简支梁和悬臂梁的弯矩挠度计算
结构力学习题及答案

结构力学习题及答案结构力学习题及答案结构力学是工程学中的重要学科之一,它研究物体在外力作用下的变形和破坏。
在工程实践中,结构力学的应用广泛,涉及到建筑、桥梁、航空航天等领域。
在学习结构力学时,练习解答一些习题是非常重要的,下面我将给大家提供一些常见的结构力学习题及其答案。
题目一:简支梁的弯矩计算已知一根长度为L的简支梁,两端受到均布载荷q。
求梁的中点处的弯矩M。
解答一:根据简支梁的受力分析,可以得出梁的弯矩与距离中点的距离x之间的关系为M=qL/8-x^2/2,其中x为距离中点的距离。
因此,中点处的弯矩M=qL/8。
题目二:悬臂梁的挠度计算已知一根长度为L的悬臂梁,端部受到集中力F作用。
求梁的端部挠度δ。
解答二:根据悬臂梁的受力分析,可以得出梁的端部挠度与力F之间的关系为δ=FL^3/3EI,其中F为作用力,E为梁的杨氏模量,I为梁的截面惯性矩。
因此,梁的端部挠度δ=FL^3/3EI。
题目三:刚度计算已知一根长度为L的梁,截面形状为矩形,宽度为b,高度为h,梁的杨氏模量为E。
求梁的刚度K。
解答三:梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。
弯曲刚度Kb可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Kb=E*I/L。
剪切刚度Ks可以通过梁的剪切模量G和梁的截面面积A计算得到,即Ks=G*A/L。
因此,梁的刚度K=Kb+Ks=E*I/L+G*A/L。
题目四:破坏载荷计算已知一根长度为L的梁,截面形状为圆形,直径为d,梁的杨氏模量为E。
求梁的破坏载荷P。
解答四:梁的破坏载荷可以通过计算梁的破坏弯矩和破坏挠度得到。
破坏弯矩Mf可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Mf=π^2*E*I/L^2。
破坏挠度δf可以通过梁的破坏弯矩Mf和梁的刚度K计算得到,即δf=Mf/K。
因此,梁的破坏载荷P=Mf/L=π^2*E*I/L^3。
结构力学是一门综合性较强的学科,掌握结构力学的基本原理和解题方法对于工程师来说非常重要。
悬臂梁弯曲刚度公式

悬臂梁弯曲刚度公式
挠度计算公式:Ymax=5ql^4/(384EI)(长l的简支梁在均布荷载q作用下,EI是梁的弯曲刚度)
挠度:弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度,用γ表示。
转角:弯曲变形时横截面相对其原来的位置转过的角度称为转角,用θ表示。
挠度与荷载大小、构件截面尺寸以及构件的材料物理性能有关。
挠曲线方程:挠度和转角的值都是随截面位置而变的。
在讨论弯曲变形问题时,通常选取坐标轴x向右为正,坐标轴y向下为正。
选定坐标轴之后,梁各横截面处的挠度γ将是横截面位置坐标x的函数,其表达式称为梁的挠曲线方程,即γ=f(x)。
梁的抗弯刚度计算公式:ymax=(8Pl^3)/(Ebh^2)。
抗弯刚度是指物体抵抗其弯曲变形的能力。
早期用于纺织。
抗弯刚度大的织物,悬垂性较差;纱支粗,重量大的织物,悬垂性亦较差,影响因素很多,有纤维的弯曲性能、纱线的结构、还有织物的组织特性及后整理等。
悬臂梁挠度计算公式为:Ymax=8pl^3/(384ED)=1pl^3/(48ED),在这个公式式中每个部分都有所指,所以要弄清楚之后才可使用,首先Ymax梁跨中的最大挠度(mm),而p要为各个集中荷载标准值之和(kn),之后E主要是指钢的弹性模昰不同情况有不一样的标准,比如对于工程用结构钢,E就
2100000N/mm^2,最后是钢的截面惯矩可在型钢表中查出(mm^4),这就是整体的公式,可以完整采用。
两端简支梁力学计算公式

