圆锥曲线中“点差法”的应用

合集下载

圆锥曲线点差法应用个性化教案

圆锥曲线点差法应用个性化教案

圆锥曲线点差法应用个性化教案一、教学目标1. 知识与技能:(1)理解圆锥曲线的定义及其性质;(2)掌握点差法的概念及其在圆锥曲线中的应用。

2. 过程与方法:通过小组合作、讨论,培养学生探究问题的能力;利用数形结合,提高学生解决问题的策略。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作精神。

二、教学重难点1. 教学重点:圆锥曲线的定义及其性质;点差法的概念及其在圆锥曲线中的应用。

2. 教学难点:点差法的灵活运用,以及数形结合的转化能力。

三、教学准备1. 教师准备:(1)熟练掌握圆锥曲线的性质;(2)熟练运用点差法解题;(3)准备相关例题和练习题。

2. 学生准备:(1)掌握基本函数的性质;(2)了解圆锥曲线的基本概念;(3)具备一定的解题技巧。

四、教学过程1. 导入新课:通过复习圆锥曲线的定义及其性质,引出点差法的概念。

2. 知识讲解:(1)讲解圆锥曲线的性质,如焦点、准线、渐近线等;(2)介绍点差法的定义和原理;(3)示范性讲解点差法在圆锥曲线中的应用。

3. 例题解析:选取典型例题,引导学生运用点差法解决问题,并及时给予指导和点拨。

4. 课堂练习:布置练习题,让学生独立完成,巩固所学知识。

五、课后作业1. 复习圆锥曲线的性质和点差法的应用;2. 完成课后练习题,提高解题能力;3. 总结本节课的学习收获,准备下一节课的内容。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习完成情况:检查学生课后练习的完成质量,评价学生对知识的掌握程度。

七、教学拓展1. 对比分析:引导学生探讨圆锥曲线与其他几何图形的异同,提高学生的图形识别能力。

2. 实际应用:介绍圆锥曲线在现实生活中的应用,如建筑、工程等领域,激发学生的学习兴趣。

八、教学反思1. 教师方面:(1)检查教学目标的设定是否合理;(2)反思教学方法是否适合学生的需求;(3)总结教学过程中的成功经验和不足之处,为后续教学提供借鉴。

“点差法”在圆锥曲线中的应用与推广

“点差法”在圆锥曲线中的应用与推广


a2 b2
.接下来
我们看看高考真题中的“点差法”及其应用. 例 1 . ( 2015 全 国 卷 II , 理 科 20 ) 已 知 椭 圆
C : 9x2 y2 m2 (m 0) ,直线 l 不过原点 O 且不平行于坐 标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .
证明:根据椭圆的对称性可知A、B关于原点对称,设
A(x1, y1), B(x2 , y2 ), P(x, y)
x12 a2

y12 b2
x2 1① a2

y2 b2
1②,
①-②可得如下表达式
( x1

x)( x1 a2

x)

( y1

y)( y1 b2

y)

