数学建模—微分方程之预测模型

合集下载

数学建模之灰色预测模型

数学建模之灰色预测模型

数学建模之灰色预测模型一、灰色预测模型简介(P372)特点:模型使用的不是原始数据列,而是生成的数据列。

优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。

缺点:只适用于中短期的预测和指数增长的预测。

1、GM(1,1)预测模型GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。

1.1模型的应用 ①销售额预测②交通事故次数的预测③某地区火灾发生次数的预测④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。

(百度文库)⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 1.2步骤①级比检验与判断由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为(0)(0)(1)(),2,3,,.()x k k k n x k λ-==若序列的级比()k λ∈ 2212(,)n n e e-++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。

光滑比为(0)1(0)1()()()k i x k p k xi -==∑若序列满足[](1)1,2,3,,1;()()0,,3,4,,;0.5.p k k n p k p k k n ϕϕ+<=-∈=<则序列为准光滑序列。

否则,选取常数c 对序列(0)x 做如下平移变换(0)(0)()(),1,2,,,y k x k c k n =+=序列(0)y 的级比0(0)(1)(),2,3,,.()y y k k k n y k λ-=∈Θ=②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()建立模型:(1)(1),dx ax b dt+= (1)③构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)④由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ⑤由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.x k x k x k n +=+-=-⑥精度检验和预测残差(0)(0)ˆ()()(),1,2,,,k x k xk k n ε=-=3、波形预测波形预测, 是对一段时间内行为特征数据波形的预测。

预测模型的特点分析

预测模型的特点分析

预测模型的特点分析摘要:随着人类文明的进步和科学技术的发展,对疾病传播、经济增长、人口增长等各方面的预测显得尤为重要。

现在针对各领域发展的特点,各个实际问题已经被抽象成为许多成熟的数学预测模型。

本文就时间序列、微分方程模型、灰色系统模型、BP神经网络等预测模型的特点及建模步骤做了简单的归纳分析。

关键词:预测模型时间序列微分方程灰色系统BP神经网络数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一般是和人们生活的实际需要密切相关。

作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。

两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。

进入20世纪以来,随着数学以空前的广度与深度向一切领域的渗透,数学建模越来越受到人们的重视,然而人们对未来的预测在数学建模中独树一帜,也满足了人们“未卜先知”的渴望,同时为世界带来了巨大的发展。

1 时间序列模型(1)特点:时间序列是按照时间顺序排列的一系列观测值,展示了研究对象在一定时期内的发展变化过程,可以从中分析寻找出其变化特征、趋势和发展规律。

这一系列观测值有先后顺序,且相互之间是不独立的,要用专门的时间序列分析方法来处理。

时间序列预测主要有确定型和随机型两类方法。

前者在时间序列有某种典型变化趋势时适用。

(2)建模基本步骤。

①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。

②根据动态数据作相关图,进行相关分析,求自相关函数。

相关图能显示出变化的趋势和周期,并能发现跳点和拐点。

跳点是指与其他数据不一致的观测值。

如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。

拐点则是指时间序列从上升趋势突然变为下降趋势的点。

如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列。

③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。

数学建模——预测模型简介

数学建模——预测模型简介

数学建模——预测模型简介在数学建模中,常常会涉及⼀些预测类问题。

预测⽅法种类繁多,从经典的单耗法、弹性系数法、统计分析法,到现在的灰⾊预测法、专家系统法和模糊数学法、甚⾄刚刚兴起的神经元⽹络法、优选组合法和⼩波分析法等200余种算法。

下⾯将简要介绍⼏类预测⽅法:微分⽅程模型、灰⾊预测模型、差分⽅程预测、马尔可夫预测、插值与拟合、神经元⽹络。

⼀、下⾯是这⼏种类型的使⽤场景对⽐:模型⽅法适⽤场景优点缺点微分⽅程模型因果预测模型,⼤多为物理、⼏何⽅⾯的典型问题,其基本规律随着时间的增长呈指数增长,根据变量个数确定微分⽅程模型。

