应力状态分析和强度理论(例题)
应力状态分析与强度理论-习题与答案

(A)受力构件横截面上各点的应力情况
(B)受力构件各点横截面上的应力情况
(C)构件未受力之前,各质点之间的相互作用力状况
(D)受力构件内某一点在不同横截面上的应力情况
2、一实心均质钢球,当其外表面迅速均匀加热,则球心O点处的应力状态是()
(A)单向拉伸应力状态(B)平面应力状态
(A)铸铁为塑性材料
(B)铸铁在三向压应力状态下产生塑性变形
(C)铸铁在单向压应力作用下产生弹性变形
(D)材料剥脱
7、混凝土立方试块在作单向压缩试验时,若在其上、下表面上涂有润滑剂,则试块破坏时将沿纵向裂开,其主要原因是()
(A)最大压应力(B)最大剪应力
(C)最大伸长线应变(D)存在横向拉应力
8、一中空钢球,内径d=20cm,内压p=15Mpa,材料的许用应力 =160Mpa,则钢球壁厚t只少是()
(A)t=47㎜(B)t=2.34㎜
(C)t=4.68㎜(D)t=9.38㎜
9、将沸水注入厚玻璃杯中,有时玻璃杯会发生破裂,这是因为()
(A)热膨胀时,玻璃杯环向线应变达到极限应变,从内、外壁同时发生破裂
(B)玻璃材料抗拉能力弱,玻璃杯从外壁开始破裂
(C)玻璃材料抗拉能力弱,玻璃杯从内壁开始破裂
(D)水作用下,玻璃杯从杯底开始破裂
因圆柱与钢筒之间的空隙 ,而 > ,故圆柱受钢筒弹性约束。设柱与筒之间的作用力为p,则铝柱中各点处主应力为
钢筒中各点处主应力为
设铝柱和钢筒的径向应变分别为 ,变形协变条件为
即
于是
得
p=2.74Mpa
故钢筒周向应力为
即
得
所以则其相当应力为
由于 <0.5
材料力学第七章应力状态和强度理论

x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学应力状态和强度理论

x 122.5MPa x 64.6MPa
σy 0
τ y 64.6
(122.5 , 64.6)
D1
B2
o
C
B1
(0 , - 64.6)
由 x , x 定出 D1 点 由 y , y 定出 D2 点 以 D1D2 为直径作应力圆。
D2
A1,A2 两点的横坐标分别代表 a 点的两个主应力
1 oA1 150MPa
1 x 136.5MPa
σ x 136.5MPa σy 0
τx0 τy0
2 3 0
D2 (0,0)
D1(136.5,0)
x 136.5MPa
b
σ1
σ x 136.5MPa τ x 0
σy 0
τy0
1 所在的主平面就是 x 平面 , 即梁的横截面 C 。
解析法求 a 点的主平面和主应力
解: x 100MPa, y 20MPa, x 40MPa, 300
20
300
100 40
x 100MPa, y 20MPa, x 40MPa, 300
x
2
y
x
2
y
cos
2
x
sin
2
x
2
y
sin
2
x
cos
2
300
100
(20) 2
100
(20) 2
cos( 600)
m
F
A
F
m
A
F
F
A
A 点 横截面 m—m 上的应力为: F
A
n
m
F
A
F
m
n
F
A
2
材料力学习题参考答案2011年7月-第22章应力状态和强度理论

22-6 图示受力板件,试证明A 点处各截面的正应力、剪应力均为零证明:若在尖点A 处沿自由边界取三角形单元体如图所示,设单元体 、面上的应力分量为、和、,自由边界上的应力分量为,则有由于、,因此,必有、、。
这时,代表A 点应力状态的应力圆缩为 坐标的原点,所以A 点为零应力状态。
22-7 图示槽形刚体,在槽内放置一边长为10mm 、的立方钢块,钢块顶面受到合力为P=8kN 的均布压力作用,试求钢块的三个主应力和最大剪应力。
已知材料的弹性模量GPa E 200=,泊松比3.0=μ。
解: 选取坐标轴x 、y 、z 如图。
x σ=0, σz =-10101083⨯⨯=-80MPa ,εy =1E 〔σy -μ(σz +σx )〕=1E〔σy -μσz 〕=0 由此得 σy =μσz =0.3×(-80)=-24 MPa 。
Pxzyo将x σ、y σ、z σ按代数值大小排列,得三个主应力为 σ1=0 、σ2 =-24 MPa 、σ3=-80 MPa 。
最大剪应力 τm a x =σσ132-=280=40 MPa 。
22-12 试比较图示正方形棱柱体在下列两种情况下的相当应力3xd σ:(a )棱柱体自由受压:(b )棱柱体在刚性方模内受压。
弹性常数E 、μ均为已知.解:对于图(a )中的情况,应力状态如图(c )对于图(b )中的情况,应力状态如图(d )所以,,22-20 N O.28a普通热轧工字钢简支梁如图所示。
今由贴在中性层上某点K处、与轴线夹45º角方向上的应变片测得ε45º=-260×10-6。
已知钢材的E=210GPa,μ=0.28。
求作用在梁上的载荷F P。
应力状态分析 、强度理论、组合变形