0





(x1 x)(x1 x)
,

k

y2 x2
y1 x1
,
x2

x1

2x0
,
y2

y1

2 y0 .
将点A、B的坐标带入椭圆方程可得,
x12 a2

y12 b2
1
①,
x22 a2

y22 b2
1②


-


得: (x2 x1)(x2 x1) ( y2 y1)( y2 y1) 0
a2
b2

2x0 (x2 a2
1 k( )
1
b2
a2
,由点F及A、B中点可求出 k

1 2

圆锥曲线点差法应用个性化教案

圆锥曲线点差法应用个性化教案

圆锥曲线点差法应用个性化教案第一章:圆锥曲线概述1.1 圆锥曲线的定义与性质1.2 圆锥曲线的历史发展1.3 圆锥曲线在数学中的重要性第二章:点差法简介2.1 点差法的定义2.2 点差法的原理与应用2.3 点差法在圆锥曲线研究中的应用第三章:圆锥曲线的切线与法线3.1 切线的定义与性质3.2 法线的定义与性质3.3 切线与法线在圆锥曲线中的应用第四章:圆锥曲线的渐近线4.1 渐近线的定义与性质4.2 渐近线在圆锥曲线中的应用4.3 圆锥曲线的奇点与无穷远点第五章:圆锥曲线的参数方程与极坐标方程5.1 参数方程的定义与性质5.2 极坐标方程的定义与性质5.3 参数方程与极坐标方程在圆锥曲线中的应用第六章:圆锥曲线的焦半径与焦点弦6.1 焦半径的定义与性质6.2 焦点弦的定义与性质6.3 焦半径与焦点弦在圆锥曲线中的应用第七章:圆锥曲线的内接三角形与外接圆7.1 内接三角形的定义与性质7.2 外接圆的定义与性质7.3 内接三角形与外接圆在圆锥曲线中的应用第八章:圆锥曲线的对称性8.1 对称性的定义与性质8.2 圆锥曲线的对称变换8.3 对称性在圆锥曲线中的应用第九章:圆锥曲线的相交与交点9.1 圆锥曲线相交的定义与性质9.2 圆锥曲线交点的性质与计算9.3 圆锥曲线相交与交点在实际问题中的应用第十章:圆锥曲线点差法的综合应用10.1 点差法在圆锥曲线几何性质研究中的应用10.2 点差法在圆锥曲线方程求解中的应用10.3 点差法在圆锥曲线实际问题解决中的应用重点和难点解析重点一:圆锥曲线的定义与性质补充说明:需要深入理解圆锥曲线的基本概念,如椭圆、双曲线和抛物线的定义,以及它们各自的性质和特点。

重点二:点差法的原理与应用补充说明:需要掌握点差法的原理,了解如何通过点差法来分析和解决问题,特别是在处理圆锥曲线的几何性质时。

重点三:圆锥曲线的切线与法线补充说明:需要理解切线和法线的重要性质,如切线与法线的关系,以及它们在圆锥曲线上的特殊表现。

浅析“点差法”在圆锥曲线中的应用

浅析“点差法”在圆锥曲线中的应用

教学篇•方法展示一、点差法在椭圆中的应用例1.已知点P (4,2)是直线l :x +2y -8=0被焦点在x 轴上的椭圆所截得的线段的中点,求该椭圆的离心率。

解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),直线x +2y -8=0与椭圆交于A ,B 两点,且A (x 1,y 1),B (x 2,y 2),则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐。

两式相减,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,即y 1-y 2x 1-x 2=-b 2a 2x 1+x 2y 1+y 2。

因为k AB =-12,AB 中点为(x 0,y 0),x 0=4,y 0=2,所以-12=-2b 2a2,即a 2=4b 2。

所以该椭圆的离心率为e =1-b 2a 2√=3√2。

点评:本题在利用“点差法”解决中点弦问题时,运用“设而不求”的方式,降低解题的运算量,优化解题过程,此为本题的亮点一。

亮点二:通过“点差法”建立直线的斜率与弦中点的联系,消去未知量,从而求解。

二、点差法在双曲线中的应用例2.已知双曲线C :2x 2-y 2=2与点P (1,2)。

(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?解:(1)直线l 的方程为y -2=k (x -1),即y =kx +2-k 。

由y =kx +2-k2x 2-y 2=2{,得(k 2-2)x 2-2(k 2-2k )x +k 2-4k +6=0。

因为直线l 与C 有两个公共点,所以得k 2-2≠0Δ=4(k 2-2k )2-4(k 2-2)(k 2-4k +6)>0{解之得:k <32且k ≠±2√,∴k 的取值范围是(-∞,-2√)∪(-2√,2√)∪(2√,32)。

例谈圆锥曲线中的“点差法”之妙用

例谈圆锥曲线中的“点差法”之妙用
, ,
c:



