初中数学二次函数知识点汇总
二次函数知识点全总结初中

二次函数知识点全总结初中二次函数是代数学中的重要内容,也是中学数学中的重要内容之一。
在学习二次函数时,不仅要掌握它的基本概念和性质,还要掌握它的图像、方程和应用等方面的知识。
下面对二次函数的知识点进行全面总结。
一、二次函数的基本概念和性质1. 二次函数的定义二次函数是形如f(x) = ax² + bx + c (a≠0)的函数,其中a、b、c为常数。
二次函数的自变量x的最高次数是2,因此称为二次函数。
2. 二次函数的图像二次函数的图像通常是一个开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的开口方向由二次项的系数a决定。
3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。
顶点的横坐标为-x轴上的对称轴,纵坐标为抛物线的最低值或最高值。
4. 二次函数的对称轴对称轴是过顶点并垂直于x轴的直线,对称轴的方程为x = -b/2a。
5. 二次函数的零点二次函数与x轴相交的点称为零点,其坐标为(x, 0)。
二次函数的零点可以由解二次方程ax² + bx + c = 0得到。
6. 二次函数的凹凸性凹凸性是指二次函数的图像的形状,当a>0时,抛物线开口向上,图像是凹的;当a<0时,抛物线开口向下,图像是凸的。
二、二次函数的图像与性质1. 二次函数图像的平移二次函数y = ax² + bx + c的图像平移,一般可以通过改变常数c来实现。
当c>0时,图像上移;当c<0时,图像下移。
常数b则可以控制图像的水平平移。
2. 二次函数图像的伸缩二次函数图像的伸缩可以通过改变系数a来实现。
当|a|>1时,图像纵向伸缩;当0<|a|<1时,图像纵向压缩。
系数b则可以控制图像的水平伸缩。
3. 二次函数的最值对于二次函数y = ax² + bx + c,当a>0时,最小值为f(-b/2a),最大值为正无穷;当a<0时,最大值为f(-b/2a),最小值为负无穷。
初中数学二次函数最全知识点总结

初中数学二次函数最全知识点总结二次函数是数学中一个重要的函数概念,在初中阶段也有着广泛的应用。
下面是关于初中数学二次函数最全的知识点总结,供你参考。
一、基本形式二次函数的基本形式为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
二、图像特征1.抛物线:二次函数的图像是一个抛物线,可以开口向上或向下。
2.拉伸:a确定了抛物线的开口方向和形状,绝对值越大,抛物线越“瘦长”,绝对值越小,抛物线越“圆胖”。
3.对称性:二次函数的图像关于直线x=-b/2a对称。
4.顶点坐标:直线x=-b/2a与抛物线的交点即为抛物线的顶点坐标。
5. 零点:二次函数的零点是指函数图像与x轴交点的横坐标,即解方程ax² + bx + c = 0。
三、顶点坐标的确定1.顶点坐标的横坐标x=-b/2a。
2.代入x值可以得到顶点坐标的纵坐标y=f(-b/2a)。
四、二次函数的方程及解法1. 二次函数方程一般形式:ax² + bx + c = 0。
2.解法一:使用因式分解法,将方程化为(x-m)(x-n)=0的形式,其中m和n为实数。
3. 解法二:使用配方法,对方程ax² + bx + c = 0进行化简,得到(ax + p)² + q = 0的形式,其中p和q为实数。
4. 解法三:使用求根公式,根据公式x = (-b ± √(b² - 4ac)) / 2a求得方程的根。
五、二次函数的特殊情况1.完全平方式:当二次函数的方程形式为(x+m)²=0时,说明抛物线的顶点坐标为(-m,0),且抛物线开口向上。
2.切线与二次函数的关系:二次函数的切线与函数图像的交点为切点,其斜率等于函数的导数值,切线的方程可以通过点斜式得到。
3. 线性函数与二次函数的关系:当二次函数的系数a = 0时,二次函数化为线性函数,即y = bx + c。
六、二次函数的应用1.模型拟合:二次函数可以用来拟合一些实际问题的数学模型,如抛物线运动问题、图像反演等。
初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是一种常见的数学函数,其关键特点是含有二次项(x²)的多项式函数。
以下是关于二次函数的最全知识点总结。
一、基本定义与性质:1. 二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数,且a≠0。
2.二次函数的图像是一个平滑的开口向上或向下的抛物线。
3.抛物线的开口方向由二次项的系数a决定,若a>0,则开口向上;若a<0,则开口向下。
4.抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)表示二次函数。
5. 若D=b²-4ac>0,则抛物线与x轴有两个不同的交点;若D=0,则抛物线与x轴有一个不同的交点;若D<0,则抛物线与x轴没有交点。
6.轴对称线的方程为x=-b/2a。
