从立体图形到平面图形的转化

合集下载

小学数学新课标解读之“几何图形分析与研讨”

小学数学新课标解读之“几何图形分析与研讨”

小学数学新课标解读之“几何与图形”分析与研讨王晓萍“图形与几何”的课程内容,在小学阶段分为图形的认识、测量、图形的运动、图形与位置四个部分,它们以发展学生的空间观念、几何直观、推理能力为核心展开。

我们接下来的讨论交流将围绕着“如何在这四个部分的课程内容中,来发展学生的空间观念、几何直观和推理能力,落实四基中的后两基”为主线展开。

一、图形的认识1、图形的认识的内容主线我们首先来看图形的认识的内容主线。

主要有如下的几条基本线索:一是从立体到平面再到立体。

新课标对空间观念这个核心词的描述有这样一条:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体。

教材这样的编排正好体现这样一个过程:从立体图形中找到平面图形,从平面图形中还原立体图形。

在教学中要把握好这条主线,建立学生的空间观念。

二是从生活中的实物抽象出图形到应用于生活。

例如圆的认识,首先让学生观察生活中的大量现实模型,然后抽象出圆形,探究其特征。

这一点大家都能充分认识并做得非常好,但反过来将图形及其特征应用到生活中去,重视的不够。

我们的教材有这样一道练习:这就是应用于生活。

当学生在尝试解决这个问题问题时,不仅促进了对圆性质的理解,同时还发展了学生解决问题的能力。

三是从直观辩认图形到操作探索图形的特征。

例如对于长方形的认识,课标中对第一、二学段的要求就有明显的层次:从辨认到初步认识特征再到探索并掌握周长、面积公式。

这样从直观辩认到探索特征符合儿童的认知规律。

我们在教学中一定要把握好每个学段的目标,到位而不越位。

四是从直观图形到曲边图形。

在这个过程中,“化曲为直”的思想将初步渗透。

五是从静态到动态。

第一阶段主要侧重于静态,第二阶段则侧重于动态认识。

还是以长方形为例。

例如认识它的轴对称性,知道绕长或宽旋转一周形成圆柱等等,这些都是进一步丰富对长方形的认识。

2、教学中注意问题纵观整个“图形的认识”这部分,我们的教学中哪些问题是薄弱环节,需要引起我们的重视呢?一是设计丰富的素材促进学生进行平面和立体的转化。

立体图形与平面图形课件PPT(共45张PPT)

立体图形与平面图形课件PPT(共45张PPT)

小结:
本节课主要学习了立体图形和平面 图形的概念,并初步经历了由具体实 物的外形中抽象出几何图形的过程, 体验到了现实生活与数学的密切联系.
作业: 1.结合身边的实际物体,看一看可 以得到哪些几何图形,其中哪些是立 体图形?哪些是平面图形?说出来与 同学交流一下.
4.1.1 立体图形与平面图形 〔第2课时〕
4.1.1 立体图形与平面图形
七年级数学上册 几何图形初步
北京奥林匹克公园占地约1135hm2.总建筑面积
约200万m2,内有可容纳9万观众的国家体育场〔鸟巢〕、
国家游泳中心〔水立方〕、国家体育馆等14个比赛场馆.
从城市建筑到乡村住 宅,从立交桥到交通标志, 从剪纸艺术到城市雕塑,从 申奥标志到动物形态……图 形世界是多姿多彩的!
提示:可见棱应画为实线形线段;不可见棱应
画为虚线形线段.