一 1( a >o , b >o ) 相交 于 B 、 D两点 , 且 B D 的 中 点 为
M( 1, 3 ) 。
十z 和 。 +Y 。, 再结合已知条件求解 , 以 下 从 两 个 方 面 谈 谈 其
基本应用 。 圆 锥 曲线 中弦 的 中点 问题 ( 即中点弦问题 )
新思维 , 收 到 了一定 的 效 果 。
解, 所 挑 选 的那 几 个 普 通 学 生 由 于 得 到 了 外 国 专 家 说 自 己 是 神 童的心理暗示 , 学习劲头倍增 , 一 年 后 学 习成 绩 果 真 位 居 班 级 前 列 。这 一 方 法 很 值 得 我 们 学 习 效 仿 。 因 此 , 只 有 教 师 用 自己 的 情感态度感化学生 , 用积极的心理暗示 去影响学 生 , 在 与 学 生 的 直 接 接 触 中展 现 自我 , 敢于创新 , 不 因循守 旧, 敢 于怀疑 , 勇 于 挑 战, 必 能 以 自 己 的人 格 对 学 生 创 造 人 格 的 形 成 , 产生示 范作 用 , 以 自己 的 人 格 感 染 和 熏 陶学 生 , 从 而 塑 造 学 生 的创 新 人 格 , 挖 掘
\ / \ / ‘;
d\
N … … 、 - ,
解 析 : + 等一 , 薯+ 营一 , 两 式 相 减 X 2 - X 2 一 一 则 一 b 2 = 一

・ 糍 =
・ 卿
则 等+ 等一 , 等+ 譬一 , 相 减 得 生 + 2
学生的创新潜能 。 三、 教 师 要 善 于 在 教 学 过 程 中培 养 学 生 的 创 新 思 维
例2 : ( 2 O 1 O全 国 Ⅱ理 2 1 ) 已 知 斜 率 为 1的 直 线 z 与 双 曲 线

高考数学点差法在圆锥曲线中的应用(解析版)

高考数学点差法在圆锥曲线中的应用(解析版)