7.当a>0时,二次函数的值域为[f(-b/2a),+∞);当a<0时,二次函数的值域为(-∞,f(-b/2a)]。
二、顶点相关问题:1. 顶点坐标可以通过求解二次函数的导数为0得到。
即f'(x)=2ax+b=0,解得x=-b/2a,带入二次函数得到顶点坐标。
2.顶点为函数的最值点,当开口向上时,顶点为最小值点;当开口向下时,顶点为最大值点。
3.当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。
4.顶点在数轴上的位置对应了函数的增减性质。
三、对称性与坐标轴交点:1.二次函数是轴对称的,其轴对称线为x=-b/2a。
2.函数与轴对称线的交点为(0,c)。
3.函数与y轴的交点为(0,c),其中c为常数项。
4.函数与x轴的交点取决于D的值,若D>0,则存在两个不同的交点;若D=0,则存在一个交点;若D<0,则不存在交点。
四、图像的变换与性质:1.若在二次函数的一般形式中,a改变为-k(k为常数,k≠0),则图像沿x轴翻转,开口方向不变。
2.若在二次函数的一般形式中,c改变为+k(k为常数),则图像上下平移,平移量为+k。
初中数学二次函数知识点总结

初中数学二次函数知识点总结1. 二次函数的定义二次函数是一个数学函数,其一般形式为f(x) = ax² + bx + c,其中a、b和c为常数,且a 不等于0。
在这个函数中,x是自变量,f(x)是因变量,a、b和c分别为二次项、一次项和常数项的系数。
二次函数的图像通常是一个开口朝上或者朝下的抛物线。
2. 二次函数的图像特征二次函数的图像通常是一个抛物线,其开口的方向取决于二次项的系数a的正负。
当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。
另外,二次函数的图像还有一个顶点,可以通过公式(-b/2a, f(-b/2a))来求得。
3. 二次函数的性质二次函数有一些重要的性质,其中最重要的就是顶点坐标的计算方法。
具体来说,可以通过求出二次函数的导数,然后令导数等于0来求得函数的极值点。
另外,二次函数还有一个重要的特点,就是它的图像是对称的。
具体来说,二次函数的图像关于顶点对称。
4. 二次函数的解析式二次函数的解析式一般可以写成一般式f(x) = ax² + bx + c,也可以写成顶点式f(x) = a(x-h)² + k,其中(h, k)为顶点的坐标。
通过解析式,可以方便地求得二次函数的相关性质,比如顶点坐标、根的个数和方向等。
5. 二次函数与二次方程二次函数与二次方程有着密切的关系。
事实上,二次函数的图像就是二次方程y = ax² + bx + c的图像。
二次函数的图像是由二次方程y = ax² + bx + c的解析式所确定的。
而二次方程则可以通过求解二次函数的零点来求得。
6. 二次函数的应用二次函数在现实生活中有着广泛的应用。
比如,物体的自由落体运动、抛物线的轨迹、天桥的设计等都可以通过二次函数来描述和求解。
另外,二次函数还可以用来描述一些生活中的变化规律,比如描绘人口增长、销售额变化等。
以上就是初中数学二次函数的知识点总结,希望可以帮助学生更好地掌握这一重要的数学概念。
初中数学二次函数知识点总结

初中数学二次函数知识点总结一、二次函数的定义二次函数是形如y=ax²+bx+c的函数,其中a、b、c为常数且a≠0。
二次函数的图像是抛物线,开口向上或向下,其顶点坐标为(-b/2a, c-b²/4a)。
二、二次函数的性质1. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 对称轴:二次函数的对称轴为x=-b/2a。
3. 最值:当a>0时,二次函数的最值为最小值,为c-b²/4a;当a<0时,二次函数的最值为最大值,为c-b²/4a。
4. 零点:二次函数的零点为x轴与函数图像的交点,是方程ax²+bx+c=0的解。
三、二次函数的图像1. 开口向上的二次函数图像是上凹的抛物线,最值为最小值。
2、开口向下的二次函数图像是下凹的抛物线,最值为最大值。
四、二次函数的相关变形1. 二次函数的平移:y=ax²+bx+c中,整体向左平移h个单位,变为y=a(x+h)²+bx+c;整体向下平移k个单位,变为y=a(x)²+bx+(c-k)。
2. 二次函数的垂直缩放:y=ax²+bx+c中,整体向上缩放k倍,变为y=(ak)x²+bx+c。
3. 二次函数的水平缩放:y=ax²+bx+c中,整体水平缩放k倍,变为y=ax²+(bk)x+c。
五、求解二次函数的相关问题1. 求二次函数的零点:利用求根公式x=[-b±√(b²-4ac)]/2a可以求得二次函数的零点。
2. 求二次函数的最值:通过对称轴和顶点坐标的关系,可以求得二次函数的最值。
3. 求二次函数的图像与坐标轴的交点:将函数代入x=0和y=0可以求得函数与坐标轴的交点。
六、二次函数的应用1. 生活中的应用:抛物线运动、拱桥结构、水流下落等。
2. 数学解题中的应用:解方程、求最值、求零点等。