两端简支梁力学计算公式
1.弯矩计算公式:
弯矩是梁中最常见的力学特征之一,用来描述梁的弯曲性质。
在两端简支梁中,弯矩可以通过以下公式计算:
M=(wL^2)/8
其中,M表示弯矩,w表示分布载荷的单位长度,L表示梁的长度。
2.剪力计算公式:
剪力是横截面梁中的各个部分之间的内力,用来描述梁的抗剪能力。
在两端简支梁中,剪力可以通过以下公式计算:
V=(wL)/2
其中,V表示剪力,w表示分布载荷的单位长度,L表示梁的长度。
3.轴力计算公式:
轴力是梁中的纵向内力,用来描述梁的受力性质。
在两端简支梁中,轴力可以通过以下公式计算:
N=(wL)/2
其中,N表示轴力,w表示分布载荷的单位长度,L表示梁的长度。
4.梁的挠度计算公式:
梁的挠度是梁受到外力作用后发生的弯曲变形。
在两端简支梁中,梁的挠度可以通过以下公式计算:
δ=(5wL^4)/(384EI)
其中,δ表示梁的挠度,w表示分布载荷的单位长度,L表示梁的长度,E表示梁的弹性模量,I表示梁的截面惯性矩。
5.梁的应力计算公式:
在两端简支梁中,梁的应力可以通过以下公式计算:
σ=(My)/I
其中,σ表示梁的应力,M表示弯矩,y表示离梁轴心的距离,I表示梁的截面惯性矩。
以上公式只涵盖了两端简支梁力学计算中的一部分,实际应用中还需要考虑其他因素,例如温度变化、应变等。
此外,梁的材料性质和截面形状也会对计算结果产生影响,因此在具体应用中需要根据实际情况进行调整。
简支梁在各种荷载作用下跨中最大挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式之吉白夕凡创作一、均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q为均布线荷载尺度值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I为钢的截面惯矩,可在型钢表中查得(mm^4).二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).三、跨间等间距安插两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).四:跨间等间距安插三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).其中:q 为均布线荷载尺度值(kn/m).p 为各个集中荷载尺度值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
梁挠度计算公式范文

梁挠度计算公式范文梁的挠度指的是梁的中点的竖直偏移量,通常用来描述梁的刚度和承载能力。
在工程设计中,梁的挠度是一个非常重要的参数,它关系到梁的安全性和使用性能。
梁的挠度可以通过公式计算得到,不同类型的梁有不同的挠度计算公式。
下面将介绍几种常见的梁的挠度计算公式。
1.简支梁的挠度计算公式:在简支梁的情况下,梁两端都可以自由转动,公式如下:δ=(5*q*L^4)/(384*E*I)其中,δ表示梁的挠度,q表示单位长度上的荷载,L表示梁的长度,E表示弹性模量,I表示截面惯性矩。
2.两端固定梁的挠度计算公式:在两端固定梁的情况下,梁两端都不可以转动,公式如下:δ=(q*L^4)/(8*E*I)其中,δ、q、L和E的含义与简支梁的公式相同。
3.悬臂梁的挠度计算公式:在悬臂梁的情况下,梁的一端固定而另一端自由,公式如下:δ=(q*L^4)/(8*E*I)其中,δ、q、L和E的含义与两端固定梁的公式相同。
4.混合支承梁的挠度计算公式:对于混合支承梁,即一端支承,一端固定δ=(q*L^4)/(8*E*I)+(5*q*a^4)/(384*E*I)其中,δ表示梁的挠度,q表示单位长度上的荷载,L表示梁的长度,E表示弹性模量,I表示截面惯性矩,a表示梁的支承长度。
这些挠度计算公式可以用于梁的静态分析,但需要注意的是,实际工程中的梁往往更加复杂,具体情况需要根据实际情况进行分析和计算。
同时,在计算挠度时,还需要对材料的弹性模量、截面惯性矩等参数进行准确的测量或估算。
总结起来,梁挠度的计算公式主要涉及到荷载和几何参数,根据梁的支承方式和边界条件的不同,可以选择相应的挠度计算公式。
在实际工程应用中,还需要根据具体情况进行修正和调整,确保计算结果的准确性和可靠性。
简支梁悬臂梁挠度计算程序

简支梁悬臂梁挠度计算程序以下是简支梁和悬臂梁挠度计算程序的示例:```import math#简支梁挠度计算函数def simply_supported_beam(:length = float(input("请输入梁的长度(单位:米):"))load = float(input("请输入施加在梁上的集中载荷(单位:牛顿):"))modulus = float(input("请输入梁的弹性模量(单位:帕斯卡):"))moment_of_inertia = float(input("请输入梁的截面惯性矩(单位:米的四次方):"))max_deflection = (load * length**3) / (48 * modulus *moment_of_inertia)print(f"简支梁的最大挠度为:{max_deflection} 米")#悬臂梁挠度计算函数def cantilever_beam(:length = float(input("请输入梁的长度(单位:米):"))load = float(input("请输入施加在梁上的集中载荷(单位:牛顿):"))modulus = float(input("请输入梁的弹性模量(单位:帕斯卡):"))moment_of_inertia = float(input("请输入梁的截面惯性矩(单位:米的四次方):"))max_deflection = (load * length**3) / (3 * modulus *moment_of_inertia)print(f"悬臂梁的最大挠度为:{max_deflection} 米")#主程序def main(:print("梁的挠度计算程序")print("1. 简支梁")print("2. 悬臂梁")choice = int(input("请选择要计算的梁的类型(输入对应的数字):"))if choice == 1:simply_supported_beamelif choice == 2:cantilever_beamelse:print("输入无效的选项,请重新运行程序。
常用梁的挠度计算