点差法在圆锥曲线中的应用一、考情分析圆锥曲线中的中点弦问题是高考常见题型,在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为x1,y1、x2,y2,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”.二、解题秘籍(一)求以定点为中点的弦所在直线的方程求解此类问题的方法是设出弦端点坐标,代入曲线方程相减求出斜率,再用点斜式写出直线方程.特别提醒:求以定点为中点的双曲线的弦所在直线的方程,求出直线方程后要检验所求直线与双曲线是否有2个交点.【例1】过椭圆x216+y24=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.【解析】设直线与椭圆的交点为A(x1,y1)、B(x2,y2)∵M(2,1)为AB的中点∴x1+x2=4 y1+y2=2∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16两式相减得(x12−x22)+4(y12−y22)=0于是(x1+x2)(x1−x2)+4(y1+y2)(y1−y2)=0∴y1−y2x1−x2=−x1+x24(y1+y2)=−44×2=−12即k AB=−12,故所求直线的方程为y−1=−12(x−2),即x+2y−4=0.【例2】已知双曲线C:x2a2-y2b2=1(a>0,b>0),离心率e=3,虚轴长为22.(1)求双曲线C的标准方程;(2)过点P1,1能否作直线l,使直线l与双曲线C交于A,B两点,且点P为弦AB的中点?若存在,求出直线l的方程;若不存在,请说明理由.【解析】(1)∵e=ca=3,2b=22,∴c=3a,b=2.∵c2=a2+b2,∴3a2=a2+2.∴a2=1.∴双曲线C的标准方程为x2-y22=1.(2)假设以定点P(1,1)为中点的弦存在,设以定点P(1,1)为中点的弦的端点坐标为A(x1,y1),B(x2,y2)(x1≠x2),可得x1+x2=2,y1+y2=2.由A,B在双曲线上,可得:x21-y212=1 x22-y222=1,两式相减可得以定点P(1,1)为中点的弦所在的直线斜率为:k=y2-y1x2-x1=2(x1+x2)y1+y2=2,则以定点P(1,1)为中点的弦所在的直线方程为y-1=2(x-1).即为y=2x-1,代入双曲线的方程可得2x2-4x+3=0,由Δ=(-4)2-4×2×3=-8<0,所以不存在这样的直线l .(二)求弦中点轨迹方程求弦中点轨迹方程基本类型有2类,一是求平行弦的中点轨迹方程,二是求过定点的直线被圆锥曲线截得的弦的中点轨迹方程.【例3】(2023届湖北省腾云联盟高三上学期10月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 经过点P 0,1 ,且离心率为32.(1)求椭圆C 的标准方程;(2)设过点0,-35的直线l 与椭圆C 交于A ,B 两点,设坐标原点为O ,线段AB 的中点为M ,求MO 的最大值.【解析】(1)∵椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点P (0,1),其离心率为32.∴b =1,c a =32⇒1-b 2a2=34,∴b a =12,∴a =2,故椭圆C 的方程为:x 24+y 2=1;(2)当直线l 斜率不存在时,M 与O 重合,不合题意,当直线l 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则有x 0=x 1+x 22,y 0=y 1+y 22,直线l 的斜率为y 1-y 2x 1-x 2=y 0+35x 0,A ,B 两点在椭圆上,有x 124+y 12=1,x 224+y 22=1,两式相减,x 12-x 224=-y 12-y 22 ,即x 1+x 24y 1+y 2 =-y 1-y 2x 1-x 2,得x 04y 0=-y 0+35x 0,化简得x 02=-4y 02-125y 0,MO =x 02+y 02=-3y 02-125y 0=-3y 0+25 2+1225,∴当y 0=-25时,MO 的最大值为235【例4】直线与圆锥曲线相交所得弦的中点问题,是解析几何重要内容之一,也是高考的一个热点问题.引理:设A x 1,y 1 、B x 2,y 2 是二次曲线C :Ax 2+By 2+Cx +Dy +F =0上两点,P x 0,y 0 是弦AB 的中点,且弦AB 的斜率存在,则Ax 21+By 21+Cx 1+Dy 1+F =0⋯⋯(1)Ax 22+By 22+Cx 2+Dy 2+F =0⋯⋯(2)由(1)-(2)得A x 1-x 2 x 1+x 2 +B y 1-y 2 y 1+y 2 +C x 1-x 2 +D y 1-y 2 =0,∵x 0=x 1+x 22,y 0=y 1+y 22,∴x 1+x 2=2x 0,y 1+y 2=2y 0∴2Ax 0x 1-x 2 +2By 0y 1-y 2 +C x 1-x 2 +D y 1-y 2 =0,∴2Ax 0+C x 1-x 2 =-2By 0+D y 1-y 2 ,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-2Ax 0+C2By 0+D2B +D ≠0,x 1≠x 2 .二次曲线也包括了圆、椭圆、双曲线、抛物线等.请根据上述求直线斜率的方法(用其他方法也可)作答下题:已知椭圆x 22+y 2=1.