高中数学必修四 三角函数的图像变换

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

高中数学必修四《正弦函数、余弦函数的图像》PPT

高中数学必修四《正弦函数、余弦函数的图像》PPT

2
2
-1
3
2
x
2
〖练习 〗 画出函数y=-cosx,x[0, 2]的简
图.
x
0
2
3
2
2
cosx 1
0
-1
0
1
- cosx -1
0
1
0
-1
y
1
o
2
2
-1
3
2
x
2
y= - cosx,x[0, 2]
归纳与整理
1. 正弦曲线、余弦曲线
几何画法 五点法(画简图)
2.注意与诱导公式、三角函数线等知识的联系
y
1
y=cosx,x[0, 2]
o
2
2
3
2
x
2
-1
y=sinx,x[0, 2]
其中“五点法”最常用,要牢记五个关键点的 坐标。
课堂延伸 思考1、你能否从正弦函数、余弦函数 的图象发现函数的哪些性质呢?
思考2、在同一坐标系中画出函数 y=sinx ,x∈[0,2π]与y=cosx ,x∈[0,2π] 的图象,你还能发现什么?
( 2 ,0) ( 2 ,0) ( 2 ,0)
( 2 ,0) ( 2 ,0) 2 ,0)
x
3
0
2
2
2
sinx
0
1
0
-1
0
【正弦函数、余弦函数的图象】
y
-4 -3
-2
1
- o
-1
2
3
正弦函数的图象
关系?
y=cosx=sin(x+ ), xR
2
余弦函数的图象 y
-4 -3

7一轮高三必修四——三角函数图像变换

7一轮高三必修四——三角函数图像变换

课题函数sin()(0)y A x ωϕω=+>的图像课型一轮复习课时1考纲要求1.理解参数,,A ωϕ对函数图像变化的影响;2.能够根据图像求函数sin()(0)y A x ωϕω=+>的解析式 教学过程知识点串联一、自主学习1.阅读必修四课本P49-55页完成全品P57“知识聚焦”3的填空。

2.回顾练习:函数11y x =-的图像可以看做是由函数1y x=的图像 而得到。

函数2x y =和1()2x y =的图像关于 对称.请画出函数2log y x =和函数2log y x =的图像。

二、典例探究 探究点一 函数sin()(0)y A x ωϕω=+>的图像及变换例1. 将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A )sin(2)10y x π=- (B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-1. 图像变换的形式: 平移变换:对称变换:翻折变换:伸缩变换:探究点二 函数sin()(0)y A x ωϕω=+>的解析式的求法 例2.已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A. ω=1 ϕ= 6πB. B. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π 三、跟踪训练 1.将函数y=sin(x+π/6)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )(A) y=sin(2x+5π/12) (B) y=sin(x/2+5π/12)(C) y=sin(x/2+π/12) (D) y=sin(x/2+5π/24)2.将函数y=sin(x-π/3)的图像上所有的点的横坐标伸长带原来的2倍(纵坐标不变),再将所得的图象向左平移π/3个单位,得到的图象对应的解析式为( )(A)y=sin(x/2) (B)y=sin(x/2-π/2) (C) y=sin(x/2-π/6) (D)sin(2x-π/6)3. 设函数)(),0)(2sin()(x f y x x f =<<-+=ϕπϕ的图像的一条对称轴是直线8π=x(1)求ϕ的值;(2)求函数)(x f y =的单调区间 四、课后作业 全品注意:平移变换和伸缩变换的顺序例题2图。

必修四 三角函数复习(图像和性质)讲义

必修四  三角函数复习(图像和性质)讲义

三角函数的图象及性质复习考纲要求三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来本节主要帮助考生掌握图象和性质并会灵活运用重难点归纳1考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用2三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强3三角函数与实际问题的综合应用此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用♦ ()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化:x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕω 周期问题◆ ()()()(), 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , >>+==>>+==>>+==>>+=ωϕωωπωϕωωπωϕωωπωϕωx ACos y x ASin y x ACos y x ASin y❖()()ωπωϕωωπωϕω=>>+==>>+=T , 0 , 0A , tan T , 0 , 0A , tan x A y x A y 典型题例示范讲解(一)对三角函数性质的考查:题型一:最值问题 例1.(全国理15)已知函数()4cos sin()16f x x x π=+-。

(Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。

练习:1(2011汕头模拟)设a R ∈,()()2cos sin cos cos 2f x x a x x x π⎛⎫=-+- ⎪⎝⎭满足()03f f π⎛⎫-= ⎪⎝⎭,求函数()f x 在11[,]424ππ上的最大值和最小值.2(2011佛一模).函数cos ()sin ()y x x ππ22=+-+44的最小正周期为A .4πB .2π C .πD .2π3.(本小题满分12分)(2011广一模)已知函数()2sin cos cos2f x x x x =+(x ∈R ). (1) 当x 取什么值时,函数()f x 取得最大值,并求其最大值; (2) 若θ为锐角,且83f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值.题型二:对称性问题 例1.(本小题满分12分)(2010广一模)已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若函数24y f x π⎛⎫=+ ⎪⎝⎭的图像关于直线6x π=对称,求ϕ的值.2.(2011佛一模)定义运算a bc d,ad bc =-则函数()f x =2sin 12cos x x -图像的一条对称轴方程是( )A .2x π=B .4x π=C .x π=D .0x =练习1.(2010深圳)已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