常用梁的挠度计算
梁的挠度是指在受到外部荷载作用后,梁发生变形的程度。
挠度是评
估梁结构强度和刚度的重要指标,能够反映结构的安全性和可使用性。
常
用的梁的挠度计算方法有悬臂梁挠度计算、简支梁挠度计算和连续梁挠度
计算等。
1.悬臂梁挠度计算:
悬臂梁挠度计算是最简单的一种计算方法,适用于梁的两端都固定,
只在一端受力的情况。
悬臂梁挠度计算公式如下:
δ=(5*P*L^4)/(384*E*I)
其中,δ表示梁的挠度,P表示施加在梁上的外力,L表示梁的长度,E表示弹性模量,I表示截面惯性矩。
2.简支梁挠度计算:
简支梁挠度计算适用于梁的两端都是铰接支承的情况。
简支梁挠度计
算公式如下:
δ=(P*L^3)/(48*E*I)
其中,δ表示梁的挠度,P表示施加在梁上的外力,L表示梁的长度,E表示弹性模量,I表示截面惯性矩。
3.连续梁挠度计算:
连续梁挠度计算适用于梁的两端都是固定支承的情况。
连续梁挠度计
算需要考虑每个支点的弯矩和反弯矩,计算公式较为复杂。
通常有两种常
用的计算方法。
(1)等效梁法:
将连续梁转化为若干个等效简支梁的组合,可以采用简支梁挠度计算公式进行计算。
(2)曲线线性法:
将连续梁挠曲线近似为一条抛物线,在每个支点处计算受力和挠度,然后进行叠加,最终得到整个连续梁的挠度。
以上是常用的梁的挠度计算方法。
需要注意的是,以上计算方法都是基于假设梁具有线弹性行为,并且未考虑弯曲刚度非线性和截面非线性等因素。
在实际工程中,还需要结合具体情况进行验证和调整。
简支梁挠度计算公式

简支梁挠度计算公式简支梁的挠度是指在承受外力作用下,梁的中点处产生的弯曲形变。
挠度计算可以通过梁的几何特性和力学公式来求解。
下面将介绍简支梁的挠度计算公式。
首先,我们需要了解简支梁的几何特性。
简支梁是指两端固定,中间自由悬挂的梁。
假设梁的长度为L,弹性模量为E,截面面积为A,惯性矩为I。
简支梁的挠度可以通过弯曲方程来计算。
根据梁的几何形状和外力的作用,可以得到弯曲方程为:d^2y/dx^2 = M/(E*I)其中,y为梁的挠度,x为横向距离,M为梁上的弯矩。
接下来,我们需要确定梁上的弯矩M的表达式。
简支梁上的弯矩可以通过外力和梁的几何特性来计算。
一般情况下,简支梁承受的外力可以分为集中力和分布力两种情况。
1.集中力作用的挠度计算对于集中力在梁上的作用点为a处,作用力为P的情况,可以通过以下公式计算挠度:y=(Px^2*(L-x)^2)/(6*E*I*L)其中,x为横向距离,L为梁的长度。
2.分布力作用的挠度计算对于均匀分布荷载q的情况,可以通过以下公式计算挠度:y=(q*x^2*(L^2-x^2))/(24*E*I)其中,x为横向距离,L为梁的长度。
需要注意的是,在进行挠度计算时,我们需要根据具体的情况选择合适的公式。
比如,在不同的挠度计算点处,可能会受到不同的力和力矩作用,需要进行分段计算和积分计算。
综上所述,简支梁的挠度计算公式主要包括弯曲方程和弯矩表达式。
通过确定梁上的外力和几何特性,我们可以求解简支梁在不同位置处的挠度。
挠度计算对于结构工程设计以及材料选择有着重要的作用,可以帮助工程师评估结构的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0
到端点距 到固定点 到固定点任意
离/mm 距离/mm
距离/mm 弹性模量/N/mm2 惯性矩/mm4
a
b
x<b<l
E
Iy
0
0
0
210000
11800
0
0
0
210000
32700
0
0
0
210000
66600
0
0
0
210000
139700
0
0
0
210000
217800
0
ACS-21D
0
ACS-41D
0
ACS-52D
0
ACS-52-72D 0
ACS-72D
0
00 00 00 00 00 00 00 00 00 00 00 00
ACS-21
0
0
ACS-31
0
0
ACS-41
0
0
ACS-52
0
0
ACS-62
0
ACS-72
0
ACS-82
0
ACS-21D
0
ACS-41D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
210000 210000 210000 210000 210000 210000 210000 210000
210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
#DIV/0!
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
210000
1243300
0
210000
1882900
0
0
0
0
0
0
0
0
0
0
0
0
210000 210000 210000 210000
11800 32700 66600 139700
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ACS-52D
0
ACS-52-72D 0
ACS-72D
0
ACS-21
0
ACS-31
0
ACS-41
0
ACS-52
0
ACS-62
0
ACS-72
0
ACS-82
0
ACS-21D
0
ACS-41D
0
ACS-52D