(1)求过点P 12,12且被P 点平分的弦所在直线的方程;(2)过点A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程.【解析】(1)设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x 0,y 0 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵12=x 1+x 22,12=y 1+y 22,∴x 1+x 2=1,y 1+y 2=1∴x 1-x 2+2y 1-y 2 =0,∴直线AB 的斜率k AB =-12.直线AB 的方程为y -12=-12x -12,即2x +4y -3=0.因为P 12,12在椭圆内部,成立.(2)由题意知:割线的斜率存在,设A x 1,y 1 、B x 2,y 2 是椭圆x 22+y 2=1上两点,P x ,y 是弦AB 的中点,则x 122+y 12=1x 222+y 22=1 ,两式相减得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,∵x =x 1+x 22,y =y 1+y 22,∴x 1+x 2=2x ,y 1+y 2=2y∴2x x 1-x 2 +4y y 1-y 2 =0,∴直线AB 的斜率k AB =y 1-y 2x 1-x 2=-x2yx 1≠x 2又k AB =y -1x -2,所以 y -1x -2=-x 2y ,化简得:x 2+2y 2-2x -2y =0-2≤x ≤2 ,所以截得的弦的中点的轨迹方程为x 2+2y 2-2x -2y =0-2≤x ≤2 (三)求直线的斜率一般来说,给出弦中点坐标,可求弦所在直线斜率【例5】已知椭圆C :x 25+y 2=1的左、右焦点分别为F 1,F 2,点M ,N 在椭圆C 上.(1)若线段MN 的中点坐标为2,13,求直线MN 的斜率;(2)若M ,N ,O 三点共线,直线NF 1与椭圆C 交于N ,P 两点,求△PMN 面积的最大值.【解析】(1)设M x 1,y 1 ,N x 2,y 2 ,则x 215+y 21=1,x 225+y 22=1,两式相减,可得x 1+x 2 x 1-x 25+y 1+y 2 y 1-y 2 =0,则4x 1-x 2 5+2y 1-y 2 3=0,解得k MN =y 1-y 2x 1-x 2=-65,即直线MN 的斜率为-65;(2)显然直线NF 1的斜率不为0,设直线NF 1:x =my -2,N x 3,y 3 ,P x 4,y 4 ,联立x =my -2x 25+y 2=1,消去x 整理得m 2+5 y 2-4my -1=0,显然Δ=20m 2+1 >0,故y 3+y 4=4m m 2+5,y 3⋅y 4=-1m 2+5,故△PMN 的面积S △PMN =2S △OPN =2⋅12OF 1 ⋅y 3-y 4=2⋅4m m 2+5 2-4⋅-1m 2+5=45m 2+1m 2+5,令t =m 2+1,t ≥1,则S △PMN =45t t 2+4=45t +4t≤454=5,当且仅当t =2,即m =±3时等号成立,故△PMN 面积的最大值为5.【例6】已知椭圆x 225+y 29=1上不同的三点A x 1,y 1 ,B 4,95,C x 2,y 2 与焦点F 4,0 的距离成等差数列.(1)求证:x 1+x 2=8;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .【解析】(1)证略.(2)解∵x 1+x 2=8,∴设线段AC 的中点为D 4,y 0 .又A 、C 在椭圆上,∴x 1225+y 129=1,(1)x 2225+y 229=1,(2)1 -2 得:x 12-x 2225=-y 12-y 229,∴y 1-y 2x 1-x 2=-9x 1+x 2 25y 1+y 2=-925⋅82y 0=-3625y 0.∴直线DT 的斜率k DT =25y 036,∴直线DT 的方程为y -y 0=25y 036x -4 .令y =0,得x =6425,即T 6425,0 ,∴直线BT 的斜率k =95-04-6425=54.(四)点差法在轴对称中的应用【例7】(2023届江苏省南京市建邺区高三上学期联合统测)已知O 为坐标原点,点1,62 在椭圆C :x 2a 2+y 2b 2=1a >b >0 上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12.(1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22 ,k AB =y 1-y 2x 1-x 2=1,k OM=y 1+y 22x 1+x 22=y 1+y 2x 1+x 2=-12∵A x 1,y 1 ,B x 2,y 2 在椭圆上,则x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1两式相减得x 12-x 22a 2+y 12-y 22b 2=0,整理得y 12-y 22x 12-x 22=y 1+y 2x 1+x 2×y 1-y 2x 1-x 2=-b 2a 2∴k AB ⋅k OM =-b 2a 2,即-12=-b2a2,则a 2=2b 2又∵点1,62 在椭圆C :x 2a 2+y 2b 2=1上,则1a 2+32b 2=1联立解得a 2=4,b 2=2∴椭圆C 的方程为x 24+y 22=1(2)不存在,理由如下:假定存在P ,Q 两点关于l :y =x +1对称,设直线PQ 与直线l 的交点为N ,则N 为线段PQ 的中点,连接ON∵PQ ⊥l ,则k AB ⋅k PQ =-1,即k PQ =-1由(1)可得k ON ⋅k PQ =-12,则k ON =12,即直线ON :y =12x联立方程y =12x y =x +1,解得x =-2y =-1 即N -2,-1∵-2 24+-1 22=32>1,则N -2,-1 在椭圆C 外∴假定不成立,不存在P ,Q 两点关于l 对称【例8】已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-12.