Page57
BUCT
解:1 T=3×0.25 = 0.75KN.M
2 MxY =7×0.22 = 1.54KN.M
3 MxY中=7×0.22×0.5 =0.77KN.M
4 MxZ=3.5×0.4= 1.4KN.M
5
M总
M
2 z
M
2 y
=1.6
6
r3
1 W
M 2 T 2 [ ]
Page28
BUCT
化工设备机械 基础
然后叠加
= + = Pcos / A + Pl sin y / Iz
1 = N / A + M / Wz
2 = N / A - M / Wz
Page29
BUCT
例题5-5
化工设备机械 基础
Page30
BUCT
化工设备机械 基础
Page31
BUCT
uf 达到某一数值时,材料失效。
强度条件:
1 2
[(1
2
)2
(
2
3
)2
(
3
1)2
]
[]
Page21
BUCT
化工设备机械 基础
r1 1
r2 1-μ(σ2 - σ3 )
r3 1 3 2 4 2
r4
1 2
2 3 2
r3
( M )2 4( T )2 1
W
Wp
W
M 2 T 2 [ ]
Page2
BUCT
§1 应力状态的概念
化工设备机械 基础
一、问题的提出
杆件在基本变形时横截面上应力的分布规律
1. 轴向拉压:
应力状态分析及强度理论习题讲解

答案:
D
四、计算
1. 构件内危险点应力状态如图所示,试作强度校核: 1)材料为铸铁,已知许用拉应力 t 30MPa,压应力 90MPa;3)材料仍为铸铁,应力分量中 为压应力。
15MPa
c 90MPa,泊松比 =0.25;2)材料为铝合金,
15MPa
45 , 45
90 90
45 45
45
x
O
45 , 45
(b)
45
45
x
(c)
(d)
4.用电阻应变仪测得空心钢轴表面一点与母线成45 方向 上的正应变 45 200 103。已知该轴转速为120r / min , 外径D 120mm,内径d 80mm,钢材E 210GPa, =0.28, 求轴传递的功率。
45
a b
1
45
1
3
O
45 3
x
(b)
4 WP D 1 12 10 1 8 /12 16 16 272.3 106 m 3 n E 所以 N WP 45 9550 1 120 210 109 272.3 106 200 103 112kW 9550 1 0.28 3 4 3 6
n
dA
y
30
120
1
t
30
20
1 2
x
2
40 30
(b)
4 5,26 B C
68
240
3)作应力圆(图(c)) (1)取比例尺,1cm-20MPa,在 - 坐标平 面内作点1(+20,0)、2(-40,0);
《材料力学》第7章应力状态和强度理论习题解.

第七章 应力状态和强度理论 习题解[习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。
[习题7-1(a )]解:A 点处于单向压应力状态。
224412d F d F F A N A ππσ-=-==[习题7-1(b )]解:A 点处于纯剪切应力状态。
3316161d T d T W T P A ππτ-===MPa mm mm N 618.798014.310816336=⨯⋅⨯⨯=[习题7-1(b )]解:A 点处于纯剪切应力状态。
0=∑AM04.028.02.1=⨯--⨯B R )(333.1kN R B =)(333.1kN R Q B A -=-=MPa mmN A Q A 417.01204013335.15.12-=⨯⨯-=⨯=τB 点处于平面应力状态MPamm mm mm N I y M zB B 083.21204012130103.0333.1436=⨯⨯⨯⋅⨯⨯==σMPa mm mm mmN b I QS z zB 312.0401204012145)3040(1333433*-=⨯⨯⨯⨯⨯⨯-==τ[习题7-1(d )]解:A 点处于平面应力状态MPa mm mm N W M zA A 064.502014.3321103.39333=⨯⨯⋅⨯==σMPa mm mm N W T PA 064.502014.3161106.78333=⨯⨯⋅⨯==τ [习题7-2] 有一拉伸试样,横截面为mm mm 540⨯的矩形。
在与轴线成045=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。
试求试样所受的轴向拉力F 。
解:AFx =σ;0=y σ;0=x τ 004590cos 90sin 20x yx τσστ+-=A F 2045=τ 出现滑移线,即进入屈服阶段,此时,1502045≤=AFτ kN N mm mm N A F 6060000540/30030022==⨯⨯==[习题7-3] 一拉杆由两段沿n m -面胶合而成。
材料力学习题应力状态和强度理论