从 上 面 看








从 上 面 看
练习:如图,右面三幅图分别是从哪个方向看
这个棱柱得到的?
上面
正面
左面
探究:右图是一个 由 9 个个图
形,各能得到什么平面
图形?
要设计、制作一个包装盒,除了美术设计以外,还要了解它展开后
的形状,好根据它来准备材料,这就是我们今天学习的立体图形的展开 图.
有些立体图形是由一些平面图形围成的,将它们的 外表适当剪开,可以展成平面图形.这样的平面图形称为 相应立体图形的展开图.
实践感知
自己动手把一个包装盒剪开铺平,看看它的展开图
北京奥林匹克公园占地约1135hm2.总建筑面积

北师大六上搭积木比赛教学反思

北师大六上搭积木比赛教学反思

北师大六上搭积木比赛教学反思1 搭积木比赛搭积木比赛是本单元的一小节知识。

在学习了不多于4个小正方体组合的立体图形的视图基础上,本单元主要学习5个小正方体组合的立体图形的视图,难度有所加大。

为了激发学习兴趣,教材设置了学生喜欢的“搭积木比赛”情境,利用三项比赛来引导学生学习新知。

第一项比赛是由观察到的5个小正方体的组合,画出从正面、左面、上面观察到的平面图形。

第二项比赛是根据从正面、左面观察到的平面图形,判断出搭这个立体图形所需要小正方体的数量范围,并尝试还原立体图形。

第三项比赛是用指定数量的小正方体,搭出从某一面看是规定形状的立体图形,看谁搭得多。

通过比赛提供足够的探索、交流空间,让学生主动地去探索、发现,充分享受成功的乐趣,积累观察物体的经验,发展学生的空间观念;同时,在交流、观察中,可以培养学生多角度思考,多层面推断,多策略探索的能力。

1.正确辨认从不同方向(正面、左面、上面)观察到的立体图形(5个小正方体组合)的形状,并能画出相应的平面图形;能根据从正面、左面、上面观察到的平面图形还原立体图形(5个小正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状;能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