(1)求椭圆C 的标准方程;(2)若椭圆C 上存在P ,Q 两点,使得P ,Q 关于直线l 对称,求实数m 的范围.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A ,B 在椭圆C 上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减得x 1+x 2 x 1-x 2 a 2+y 1+y 2 y 1-y 2 b 2=0,即1a 2+y 1+y 2 y 1-y 2b 2x 1+x 2 x 1-x 2=0,又k AB =y 1-y 2x 1-x 2=1,所以1a 2-12b2=0,即a 2=2b 2.又因为椭圆C 过点1,62 ,所以1a 2+32b2=1,解得a 2=4,b 2=2,所以椭圆C 的标准方程为x 24+y 22=1;(2)设P x 3,y 3 ,Q x 4,y 4 ,PQ 的中点为N x 0,y 0 ,所以x 3+x 4=2x 0,y 3+y 4=2y 0,因为P ,Q 关于直线l 对称,所以k PQ =-1且点N 在直线l 上,即y 0=x 0+m .又因为P ,Q 在椭圆C 上,所以x 234+y 232=1,x 244+y 242=1.两式相减得x 3+x 4 x 3-x 4 4+y 3+y 4 y 3-y 42=0.即x 3+x 44+y 3+y 4 y 3-y 42x 3-x 4=0,所以x 3+x 44=y 3+y 42,即x 0=2y 0.联立x 0=2y 0y 0=x 0+m,解得x 0=-2my 0=-m ,即N (-2m ,-m ).又因为点N 在椭圆C 内,所以(-2m )24+(-m )22<1,所以-63<m <63所以实数m 的范围为-63<m <63.(五)利用点差法可推导的结论在椭圆x 2a 2+y 2b2=1a >b >0 中,若直线l 与该椭圆交于点A ,B ,点P x 0,y 0 为弦AB 中点,O 为坐标原点,则k AB ⋅k OP =b 2a2,对于双曲线、抛物线也有类似结论,求自行总结.【证明】设A x 1,y 1 ,B x 2,y 2 且x 1≠x 2,则x 12a 2+y 12b 2=1,(1)x 22a 2+y 22b2=1,(2)1 -2 得:x 12-x 22a 2=-y 12-y 22b 2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2 ,∴k AB =y 1-y 2x 1-x 2=-b 2x 1+x 2 a 2y 1+y 2.又k OP =y 1+y 2x 1+x 2,∴k AB =-b 2a 2⋅1k OP ,∴k AB ⋅k OP =-b 2a 2(定值).【例9】(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ =0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-max +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.三、跟踪检测1.已知椭圆C :x 22+y 2=1,F 1为右焦点,直线l :y =t (x -1)与椭圆C 相交于A ,B 两点,取A 点关于x 轴的对称点S ,设线段AS 与线段BS 的中垂线交于点Q .(1)当t =2时,求QF 1 ;(2)当t ≠0时,求QF 1|AB |是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,线段AB 的中点M 坐标为x M ,y M ,联立得x 2+2y 2-2=0,y =2(x -1), 消去y 可得:9x 2-16x +6=0,所以x 1+x 2=169,x 1x 2=69,所以x M =89,代入直线AB 方程,求得y M =-29,因为Q 为△ABS 三条中垂线的交点,所以MQ ⊥AB ,有k MQ k AB =-1,直线MQ 方程为y +29=-12×x -89.令y =0,x Q =49,所以Q 49,0 .由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1,相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.2.(2023届重庆市南开中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,上顶点为D ,斜率为k 的直线l 与椭圆C 交于不同的两点A ,B ,M 为线段AB 的中点,当点M 的坐标为(2,1)时,直线l 恰好经过D 点.(1)求椭圆C 的方程:(2)当l 不过点D 时,若直线DM 与直线l 的斜率互为相反数,求k 的取值范围.