适⽤于短、中、长期的预测,既能反映内部规律以及事物的内在关系,也嫩能够分析两个因素之间的相关关系,精度⾼便与改进。

由于反映的内部规律,⽅程建⽴与局部规律的独⽴性为假定基础,长期预测的偏差性较⼤。

灰⾊预测模型该模型不是使⽤原始数据,⽽是通过求累加、累减、均值中的两种或者全部⽅法⽣成的序列进⾏建模的⽅法。

不需要⼤量数据,⼀般四个数据即可,能够解决历史数据少、序列完整性及可靠性低的问题。

只适⽤于指数增长的中短期预测。

差分⽅程预测常根据统计数据选⽤最⼩⼆乘法拟合出差分⽅程的系数,其稳定性依赖于代数⽅程的求根。

差分⽅程代替微分⽅程描述,在⽅程中避免了导函数,可以⽤迭代的⽅式求解。

精度较低(⽤割线代替切线。

)马尔可夫预测某⼀系统在已知情况下,系统未来时刻的情况只与现在时刻有关,与历史数据⽆关的情况。

对过程的状态预测效果良好,可考虑⽤于⽣产现场危险状态的预测。

不适宜于中长期预测。

插值与拟合适⽤于物体轨迹图像的模型。

例如,导弹的运动轨迹测量的预测分析。

分为曲线拟合和曲⾯拟合,通过找到⼀个函数使得拟合原来的曲线,这个拟合程度可以⽤⼀个指标来进⾏判断。

神经元⽹络在控制与优化、预测与管理、模式识别与图像处理、通信等⽅⾯有⼗分⼴泛的应⽤。

多层前向BP⽹络适⽤于求解内部机制复杂的问题,有⼀定的推⼴、概括能⼒。

数学建模微分方程模型

数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论

1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。

中国人口增长预测-数学建模

中国人口增长预测-数学建模

中国人口增长的预测和人口的结构分析摘要本文是在已知国家政策和人口数据的前提下对未来人口的发展进行预测和评估,选择了两种模型分别对人口发展的短期和长期进行预测。

模型一中我们在人口阻滞增长模型logistic模型的基础上进行改进,弥补了logistic原始模型仅仅能表示环境对人口发展趋势影响的缺陷,加入了社会因素的影响作为改进,保证了logistic改进模型的有效性和短期预测的正确性。

多次运用拟合的方法(非线性单元拟合,线性多元拟合)对数据进行整合,得到的改进模型对短期预测具有极高的准确性,证明了我们的修正方式与模型改进具有一定的正确性。

模型二中我们分别考虑了城、乡、镇人口的发展情况,利用不同年龄段存活率和死亡率的不同,采用迭代的方式也就是Leslie矩阵的方式对人口发展进行预测,迭代的方式不同于拟合,具有逐步递进的准确性,在参数正确的前提下,能够保证每一年得到的人口都有正确性,同时我们分男女两方面来考虑模型,不仅仅用静态的男女比例来估算人口总数,具有更高的准确性。

然而Leslie模型涉及的参数较多,如果采用动态模型的方式,计算量过大,我们首先用均值的方式对模型进行简化,同样得到迭代矩阵后的人口数值,发展趋势与预测相同,能够很好的预测中国人口的长期发展,同时,由于Leslie矩阵涉及多个参数,所以我们用最终的结果来表征老龄化程度,城乡比,抚养比等多个评价社会发展的参数,得到了较好的估计值,使模型在估算人口的基础上得到了推广和应用。

通过logistic改进模型和Leslie模型我们分别对中国人口发展进行短期和中长期预测,均能得到很好的效果,说明了我们的模型在适用范围内的准确性和实用性。

关键词:人口发展预测;logistic模型改进;参数拟合;Leslie迭代模型;一、问题重述中国是世界上人口最多的发展中国家, 人口问题始终是制约我国发展的关键因素之一,人口众多、资源相对不足、环境承载能力较弱是中国现阶段的基本国情,短时间内难以改变。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

数学建模,第三章-微分方程模型

数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建立GM(1,1)预测评估模型应用

【数学建模】day14-建⽴GM(1,1)预测评估模型应⽤学习建⽴GM(1,1)灰⾊预测评估模型,解决实际问题:SARS疫情对某些经济指标的影响问题⼀、问题的提出 2003 年的 SARS 疫情对中国部分⾏业的经济发展产⽣了⼀定影响,特别是对部分疫情较严重的省市的相关⾏业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。