2.在搭一搭、画一画等一系列操作活动中,培养学生的合作意识和动手操作能力,发展学生的空间观念。

3.通过观察、操作、想象等活动,培养逻辑推理能力和空间想象能力;经历探索知识的过程,体验成功的快乐,体会学习的价值。

【重点】确定立体图形的形状,画出草图,确定它所需小正方体的数量范围。

【难点】从不同方向观察立体图形,确定形状,画出草图;根据平面图形还原立体图形。

【教师准备】PPT课件、8个棱长为10厘米的立方块。

【学生准备】10个棱长为5厘米的立方块,一张方格纸。

1.下面( )号立体图形从左面看,所看见的图形是。

2.从正面观察所看到的图形是( )。

从立体图形到平面图形的转化

从立体图形到平面图形的转化

从立体图形到平面图形的相互转化[本讲数学思想方法的学习]1. 立体图形与平面图形之间的相互转化。

即已知几何体画它的三种视图,已知视图确定几何体。

多边形之间的转化等都是转化思想的重要体现。

2. 根据几何体的俯视图中每个小正方形中所标注的数字可以画出几何体的主视图和左视图;根据三种视图,确定搭成几何体的小正方体的个数等都是数形结合思想的转化。

3. 结合几何体的主视图和俯视图,画它的左视图,所画的左视图可能不惟一,需要根据不同的情况分类画出。

一. 知识要点:1. 知识点概要⑴认识圆柱、圆锥、棱柱、球等立体图形的特征,能对几何体进行分类。

⑵能识别简单物体的三视图,会画简单几何体的三视图,并能根据三视图想象几何体或实物原形。

⑶认识立体图形与平面图形的关系,经历和体验图形的变化过程,掌握棱柱、圆锥、圆柱的侧面展开图,能根据展开图想象立体模型。

尤其是掌握正方体的展开与折叠。

⑷了解多边形的概念,知道任何多边形都可由三角形组合而成,知道点、线、多边形、圆等图形可组合成各种优美的图案。

2. 重点难点⑴重点:对几何体的识别及分类,简单物体的三视图,根据展开图想象和制作立体模型。

⑵难点:由实物的形状抽象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的相互转化。

二. 考点分析:(一)立体图形1. 常见几何体的类型:①柱体;②锥体;③球体。

如图所示:图⑵,⑷,⑸,⑹,⑺都称为柱体,它们有两个面互相平行,余下的每相邻两个面的交线互相平行。

图⑴,⑼,⑽都称为锥体,图⑶是球体。

由图可以看出,柱体包括圆柱、棱柱;锥体包括圆锥、棱锥。

2. 常见几何体的特征:棱柱:棱柱的所有侧棱都相等,侧面的形状都是长方形,棱柱的上、下底面的形状相同。

因底面的形状不同而分为三棱柱,四棱柱、五棱柱……,如图⑷,⑸,是四棱柱,⑹是三棱柱,⑺是五棱柱。

圆柱:上、下底面是半径相等的两个圆面,侧面是一个曲面。

如图⑵。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。

【教材分析】立体图形与平面图形_数学_初中_赵汝明

【教材分析】立体图形与平面图形_数学_初中_赵汝明

教材分析
一、教材的地位和作用
本节课是从生活中存在的大量图形入手,引出几何图形的概念.并在复习前两个学段学习的几何图形的基础上引出立体图形,结合从不同方面看立体图形,让学生体验立体图形与平面图形的相互转化,从而初步建立空间观念,发现几何直觉.本节为以后进一步研究几何问题做铺垫,所以本节内容具有承上启下的作用.
二、学习目标:
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,特制定如下学习目标:
知识目标:
1、能初步认识立体图形与平面图形的概念.
2、能从现实物体中抽象出几何图形,并能举出类似于几何图形的物体实例.
3、能把一些立体图形的问题转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.
能力目标:
1、经历探索平面图形与立体图形之间的关系发展空间观念,培养提高、观察、分析、抽象、概括的能力.
2、经历问题解决的过程,提高解决问题的能力.
情感目标:
1、积极参与教学活动过程,形成自觉认真的学习态度,培养敢于面
对学习困难的精神,感受几何图形的美感.
2、倡导自主学习和小组合作精神,在独立思考的基础上能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性. 三、学习重点和难点:
本着新课程标准,在吃透教材基础上,我确立了如下的学习重点、难点.
重点:
1、从现实物体中抽象出几何图形.
2、把立体图形转化为平面图形.
难点:立体图形与平面图形之间的转化.。