初中数学二次函数知识点总结

初中数学二次函数知识点总结一、二次函数的定义和性质:二次函数是形如f(x) = ax² + bx + c(a ≠ 0)的函数,其中a、b、c为常数,且a 的值决定了抛物线的开口方向。
1. 二次函数的图像是一条抛物线,可以分为三种情况:a)当a > 0时,抛物线开口向上,函数的最小值为c;b)当a < 0时,抛物线开口向下,函数的最大值为c;c)当a = 0时,函数为线性函数,图像为一条直线。
2. 抛物线的对称轴方程为x = -b/(2a)。
3. 抛物线的顶点坐标为对称轴上的点,可以通过对称轴方程求得。
4. 当抛物线开口向上时,函数的值随着x的增大而增大;当抛物线开口向下时,函数的值随着x的增大而减小。
5. 当二次函数与x轴交点时,即f(x) = 0,可以通过因式分解、配方法或求根公式求得x的值。
二、二次函数的图像及其性质的应用:1. 求解二次不等式:可以通过函数图像的性质进行解题,即判断图像与x轴的交点的情况。
2. 求解实际问题:如抛物线模型、最值问题等,将实际问题转化为二次函数的问题,再通过函数图像的性质求解。
三、二次函数的基本变形:1. y = a(x - h)² + k:顶点坐标为(h, k),对称轴方程为x = h,图像开口方向与a 的正负有关。
2. y = ax² + bx + c + d:在基本函数的基础上进行平移,平移量为(d, d)。
3. y = a(x - h)² + k + d:在基本函数的基础上进行平移和伸缩,平移量为(d, d),伸缩量为a。
4. y = a(x - h)² + k + d:在基本函数的基础上进行平移、伸缩和翻转,平移量为(d, d),伸缩量为a,翻转轴为直线x = h。
四、二次函数的相关概念:1. 零点:即函数与x轴交点的横坐标,可以通过因式分解、配方法或求根公式求得。
2. 最值:当二次函数开口向上时,函数的最小值为c;开口向下时,函数的最大值为c。
初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。
3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。
4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。
二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。
2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。
3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。
4.抛物线的轴对称性:抛物线关于对称轴对称。
5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。
6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。
三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。
2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。
四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。
2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。
初中二次函数知识点总结(全面)

二次函数知识点二次函数概念:1. 二次函数的概念: 一般地, 形如y=ax2+bx+c(是常数, a≠0)的函数, 叫做二次函数。
这里需要强调: 和一元二次方程类似, 二次项系数a≠0, 而可以为零. 二次函数的定义域是全体实数。
<<>≤≥2.二次函数y=ax2+bx+c的性质1)当a>0时, 抛物线开口向上, 对称轴为, 顶点坐标为.当时, 随的增大而减小;当时, 随的增大而增大;当时, 有最小值..2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.(三)、二次函数解析式的表示方法1.一般式: (, , 为常数, );2.顶点式: (, , 为常数, );3.两根式: (,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式, 只有抛物线与轴有交点, 即时, 抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.练习1.下列关系式中, 属于二次函数的是(x为自变量)( )A. B. C. D.2.函数y=x2-2x+3的图象的顶点坐标是(). A.(1, -4.. B.(-1, 2...C.(1, 2... D.(0, 3)3.抛物线y=2(x-3)2的顶点在..)A.第一象....B.第二象...C.x轴....D.y轴上4.