住焦点三角形面积公式:P 在椭圆上时22tan 21θ∆b S PF F =、P 在双曲线上时22cot 21θ∆b S PF F =(其中θ=∠21PF F ,||||4||||2122221cos PF PF c PF PF -+=θ,θcos ||||2121PF PF PF PF =∙)熟练利用圆锥曲线的第一、第二定义解题; 注意双曲线的渐近线方程:焦点在x轴上时为x y ab ±=,焦点在y 轴上时为x y ba ±=; 注意椭圆离心率体现扁平程度(e →0,椭圆→圆)、双曲线离心率越大越开阔;记住抛物线的一些性质:①过焦点的弦长公式(焦点在x 正半轴上时p x x ++21,焦点在x 负半轴上时p x x ++||21,;焦点在y 正半轴上时p y y ++21,焦点在y 负半轴上时p y y ++||21,当焦点在x轴上时也可用θ2sin 2p ,焦点在y 轴上时用θ2cos 2p(θ为倾斜角);②通径长为p 2;③以过焦点的弦长为直径的圆与准线相切、以此弦端点在准线上射影间线段为直径的圆与此弦相切、当焦点在x 轴上时,以焦半径为直径的圆与y 轴相切、以抛物线上一点为圆心的圆与准线相切时一定过焦点,反之也成立;记住焦半径公式(注意曲线上的点到焦点的距离与到相应准线距离的转化):①椭圆焦点在x 轴上时为0ex a ±、焦点在y 轴上时为0ey a ±;②双曲线焦点在x 轴上时为a x e ±||0;③抛物线焦点在x 轴上时为21||px +,抛物线焦点在y 轴上时为21||py +;注意利用数形结合思想以及极限的观点解决一些问题; 注意对焦点位置的分类讨论; 注意利用向量方法(向量的坐标运算、几何意义)解决解析几何问题; 注意垂直、平行、中点等条件以向量形式给出;在涉及直线与圆锥曲线的位置关系:若仅涉及弦的中点或弦所在直线的斜率时,可用“点差法”得到同前面的的系数为曲线、的系数的系数22(200212121212121y x k k x y OP AB y y y y y y y =∙=∙=∙-+-;若涉及弦长时(弦长公式为2122112112122122124)(1||14)(1||122y y y y y y x x x x k x x k kk-++=-+=-++=-+,一般联立方程组,利用韦达定理、根的判别式解题(注意得到的一元二次方程的二次项系数为0时,若曲线为抛物线时直线与其对称轴平行;是双曲线方程时,直线与其渐近线平行),另外设立直线方程时注意讨论直线斜率是否存在。

高中数学高考复习易错题分类《解析几何》易错题专项测试同步训练

高中数学高考复习易错题分类《解析几何》易错题专项测试同步训练

高中数学高考复习易错题分类《解析几何》易错题专项测试同步训练2020.031,已知正方形ABCD 对角线AC 所在直线方程为x y = .抛物线c bx x x f ++=2)(过B ,D 两点(1)若正方形中心M 为(2,2)时,求点N(b,c)的轨迹方程。

(2)求证方程x x f =)(的两实根1x ,2x 满足2||21>-x x2,已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D3,若曲线24y x =-与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤ C314k -<≤ D 10k -<≤4,设双曲线22221(0)x y a b a b -=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为,则双曲线的离心率为A 2B 2或5,已知双曲线两焦点12,F F ,其中1F 为21(1)14y x =-++的焦点,两点A (-3,2)B (1,2)都在双曲线上,(1)求点1F 的坐标;(2)求点2F 的轨迹方程,并画出轨迹的草图;(3)若直线y x t =+与2F 的轨迹方程有且只有一个公共点,求实数 t 的取值范围。

6,椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是7,若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.8,若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为 A 0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y ±=9,过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对答案1, 解答:(1)设(2,2),(2,2),0B s s D s s s +--+≠因为 B,D 在抛物线上 所以222(2)(2)2(2)(2)s S b S c S S b S c ⎧+=-+-+⎨-=++++⎩两式相减得 282s s sb =-- 则5b =-代入(1)得2244105s s s s c +=-+-++288c s ∴=-< 故点(,)N b c 的方程5(8)x y =-<是一条射线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习易做易错题精选
解析几何
1.(如中)若直线 y =k (x -1)与抛物线y = x 2,4x ・3的两个交点都在第二象,则
k 的
取值范围是 ________________ . 解 答:(-3, 0)
易错原因:找不到确当的解答方法。

本题最好用数形结合法。

答:C
易错原因:审题不认真,混淆双曲线标准方程中的 a 和题目中方程的a 的意义。

3.(如中)椭圆的短轴长为
2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是
A 8.5
B 4.5
C 铁3
5 5 3
解 答:D
易错原因:短轴长误认为是 b 范围是
A k>2
B -3<k<2
C k<-3 或 k>2
D 以上皆不对 解 答:D 易错原因:忽略题中方程必须是圆的方程,有些学生不考虑
D 2
E 2 -4
F 0
2 2
5.(如中)设双曲线 笃-每=1(a b 0)的半焦距为C ,直线L 过(a,0),(0, b )两点,已
a b
、2
解 答:D
易错原因:忽略条件 a b 0对离心率范围的限制。