《从立体图形到平面图形》 知识清单

《从立体图形到平面图形》 知识清单

《从立体图形到平面图形》知识清单一、立体图形的认识我们生活在一个充满各种形状和物体的三维世界中。

立体图形,就是那些具有长度、宽度和高度的物体形状。

常见的立体图形有正方体、长方体、圆柱体、圆锥体和球体等。

正方体,它的六个面都是完全相同的正方形,十二条棱长度相等。

长方体则相对复杂一些,它有六个面,相对的两个面完全相同,而且每个面可能是长方形也可能是正方形。

长方体的十二条棱可以分为三组,每组四条棱长度相等。

圆柱体,有两个底面,都是圆形,而且大小相等,侧面展开是一个长方形。

圆锥体,它有一个圆形底面和一个顶点,侧面展开是一个扇形。

球体,是一个无论从哪个方向看都是圆形的立体图形。

二、平面图形的认识平面图形是指存在于一个平面内的图形,没有厚度。

常见的平面图形有三角形、四边形(包括长方形、正方形、平行四边形、梯形等)、圆形、扇形、多边形等。

三角形,根据角的大小可以分为锐角三角形、直角三角形和钝角三角形;根据边的长度关系,又可以分为等边三角形、等腰三角形。

四边形中的长方形,它的四个角都是直角,对边相等。

正方形不仅四个角是直角,而且四条边都相等。

平行四边形的两组对边分别平行且相等。

梯形则只有一组对边平行。

圆形,是一个由一条封闭曲线围成的图形,圆上任意一点到圆心的距离都相等。

扇形是圆的一部分,由两条半径和一段弧围成。

多边形则是由多条线段首尾顺次连接所围成的封闭图形,如五边形、六边形等。

三、立体图形展开成平面图形很多立体图形都可以通过展开,变成平面图形。

比如正方体展开后,可以得到六个相连的正方形。

长方体展开后,一般可以得到六个长方形(特殊情况下可能有两个正方形)。

圆柱体展开后,侧面是一个长方形,两个底面是圆形。

圆锥体展开后,侧面是一个扇形,底面是一个圆形。

通过将立体图形展开成平面图形,我们可以更清楚地看到它们的构成和特点。

四、平面图形围成立体图形反过来,一些平面图形也可以通过折叠、拼接等方式围成立体图形。

例如,多个三角形可以围成三棱锥,多个长方形可以围成长方体。

从立体图形到平面图形

从立体图形到平面图形

立体图形与平面图形的联系李桂霞一年级的学生认识立体图形的重点是感知不同立体图形的特点,教学的顺序是先长方体再正方体,接下来是圆柱和球,最后是其他的立体图形。

教学认识长方体时,先‘看’,看长方体的外部特点;再是‘摸’,通过摸一摸让学生感知长方体平平的面,直直的线,尖尖的点。

这两步后,学生建立了长方体的初步表象。

第三步是‘比’,和正方形比较正方形也有平平的面,直直的线,尖尖的点,但正方形每个面是一样的;和圆柱比较,圆柱没有直直的线,尖尖的点,有两个平平的面是圆的;和球比较,球也没有平平的面,直直的线,尖尖的点,球只有一个弯曲的面,球的这个特点学生很容易发现,有弯曲的面,所以球易滚动,学生不一定能很快回答,教师可以边演示,边引导学生观察,那么易滚动的立体图形还有谁呢?让学生通过使用学具得出。

在不断的比较中学生掌握了不同立体图形之间的相同点和各自的特点,接下了通过其他立体图形的区分,进一步加深认知。

第二课时的平面图形也是由立体图形导入的,教师出示长方体,摸摸平平的面,老师可以把它可以平平的放在桌面上,在纸上把它的一个面模下来,看画的是个平面图形,它叫长方形,老师还可以转动不同的面,画出不同的长方形,由立体图形过度到平面图形。

再试一试正方形,正方形不论怎样转动不同的面,画的都是一样正方形,进一步的强化了长方体和正方体的不同。

那么圆柱呢?学生尝试画一画,可以得到圆形,追问还有什么立体图形能画出圆呢?有的学生会说到球,师生共同试一试,为什么画不成呢?因为球易滚动立不住,有什么办法吗?有个聪明的孩子说到把球切开,就像切西瓜一样,学生在联想中建立的空间观。