抛物... 的对称轴是.. )9、 A.x=-....B.x=.... C.x=-.....D.x=45.已知二次函数y=ax2+bx+c的图象如图所示, 则下列结论中, 正确的是(.)A.ab>0, c>0B.ab>0, c<0C.ab<0, c>0D.ab<0, c<06.二次函数y=ax2+bx+c的图象如图所示, 则点在第_.象限()A.一B.二C.三D.四7.如图所示, 已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4, 图象交x轴于点A(m, 0)和点B, 且m>4, 则AB的长是()A.4+.B.mC.2m-8D.8-2m10、8.若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是.)11、 抛物线3)2(2+-=x y 的对称轴是( ) A.直线B.直线C.直线D.直线10.把抛物线的图象向左平移2个单位, 再向上平移3个单位, 所得的抛物线的函数关系式是()A. B.C. D.二、填空题1、下列函数中, 哪些是二次函数?(1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+=(4)322-+=x x y 2.二次函数的图象开口方向, 顶点坐标是, 对称轴是; 3.当k 为何值时, 函数为二次函数? 画出其函数的图象.3.函数, 当为时, 函数的最大值是;4、二次函数, 当时, ;且随的增大而减小;5.二次函数y=x2-2x+1的对称轴方程是______________.6.若将二次函数y=x2-2x+3配方为y=(x-h)2+k 的形式, 则y=________.7.若抛物线y=x2-2x-3与x 轴分别交于A.B 两点, 则AB 的长为_________..8.抛物线y=x2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.9、二次函数的对称轴是.10二次函数的图象的顶点是, 当x 时, y 随x 的增大而减小.11抛物线的顶点横坐标是-2, 则=.12、抛物线的顶点是, 则、c 的值是多少?(1) 13. 已知抛物线y=﹣x -3x -(2) 写出抛物线的开口方向、对称轴和顶点坐标;(3) 求抛物线与x 轴、y 轴的交点坐标;(4) 画出草图观察草图, 指出x 为何值时, y >0,y =0,y <0.14.(2010年宁波市)如图, 已知二次函数的图象经过A(2, 0)、B(0, -6)两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
考点三、二次函数的最值 (10分)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
考点四、二次函数的性质 (6~14分) 1、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上,,, a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c )3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。
当∆>0时,图像与x 轴有两个交点; 当∆=0时,图像与x 轴有一个交点; 当∆<0时,图像与x轴没有交点。
二次函数知识点:1.二次函数的概念:一般地,形如2y axbx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
同左上加,异右下减 总结:3. ()2y a xh =-的性质:结论:左加右减。
同左上加,异右下减 总结:4. ()2y a x h k =-+的性质:总结:1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“同左上加,异右下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
请将2y ax bx c =++配成()2y a x h k =-+。
总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;a b同号同左上加 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.a,b 异号异右下减 ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;a,b 异号异右下减 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.a b同号同左上加总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结: 同左上加 异右下减3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.。