直接经济影响涉及商品零售业、旅游业、综合服务等⾏业。

很多⽅⾯难以进⾏定量的评估,现仅就 SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进⾏定量的评估分析。

究竟 SARS 疫情对商品零售业、旅游业和综合服务业的影响有多⼤,已知某市从 1997 年 1 ⽉到 2003 年 12 ⽉的商品零售额、接待旅游⼈数和综合服务收⼊的统计数据如下⾯三表所⽰。

试根据这些历史数据建⽴预测评估模型,评估 2003 年 SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。

⼆、模型的分析与假设模型分析: 根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律。

这样,对于每⼀个经济指标,考虑从两部分着⼿建⽴预测评估模型:1. 利⽤灰⾊理论建⽴GM(1,1)模型,根据1997-2002年的平均值序列,预测2003年的平均值。

2. 通过历史数据计算每⼀个⽉的指标值与全年总值之间的关系,并将此关系拓展到2003年,进⽽预测出2003年每⼀个⽉的指标值。

进⽽与真实数据值作⽐较,从⽽得出结论。

模型假设:1. 假设所有的统计数据真实可靠。

2. 假设该市SARS疫情流⾏期间和结束之后,数据的变化只与SARS疫情的影响有关,不考虑其他随机因素的影响。

三、建⽴灰⾊预测模型GM(1,1) 由已知数据,对于1997-2002年的某项指标记为A= (a ij)6*12,计算每年的平均值作为初始数列。

记为: 并要求级⽐。

对x(0)做⼀次累加得1-AGO序列: 式中: 取x(1)的加权均值序列: 式中,α是确定参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度) 2)t1tt2, 降为-x (为队员的平均灭火速度) 3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3 火势以失火点为中心, 均匀向四周呈圆形蔓延, r 假设1) 半径 r与 t 成正比 的解释 B
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r s xm
r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
森林救火
问题
森林失火后,要确定派出消防队员的数量。 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小。 综合考虑损失费和救援费,确定队员数量。
1 如何预报人口的增长
背景 世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
问题 分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
• 救援费f2(x)是x的增函数, 由队员人数和救火时间决定.
存在恰当的x,使f1(x), f2(x)之和最小
问题 分析
• 关键是对B(t)作出合理的简化假设. 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
c1, t1, x c3 , x
模型 应用
c1,c2,c3已知, t1可估计, ,可设置一系列数值
由模型决定队员数量x
x(t ) x0 e
rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
r=0.2557, xm=392.1 专家估计
阻滞增长模型(Logistic模型)
模型检验
用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]
x(2000 ) 274.5
f1 ( x) c1B(t2 ), f 2 ( x) c2 x(t2 t1 ) c3 x
C( x) f1 ( x) f 2 ( x)
目标函数——总费用
模型建立
2
目标函数——总费用
2 2
c1 t1 c1 t1 c2 t1 x C ( x) c3 x 2 2(x ) x

面积 B与 t2成正比, dB/dt与 t成正比.
Hale Waihona Puke 模型建立b b t1 , t 2 t1 x
b
假设1)
dB dt
假设2)
t 2 t1
B(t2 )
假设3)4)
t2
x
t1

0
x
t1
t2 t
0
2 2 2 bt t t1 2 1 B(t )dt 2 2 2(x )
常用的计算公式
k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt x(t )
r ( xm ) 0
x r ( x) r (1 ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx x r ( x) x rx(1 ) dt xm
x xm xm/2 x0
0
xm/2
xm x
0
x (t )
xm xm rt 1 ( 1)e x0
t
x(t)~S形曲线, x增加先快后慢
阻滞增长模型(Logistic模型)
参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1860 31.4 1870 38.6 1880 50.2 …… 1960 …… 179.3 1970 204.0 1980 226.5 1990 251.4
其中 c1,c2,c3, t1, ,为已知参数
模型求解
dC 0 dx
求 x使 C(x)最小
c1t12 2c2t1 x 2c32
b
dB dt

x
0
t1
t2 t
结果解释
结果 解释
c1t1 2c2t1 x 2c32
2
c1~烧毁单位面积损失费, c3~每个队员一次性费用, t1~ 开始救火时刻, ~火势蔓延速度, ~每个队员平均灭火速度.
相关文档
最新文档