6. (如中)已知二面角〉-| - -的平面角为二,PA — : • , PB_ 1 , A , B 为垂足,且PA=4 , PB=5,设A 、B 到二面角的棱I 的距离为别为x, y ,当二变化时,点(X,y )的轨迹是下 列图形中的
2. (如中)若双曲线
2
十j 的离心率为
5
5
,则两条渐近线的方程为
4
^_Y = o
9 16
^_Y =o
16 9
A_r = o
D 3=0
D 4-
4.(如中)过定点(1, 2)作两直线与圆 2 2 2
x y kx 2y k -15 = 0相切,则k 的取值
知原点到直线 L 的距离为
则双曲线的离心率为
2
7. (如中)已知点 P 是抛物线y =2x 上的动点,点P 在y 轴上的射影为 M ,点A 的 8 (如中)若曲线 Y
-4与直线y =k(x-2)+3有两个不同的公共点,则实数
k 的
取值范围是
3
3
A 0 冬 k 乞 1
B 0 空 k
C 一1 :: k
D —1 :: k 岂 0
4
4
解 答:C
易错原因:将曲线 y = • x 2 -4转化为x 2 -y 2 =4时不考虑纵坐标的范围;另外没有看 清过点(2,-3)且与渐近线y = x 平行的直线与双曲线的位置关系。

9.(如中)已知正方形ABCD 对角线AC 所在直线方程为y=X .抛物线
2
f (x) = X bx c 过 B , D 两点
(1) 若正方形中心 M 为(2, 2)时,求点N(b,c)的轨迹方程。

(2) 求证方程f (x)二x 的两实根为,x 2满足|为- x 2 | • 2 解答:(1 )设 B(2
s,2 -s), D(2 - s,2 s), s = 0
l 2 + s = (2 — S)2 + b(2 — S) + c
因为B,D 在抛物线上 所以
两式相减得
、2—S = (2 + S)2 + b(2 + S) + c
2s -七s -2sb 则 b - -5 代入(1)
2 2
得 2 s = s -4s 4「10 5s c c = 8「s :: 8 故点N(b,c)的方程x - -5(y =8)是一条射线。

(2)设 B(t s,t 「s), D(t 「s,t s)s = 0
同上 ”+s =(t —s)2+b(t —s)+cll 川丨(1)
[t _s =(t +s)2 +b(t +s) +cMIH(2)
(1) - (2)得 t = -山 I 川 11(3)
2
解 答:D
易错原因:只注意寻找 x, y 的关系式,而未考虑实际问题中 X, y 的范围。

(1) + (2)得s2 (b—1)t t2 c = 0l川II⑷
(x 1)2 2(x t-2)2 =8 整理得:3x 2 (4t-6)x 2t 2_8t 1=0
当L =0时 得t=3-2=3 从图可知:t (-::,3-2・3) -(3 • 2・3,=),
(3)代入(4)消去t 得s
2
2 2 b -1 (b 1) _
2
_
4
-c 0
得(b -1)
2
-4c 4
2
又 f (x)二 X 即 x - (b -1)x • c = 0 的两根 X i ,X 2 满足
X x 2 =1 -b % ・x 2 二 c
| X 1 - X 2 | =(X 1 ■'' X 2) - 4 x ( X 2 = (b _ 1) - 4c4
故 | X 1 - X 21 2。

易错原因:审题不清,忽略所求轨迹方程的范围。

1 2
10.(如中)已知双曲线两焦点 F 「F 2,其中F 1为y (X 1)
1的焦点,两点A (-
3,2)
4
(3)若直线y 二x • t 与F 2的轨迹方程有且只有一个公共点,求实数 t 的取值范围。

1 2 2
解答:(1)由 y (x • 1)
1 得:(x • 1) = -4(y-1)
4
故斤(-1,0) (2)设点 F
(X , y )
则又双曲线的定义得||AF 1 | - | AF 2 |冃| BFJ - I BF 2 IF 0
1 t L 又
・|AF 2|=|AF 1 |=2,2
|F 2A| |F 2B|=|AF 1| |BF 1|=4「2
■点F 2的轨迹是以A, B 为焦点的椭圆
x ,1=0 除去点(-1,0)厂(1,或) (-1,0),-( 1,4 图略。

y = x t
(3)联列:(x 1)2 (y-2) 消去y 得
1
8 4
| AF 2 h|BF 2|

(x 1)2 . (y-2)2
除去点
又因为轨迹除去点(-1,0),(-1,4)所以当直线过点(_1,0),(一1,4)时也只有一个交点,即t =1或5
.t ( - :,:3 -2一3)一(3厂2 3, ::)_. {1, 5}
易错原因:(1)非标准方程求焦点坐标时计算易错;(2)求点F2的轨迹时易少一
种情况;(3)对有且仅有一个交点误认为方程只有一解。

相关文档
最新文档