[规律方法] 正切型函数单调性求法与正、余弦型函数求法一 样,采用整体代入法,但要注意区间为开区间且只有单调增区 间或单调减区间.利用单调性比较大小要把角转化到同一单调 区间内.
【活学活用 2】 (1)求函数 y=3tanπ4-2x的单调递减区间. (2)比较 tan 65π 与 tan-173π的大小.
课堂小结 1.正切函数的图象
正切函数有无数多条渐近线,渐近线方程为 x=kπ+π2,k∈Z, 相邻两条渐近线之间都有一支正切曲线,且单调递增.
2.正切函数的性质 (1)正切函数 y=tan x 的定义域是xx≠kπ+π2,k∈Z ,值域是 R. (2)正切函数 y=tan x 的最小正周期是 π,函数 y=Atan(ωx+ φ)(Aω≠0)的周期为 T=|ωπ |. (3)正切函数在-π2+kπ,π2+kπ(k∈Z)上递增,不能写成闭区 间.正切函数无单调减区间.
xπ6+2kπ≤x≤43π+2kπ,k∈Z

.

(3)令2x-π3=0,则 x=23π. 令2x-π3=π2,则 x=53π. 令2x-π3=-π2,则 x=-π3. ∴函数 y=tan2x-π3的图象与 x 轴的一个交点坐标是23π,0, 在这个交点左、右两侧相邻的两条渐近线方程分别是 x=-π3, x=53π.从而得函数 y=f(x)在一个周期-π3,53π内的简图(如图).
【例 2】 (1)求函数 y=tan-12x+π4的单调区间; (2)比较 tan 1、tan 2、tan 3 的大小. [思路探索] (1)可先将原式转化为 y=-tan12x-π4,从而把12x-π4 整体代入-π2+kπ,π2+kπ,k∈Z 这个区间内,解出 x 便可. (2)可先把角化归到同一单调区间内,即利用 tan 2=tan (2-π), tan 3=tan (3-π),最后利用 y=tan x 在-π2,π2上的单调性判 断大小关系.

人教版高中数学必修四第一章三角函数图像变换

人教版高中数学必修四第一章三角函数图像变换

1应该认识到,阅读是学校教育的重要 组成部 分,一 个孩子 如果在 十多年 的教育 历程中 没有养 成阅读 的习惯 、兴趣 和能力 ,一旦 离开校 园,很 可能把 书永远 丢弃在 一边, 这样的 结果一 定是我 们所有 的教育 工作者 不想看 到的。
2对教育来说,阅读是最基础的教学手 段,教 育里最 关键、 最重要 的基石 就是阅 读。
人教版高中数学必修四第一章三角函 数图像 变换
y
1
o
-1
y=sin2x
y=sinx
y sin 1 x 2
3
3 2
2
2
4
x
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
观察上图发现:
函数y=sinωx, xR (ω>0且ω1)的图象,可看作把正 弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到 原来的 1 倍(纵坐标不变)而得到的,实际上我们
3但是现在,我们的教育在一定程度上 ,还不 够重视 阅读, 尤其是 延伸阅 读和课 外阅读 。
4. “山不在高,有仙则名。水不在深 ,有龙 则灵” 四句, 简洁有 力,类 比“斯 是陋室 ,惟吾 德馨” ,说明 陋室也 可借高 尚之士 散发芬 芳
5. 这是一篇托物言志的铭文,本文言 简义丰 、讲究 修辞。 文章骈 散结合 ,以骈 句为主 ,句式 整齐, 节奏分 明,音 韵和谐 。
导入课题:
物理实例:1.简谐振动中,位移与时间的关系 2.交流电中电流与时间的关系
都可以表示成形如:y=Asin(ωx+φ)的解析式
探索研究
一、函数y=Asinx与y=sinx的图象关系

三角函数图像变换说课稿

三角函数图像变换说课稿

《函数)sin(ϕω+=x A y 的图象》的说课稿尊敬的各位评委、各位老师大家好!我叫佟丹丹,今天我说课的内容是人教A 版数学必修4第一章第五节《函数)sin(ϕω+=x A y 的图象》.现在我就教材、教法、学法、教学设计和板书五个方面来陈述我对本节课的设计方案。

【一】说教材一、教材分析1。

本节内容本节通过图像变换,揭示参数A 、ω、ϕ变化时对函数图像的形状和位置的影响,并讨论函数)sin(ϕω+=x A y 的图象与正弦曲线的关系,以及A 、ω、ϕ的物理意义,并从图象变化的过程,进一步了解正余弦函数的性质。

2。

本节教材的地位和作用由正弦曲线变换得到)sin(ϕω+=x A y 的图象的思维过程并不表示实际画图方法,但充分体现了由简单到复杂、特殊到一般的化归的数学思想,所以本节承载着三角函数这一章中的重要作用。