接下来让学生观察生活中的物体,教师出示一本台历,看台历的侧面,你们看到了什么图形,试着画一画,得到了三角形。

再让学生说一说那个物体接近那种立体图形,让学生开启智慧的眼睛,发现生活中的立体图形和平面图形,数学来源于生活。

学生先通过动手,找把“面”从“体”上印下来,再通过摸平面图形,体会“平面”的感觉。

从立体图形到平面图形

从立体图形到平面图形

3.下列图形中可以作为一个正方体的展开图的是(
).
(A)
(B)
(C)
(D)
下列图形能折叠成什么图形?
圆柱
五棱柱
圆锥
三棱柱
下列图形是什么多面体的表面展开图?
正方体
长方体
四棱锥
三棱柱
下列图形能折叠成什么立体图形?
圆柱
五棱柱
圆锥
三棱柱
正方体的展开图
将正方体的表面沿棱适当剪开,观察它的展开图是怎样的,然 后画出示意图.(沿着不同的棱剪开,会得到不同的展开图,
动手感知
下面是两个纸箱拆开后铺平的图片,它与展开图有哪些不同?
多了一些用来粘贴的部分
常见立体图形的展开图
圆柱
展开
常见立体图形的展开图
圆锥 展开
常见立体图形的展开图
长方体 展开
常见立体图形的展开图
三棱柱
展开
添加动态课件
1.如图,右面三幅图分别是从哪三个方向看这个棱柱得到的?
2.如图,把相应的立体图形与它的展开图用线连起来.
展开图初步 如何从三个方向观察立体图形? 什么是展开图?
常见的立体图形的展开图都是怎么样的?
总结
这节课我们还学会了什么?
正方体有11种展开图
一四一型
中间四个面,上下各一面 .
二三一型
中间三个面,二一隔河见.
二二二型 中间两个面 ,楼梯天天
三三型 中间没有面 ,三三连一
从立体图形到平面图形
教学目标
能够画出从不同方向看一些常见的立体图形所得到的平面图 形,能够根据从不同方向看一个立体图形得到的平面图形,想
象并描述它的形状.
能画出简单的几何体的展开图,根据展开图判断几何体的 形状,并能理解这样做的现实意义.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从立体图形到平面图形的相互转化[本讲数学思想方法的学习]1.立体图形与平面图形之间的相互转化。