应力状态分析与强度理论基 本 概 念 题一、选择题1. 三种应力状态分别如图(a )、(b )、(c )所示,则三者间的关系为( )。
A .完全等价B .完全不等价C .图(b )、图(c )等价D .图(a )、图(c )等价题1图2. 已知应力情况如图所示,则图示斜截面上的应力为( )。
(应力单位为 MPa)。
A .70-=ασ,30-=ατB .0=ασ,30=ατC .70-=ασ,30=ατD .0=ασ,30-=ατ3. 在纯剪切应力状态中,其余任意两相互垂直截面上的 正应力,必定是( )。
A .均为正值B .一为正值一为负值C .均为负值 题2图D .均为零值4. 单元体的应力状态如图所示,由x 轴至1σ方向的夹角为( )。
A .︒5.13 B .︒-5.76 C .︒5.76 D .︒-5.13题4图 题5图5. 单元体的应力状态如图所示,则主应力1σ、2σ分别为( )。
(应力单位MPa). -33-A .901=σ,102-=σB .1001=σ,102-=σC .901=σ,02=σD .1001=σ,02=σ 6. 如图6所示单元体最大剪应力max τ为( )。
A .100 MPaB .50 MPaC .25 MPaD .0题6图 题7图7. 单元体如图所示,关于其主应力有下列四种答案,正确的是( )。
A .1σ>2σ,03=σ B .3σ<2σ<0,03=σ01=σ C .1σ>0,2σ= 0,3σ<0,1σ<3σ D .1σ>0,2σ= 0,3σ<0,1σ>3σ8. 已知应力圆如图7-22所示,图(a )、(b )、(c )、(d )分别表示单元体的应力状态和A 截面的应力,则与应力圆所对应的单元体为( )。
A .图(a )B .图(b )C .图(c )D .图(d )题8图9. 在图示四种应力状态中,其应力圆具有相同的圆心和相同的半径是( )。
-34-题9图A .图(a )、图(d )B .图(b )、图(c )C .图(a )、图(b )、图(c ) 、图(d )D .图(a )、图(d )、图(b )、图(c )10. 如图所示,较大体积的钢块上开有一贯穿的槽,槽内嵌入一铝质立方体,铝块受到均布压力P 作用,假设钢块不变形,铝块处于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50 x 100 x 100 cos 600 0
300
2
2
100MPa x
(3)求主应力:因为τxy = 0,所以有
1 100 MPa 2 0 3 100 MPa
(4)求最大剪应力:
100 100 100MPa
max
例题
例7-4 薄壁锅炉的平均直径D=1060 mm,壁厚t=25 mm,蒸气压力p=2.5 MPa,材料许用应力
[σ]=40 MP;按最大剪应力理论校核锅炉的强度。
σ’ p
σ’
p
σ’’
σ’’
强度不够,重新设计 pD
r3
1
3
2t
t
pD
2
0.033m
(5)用最大形状改变比能理论计算
210 109
3.11104
τα
σα
300
τxy
p.5
例题
例题
例7-4 薄壁锅炉的平均直径D=1060 mm,壁厚t=25 mm,蒸气压力p=2.5 MPa,材料许用应力
[σ]=40 MP;按最大剪应力理论校核锅炉的强度。
σ’ p
σ’
p
σ’’
σ’’
解:(1)由横截面分离体的平衡条件
' Dt p 1 D2 4
例题
(d) (1)应力分量 (2)用解析法求斜截面上的应力
(3)应力圆
p.9
例题
例题
例7-6. 已知应力状态如图所示,图中的应力单位为MPa。试求:
(1)主应力大小,主平面位置;(2)在单元体上给出主平面位置及主应力方向;(3)最大剪应力。
解: (1)应力分量
应力圆
(2)求主平面位置和主应力大小
p.10
2 60 80 40
1
20 450 0 22.50 0 90 112 .50