三角函数中许多化简、求值题以及研究函数性质的问题都涉及到)sin(ϕω+x A 的形式,研究它的图象能使学生将已有的知识形成体系,有助于培养学生利用数形结合的思想解决问题。

同时,本节课在教学中力图向学生展示尝试观察、归纳、类比、联想等数学思想方法。

二、教学目标根据《课程标准》关于本节课的教学要求,以贯穿创新意识和实践能力的培养为宗旨,以教材的特点和所教学生的实际为出发点,设定教学目标如下:1. 知识目标:①掌握A 、ω、ϕ的变化对函数图象的形状及位置的影响;②进一步研究由A 变换、ω变换、ϕ变换构成的综合变换。

2.能力目标:培养学生的实践能力和分析问题、解决问题的能力,归纳总结能力、逻辑思维能力。

3.德育目标:①数形结合思想的渗透;②培养学生“由简单到复杂、由特殊到一般”的化归思想。

③培养学生的探究能力和协作学习的能力,从而提高学习数学的兴趣。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:三、教学重点、难点1、重点:将考察参数ϕ、ω、A 对函数)sin(ϕω+=x A y 的图象的影响进行分解,从而学习如何将一个复杂问题分解为若干简单问题的方法 .2、难点:①在观察图象变换中发现规律,并能用自己的语言来表达;②ϕ变换、ω变换、A变换的不同顺序对图象的影响。

§4.3 三角函数的图象与性质

§4.3 三角函数的图象与性质

于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4

(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4

11 12
π-
2 3
π=
π 4
,得


π,

T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设


ωx+φ,由


0,
π 2
3π ,π, ,2π

来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


y sin( x ) 3x
5
y 3sin x
3


6
1
o
3
-1
-3
5
6
y sin(2x )
3

y sin( x ) 3x
5
y 3sin x
3


6
1
o
3
-1
-3
y 3sin(2x )
3
5
6
y sin(2x )
3

y sin( x ) 3x
5
y 3sin x
先平移后伸缩
y 3sin(2x )
3
3
y 3sin 2x
1 o
6-1
5
6 y sin 2x
x
y sin x
-3 先伸缩后平移
练习1. 作下列函数在一个周期的闭区间上的简图,并指 出它的图象是如何由函数 y=sinx 的图象而得到的.
练习2. 完成下列填空 ⑴ 函数y=sin2x图象向右平移
高中数学 必修四
1.5 三角函数的图像变换
学霸兔 微信:xuebatwo
三角函数的图像变换
y sin x
沿x轴平移:左加右减 y sin( x () >0)
沿y轴平移:上加下减 y sin x (c c>0)

y A sin x( A>0 )

y sin( x() >0)
y sin 2x
y
1
任意一个
y,每个
x
值乘以������
������
O -1


2
3
2 x
2
y sin x( >0)
y
任意一个
y,每个
x
值乘以 ������
������
1
O -1


2
3
2 x
2
(四) 函数 y=sinωx(ω>0) 的图象可由函数 y=sinx 的图
象沿 x 轴伸长(ω<1)或缩短(ω >1)到原来的

y sin( x () >0) y sin x (c c>0) y A sin x( A>0 )
y sin( x() >0)
三角函数的图像变换
y sin x
沿x轴平移:左加右减 y sin( x () >0) 沿y轴平移:上加下减 y sin x (c c>0)
个单位所得图象的函数
表达式为
⑵ 函数y=3cos(x+数表达式为
练习2. 完成下列填空
⑶函数y=2loga2x图象向左平移3个单位所得图象的函数表 达式 ⑷函数y=2tan(2x+ )图象向右平移3个单位所得图象的函 数表达式为
������ 倍而得
������
到的 .
y sin x
纵坐标不变 横坐标变原来的 ������ 倍
������
y sin x( >0 )
y sin x
三角函数的图像变换
沿x轴平移:左加右减
沿y轴平移:上加下减
横坐标不变
纵坐标变原来的 A 倍
纵坐标不变
横坐标变原来的
������ ������
函数图像的平移变换
y sin x
三角函数的图像变换
横坐标不变
纵坐标变原来的 A 倍
纵坐标不变 横坐标变原来的 ������ 倍
������
y A sin x( A>0 ) y sin( x() >0)
函数图像的伸缩变换

3
1 x
o
-1
y sin x
-3
3
1
o
3
-1
-3
(一) 函数 y=sin(x±)(>0) 的图象可由函数 y=sinx 的图像向左(或右)平移 个单位而得到 .
(二) 函数 y=sinx±c(c>0) 的图象可由函数 y=sinx 的
图像向上(或下)平移 c 个单位而得到 .
y 2 sin x
y
2
任意一个 x,每个 y 值乘以2
1
O


3
2 x
-1
2
2
-2
y A sin x( A>0)
y
2
任意一个 x,每个 y 值乘以A
1
O


3
2 x
-1
2
2
-2
(三) 函数 y=Asinx(A>0) 的图象可由函数 y=sinx 的图
象沿 y 轴伸长(A>1)或缩短(A<1)到原来的 A 倍而得到 的.
横坐标不变
y sin x 纵坐标变原来的 A 倍 y A sin x( A>0 )
相关文档
最新文档