即已知几何体画它的三种视图,已知视图确定几何体。

多边形之间的转化等都是转化思想的重要体现。

2. 根据几何体的俯视图中每个小正方形中所标注的数字可以画出几何体的主视图和左视图;根据三种视图,确定搭成几何体的小正方体的个数等都是数形结合思想的转化。

3.结合几何体的主视图和俯视图,画它的左视图,所画的左视图可能不惟一,需要根据不同的情况分类画出。

一.知识要点:1. 知识点概要⑴认识圆柱、圆锥、棱柱、球等立体图形的特征,能对几何体进行分类。

⑵能识别简单物体的三视图,会画简单几何体的三视图,并能根据三视图想象几何体或实物原形。

⑶认识立体图形与平面图形的关系,经历和体验图形的变化过程,掌握棱柱、圆锥、圆柱的侧面展开图,能根据展开图想象立体模型。

尤其是掌握正方体的展开与折叠。

⑷了解多边形的概念,知道任何多边形都可由三角形组合而成,知道点、线、多边形、圆等图形可组合成各种优美的图案。

2.重点难点⑴重点:对几何体的识别及分类,简单物体的三视图,根据展开图想象和制作立体模型。

⑵难点:由实物的形状抽象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的相互转化。

二. 考点分析:(一)立体图形1. 常见几何体的类型:①柱体;②锥体;③球体。

如图所示:图⑵,⑷,⑸,⑹,⑺都称为柱体,它们有两个面互相平行,余下的每相邻两个面的交线互相平行。

图⑴,⑼,⑽都称为锥体,图⑶是球体。

由图可以看出,柱体包括圆柱、棱柱;锥体包括圆锥、棱锥。

2. 常见几何体的特征:棱柱:棱柱的所有侧棱都相等,侧面的形状都是长方形,棱柱的上、下底面的形状相同。

因底面的形状不同而分为三棱柱,四棱柱、五棱柱……,如图⑷,⑸,是四棱柱,⑹是三棱柱,⑺是五棱柱。

圆柱:上、下底面是半径相等的两个圆面,侧面是一个曲面。

如图⑵。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。

因底面的形状不同而分为三棱锥,四棱锥、五棱锥……,如图⑼是四棱锥,图⑽是三棱锥。

圆锥:由一个底面(为圆)和一个侧面组成。

3.多面体:由多个平面围成的密封的几何体。

如果把一个多面体具有的顶点数记作V,棱数记作E,面数记作F,通过观察简单的多面体得到V+F-E=2,即顶点数+面数-棱数=2,人们称它为欧拉公式。

(二)几何体的三视图1. 三视图的概念:正视图―――从正面看到的图;左视图———从左面看到的图;俯视图———从上面看到的图。

如图1,是一个由小立方体搭成的几何体,它的三种视图如图2所示。

正视图反映几何体的长和高,俯视图反映几何体的长和宽,左视图反映几何体的高和宽。

2.常见几何体的三视图:3.画三视图的注意点:(1)一般先画几何体的主视图,再画左视图和俯视图。

(2)在画三视图时,要注意主、俯视图长相等,主、左视图要高平齐,左、俯视图要宽相等。

(三)立体图形的展开图1. 常见几何体的展开图:2.正方体的展开图:(四)平面图形1.常见平面图形:三角形、四边形、五边形、六边形、圆、扇形等。

2. 多边形:都是由一些不在同一条直线上的线段首尾相连组成的封闭图形。

3.多边形的分割:设一个多边形的边数为n,从这个n边形的一个顶点出发,分别连接这个顶点与n边形的其他各顶点(与这个顶点相邻的顶点除外),可以得到(n-2)个三角形。

4.多边形的组合:几个简单的平面图形巧妙组合,可以得到许多优美典雅而又看起来十分复杂的图案。

【典型例题】例3. (2008年巴中市)在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童。

这个铅笔盒(图1)的左视图是()。

分析:左视图是从左边看到的图。

从左边看,可看到两个相邻的长方形,又长方体的长比宽长,宽比高长,从左边看,只能看到宽、高的长度。

解:B。

例4. (2008年黄冈市)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )。

A.长方体B.圆柱体C.球体D. 三棱柱分析:长方体的三视图均是长方形,圆柱的正、左视图是长方形,俯视图是圆,球的三视图都是圆,三棱柱的正视图是长方形,左视图是相邻的两个长方形,俯视图是三角形。

即长方体、圆柱体、三棱柱都有同一种视图———长方形,只有球体例外。

解:C。

例5.(2008年宁夏回族自治区)展览厅内要用相同的正方体木块搭成一个三视图如右图的展台,则此展台共需这样的正方体______块。

分析:由正视图可知,展台有三列,左、右两列是3个,中间一列是1个,由左视图又可知,展台有三行,第一、二两行是1个,第三行是3个,由俯视图可知,展台有三列,左列有两行,中间一列有一行,右列有三行。

由此可得,展台所需的正方体应如右图放置。

解:10。

例6.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD 剪开展成平面图形,则所得的展开图是( )。

分析:可将四个选项中的每个图折叠一下,能得到三棱锥的便是。

解:B。

例7.正方体有三种不同放置方式,问下底面各是几?分析:图中出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对。

再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对。

解:图(1)的底面是2,图(2)的底面是5,图(3)的底面是1。

例8.(2008,遵义市)如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )A.奥B. 运ﻩ C. 圣ﻩD.火分析:由图1可知:“接”与“运”、“奥”与“圣”、“迎”与“火”是相对的,当小正方体从图2所示的位置依次翻到第1格时,小正方体朝上一面的字是“圣”,当小正方体从第1格的位置依次翻到第2格时,小正方体朝上一面的字是“运”,当小正方体从第2格的位置依次翻到第3格时,小正方体朝上一面的字是“火”。

解:D。

例9.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你回答下列问题。

A E DB C(1)一副七巧板有_______种不同形状的图形;(2)七巧板是由________制作而成的。

A. 三角形B. 梯形 C. 正方形 D.平行四边形(3)在一副七巧板中,有_______对可以完全重合的图形;(4)七巧板由一块正方形,一块_______和五块_______组成。

分析:由分割正方形可知:七巧板是由正方形制作而成的,有三种形状不同的图形,它们分别是正方形、平行四边形、等腰直角三角形。

解:(1)3;(2)选C;(3)两。

(4)平行四边形,等腰直角三角形。

例10. 请说下图中的平面图形是哪一个行业的标志,并简述它的含义。

分析:一个“中”字肯定与中国有关,有很多线条无限延伸,与线条有关,生活中与线条有关的行业有电信,电力……解:如图的标志牌,是中国电信行业的标志。

其含意约为:电信四通八达,中国电信联系全世界等等。

例11. 有两个完全相同的直角三角形,如果运用组合的方法,可以形成几种不同的四边形?分析:操作一下,可以发现:一个直角三角形有三条边,两个完全相同的直角三角形相同的边相接,有六种不同的组合方式,其中有两种方式组合的是三角形,剩下的四种都是四边形。