40MPa 60MPa 80MPa
(2)求主应力:
m a x m in
x
y
2
x
y
2
2
2 xy
80 40
例题
例题
3
4
5
2
应力状态分析和 6
1
强度理论
7
11
8 10
9
p.1
例题
例题
例7-1 已知图示单元体上的应力为σx=80MPa,σy=-40MPa,τxy’=-60MPa;求主应力、主平面、剪应 力极值和极值平面,并在单元体上表示出来。
解:(1)求主平面:
tg 2 0
2 xy x y
(3)求剪应力的极值和位置
40MPa 60MPa
m m
ax in
x
y
2
2
xy2
80MPa
80
40 2
602
2
84.9MPa 84.9MPa
α1 = α0+45 0 = 67.5 0 , 对应τmax
2
104.8MPa 64.9MPa
按代数值大小排列:
;
80
40
2来自6022
1 104 .8MPa 2 0 3 64.9MPa
由于σx >σy,则α0=22.50对应σ1
p.2
例题
例题
例7-1 已知图示单元体上的应力为σx=80MPa,σy=-40MPa,τxy’=-60MPa;求主应力、主平面、剪应 力极值和极值平面,并在单元体上表示出来。
' pD 26.5MPa 4t
(2)由纵截面分离体的平衡条件
2'' lt pDl
(3)确定主应力
'' pD 53MPa 2t
1 '' , 2 ' , 3 0
(4)用最大剪应力强度理论计算
r3 1 3 53MPa
p.6
例题
0.0285m
p.7
例题
例7-5 .在图示各单元体中,试用解析法和应力圆求斜面ab上的应力。应力单位为MPa。
例题
解:(a) (1)应力分量
(2)用解析法求斜截面上的应力
(3)应力圆
(-70、0)
τ (35,36.5)
600
σ (70、0)
p.8
例题
例7-5 .在图示各单元体中,试用解析法和应力圆求斜面ab上的应力。应力单位为MPa。
求:(1)A点在指定斜截面上的应力。(2)A点主应力的大小及方向,并用单元体表示。
解:(1)A点的应力状态 属二向应力状态,应力分量是
p.12
例题
例题
例7-7. 薄壁圆筒的扭转-拉伸示意图如图所示。若P=20kN,T=600NN·m,且d=50mm,=2mm。试
2
p.4
例题
例题
例7-3 图示钢轴上作用一个力偶M=2500 kNm,已知D=60 mm,E=210 GPa, µ=0.28;圆轴表面上 任一点与母线成α =300方向上的正应变。
解:(1)取A点的单元体,应力状态为:
xy
T Wt
M
1 D3
58.95MPa
x y 0 16
(4)在单元体上标出它们的位置;
σ1
τmax
α0
σ3
p.3
例题
例7-2 已知图示正三角形单元体上的应力,求主应力和最大剪应力。 50MPa
解:(1)取出正三角形一半(直角三角形),分析如图;
50MPa 300
86.6MPa
σx
86.6MPa
例题
50MPa 86.6MPa 100MPa
100MPa
(2)求σx的值;
例题
例题
例7-6. 已知应力状态如图所示,图中的应力单位为MPa。试求:
(1)主应力大小,主平面位置;(2)在单元体上给出主平面位置及主应力方向;(3)最大剪应力。
(2)求主平面位置和主应力大小
(3)最大剪应力
p.11
例题
例题
例7-7. 薄壁圆筒的扭转-拉伸示意图如图所示。若P=20kN,T=600NN·m,且d=50mm,=2mm。试
M A
300
(2)求斜截面上的正应力
300 xy sin 600 51.05MPa
σα+90o
300900 xy sin 2400 51.05MPa
(3)计算斜截面上的应变
1
300
E 300
1200
1 51.5 0.28 51.5106
1 2 2 2
r4
21
2
2
3
3
1
45.9MPa
强度不够,重新设计
r4
1 2 2 2
2
1
2
2
3
3
1
3 pD
4t
t
3 pD
4