解:可形成四种不同的四边形,如下图所示:【模拟试题】(答题时间:90分钟)一、细心选一选:(每题2分,计20分)1.下列图形中,属于棱柱的是()2.下列图形的主视图中,和其它的有明显不同的是()A B C D3. 如果一个几何体的主视图和左视图都是长方形,俯视图是圆,那么这个几何体可能是( )A.圆锥B.棱柱C.圆柱 D. 球4.如图把一个圆绕虚线旋转一周,得到的几何体是( )A B C D5. 下列图形中,不属于三棱柱的展开图的是图()*6. 如图所示的图形,这是一个正方体的展开图,各个相对面的数字相同,则A、B、C面上的数字分别为()A. 2,5,3B. 3,5,2C.3,2,5D.5,2,3*7.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方A**8. 如图是由一些相同的小正方体构成的立体图形的三种视图。

那么构成这个立体图形的小正方体有( )俯视图左视图主视图A. 4个 B. 5个C. 6个D. 7个9. 下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形。

A.2个 B. 3个C.4个D.5个10.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为( )A. 2001B.2005C. 2004D. 2006二、仔细填一填:(每题2分,计20分)*11.在同一平面内,用游戏棒(同样长)搭4个一样大小的等边三角形,至少要_____根,在空间搭四个一样大小的等边三角形,至少要________根12.易拉罐类似于几何体中的______体,其中有____个平面,有____个曲面。

13.流星坠落会在空中留下一条______;转动的自行车的辐条(俗称“钢丝”)会形成一个________;一个长方形绕自身的一条边旋转会形成一个______。

14.如下图是两个立体图形的展开图,请你写出这两个立体图形的名称:15. 一个直角三角形绕它的一条直角边旋转一周形成的几何体是________。

16.一个正棱锥有六个顶点,所有侧棱长的和为30cm,则每条侧棱的长是______cm。

17. 在一个正十一边形中,从一个顶点出发,分别连接这个顶点与其余各顶点,可以构成个_______个三角形。

18. 若圆柱的底面半径为r,高为h,将这个圆柱侧面展开后,得到一个长方形,则这个长方形的面积用r、h表示出来是:__________。

*19. 用一个平面去截一个正方体,截面可以是:_________________________(要求至少写出4种)**20.如下图所示,图中共有___________个四边形。

第10题图三、认真画一画:(每题10分,计40分)21. 如图是由几个小正方体堆成的几何体,请以如图所示的正面为主视方向画出它的主视图、左视图、俯视图。

主视图左视图俯视图22. 请画出下列几何体的主视图、左视图、俯视图。

主视图左视图俯视图**23.下图是由小正方体搭成的几何体的俯视图,正方体中的数字表示该位置小正方体的个数,请你画出这个几何体的主视图和左视图。

24. 下图是某些几何体的平面展开图,请你想象一下这些几何体的样子,并说出它们的名称,画出它们的形状。

四、努力解一解:(每题10分,计20分)*25. 下图是一个几何体的平面展开图,每个面内都注上了字母,请回答下列问题:(1)如果面B在几何体的前面,那么哪一面在后面?(2)如果面E在几何体的底部,那么哪一面在上面?(3)如果面D在前面,面F在左面,那么哪一面在上面?哪一面在右面?•哪一面在底部?**26.如图所示,正方体的表面上有4条路线:(1)从A经棱的中点B到C;(2)从A经棱的中点D到C;(3)从A经顶点E到C;(4)从A经顶点P到C。

相关文档
最新文档