【解析】(1)由题意知,离心率e =22,所以a =2b =2c ,设A x 1,y 1 ,B x 2,y 2 ,x 21a 2+y 21b 2=1x 22a 2+y 22b 2=1两式相减得k ⋅k OM =-b 2a 2=-12,所以k =-1;所以直线为y -1=-(x -2),即y =-x +3,所以b =c =3,椭圆方程为x 218+y 29=1;(2)设直线为y =kx +m ,由y =kx +mx 2+2y 2=18得1+2k 2 x 2+4km x +2m 2-18=0,则x M =x 1+x 22=-2km 1+2k 2,y M =m1+2k2,�=16k 2m 2-41+2k 2 2m 2-18 =818k 2-m 2+9 >0,所以k DM =y M -3x M -0=6k 2+3-m 2km =-k ,解得m =6k 2+31-2k2,1-2k 2≠0,k ≠±22因为l 不过D 点,则6k 2+31-2k 2≠3,即k ≠0则18k 2+9-6k 2+3 21-2k 22>0,化简得4k 4-4k 2-3>0,解得2k 2-3 2k 2+1 >0,k 2>32,所以k >62或k <-62.3.已知椭圆x 22+y 2=1.(1)过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程;(2)求斜率为2的平行弦的中点Q 的轨迹方程;(3)求过点M 12,12且被M 平分的弦所在直线的方程.【解析】(1)设弦与椭圆两交点坐标分别为A x 1,y 1 、B x 2,y 2 ,设P x ,y ,当x 1=x 2时,P -1,0 .当x 1≠x 2时,x 22+y 2=1⇒x 2+2y 2=2,x 21+2y 21=2,x 22+2y 22=2, 两式相减得x 1+x 2 x 1-x 2 +2y 1+y 2 y 1-y 2 =0,即1+2⋅y 1+y 2 y 1-y 2 x 1+x 2 x 1-x 2=0(*),因为y 1-y 2x 1-x 2=k FP =yx +1,x 1+x 2=2x ,y 1+y 2=2y ,所以,代入上式并化简得x 2+x +2y 2=0,显然P -1,0 满足方程.所以点P 的轨迹方程为x 2+x +2y 2=0(在椭圆内部分).(2)设Q x ,y ,在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=2,x 1+x 2=2x ,y 1+y 2=2y 代入上式并化简得点Q 的轨迹方程为x +4y =0(在椭圆内部分).所以,点Q 的轨迹方程x +4y =0(在椭圆内部分).(3)在(1)中式子1+2⋅y 1+y 2 y 1-y 2x 1+x 2 x 1-x 2=0里,将y 1-y 2x 1-x 2=k ,x 1+x 2=1,y 1+y 2=1代入上式可求得k =-12.所以直线方程为2x +4y -3=0.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,直线l :y =x +m 与椭圆C 交于A ,B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为-0.5.(1)求椭圆C 的标准方程;(2)当m =1时,椭圆C 上是否存在P ,Q 两点,使得P ,Q 关于直线l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.【解析】(1)设A x 1,y 1 ,B x 2,y 2 ,则M x 1+x 22,y 1+y 22,即k OM =y 1+y 2x 1+x 2=-12.因为A,B在椭圆C上,所以x21a2+y21b2=1,x22a2+y22b2=1,两式相减得x1+x2x1-x2a2+y1+y2y1-y2b2=0,即1a2+y1+y2y1-y2b2x1+x2x1-x2=0,又k AB=y1-y2x1-x2=1,所以1a2-12b2=0,即a2=2b2.又因为椭圆C过点1,6 2,所以1a2+32b2=1,解得a2=4,b2=2,所以椭圆C的标准方程为x24+y22=1;(2)由题意可知,直线l的方程为y=x+1.假设椭圆C上存在P,Q两点,使得P,Q关于直线l对称,设P x3,y3,Q x4,y4,PQ的中点为N x0,y0,所以x3+x4=2x0,y3+y4=2y0,因为P,Q关于直线l对称,所以k PQ=-1且点N在直线l上,即y0=x0+1.又因为P,Q在椭圆C上,所以x234+y232=1,x244+y242=1,两式相减得x3+x4x3-x44+y3+y4y3-y42=0,即x3+x44+y3+y4y3-y42x3-x4=0,所以x3+x44=y3+y42,即x0=2y0.联立x0=2y0y0=x0+1,解得x0=-2y0=-1,即N-2,-1.又因为-224+-122>1,即点N在椭圆C外,这与N是弦PQ的中点矛盾,所以椭圆C上不存在点P,Q两点,使得P,Q关于直线l对称.5.(2022届广东省清远市高三上学期期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F且斜率为1的直线与抛物线C交于A,B两点,若AB的中点到准线l的距离为4.(1)求抛物线C的方程;(2)设P为l上任意一点,过点P作C的切线,切点为Q,试判断F是否在以PQ为直径的圆上.【解析】(1)设A x1,y1,B x2,y2,则y21=2px1, y22=2px2,所以y21-y22=2p x1-x2,整理得y1-y2x1-x2=2py1+y2=1,所以y1+y2=2p.因为直线AB的方程为y=x-p 2,所以x1+x2=y1+y2+p=3p.因为AB的中点到准线l的距离为4,所以x1+x22+p2=2p=4,得p=2,故抛物线C的方程为y2=4x.(2)设P(-1,t),可知切线PQ的斜率存在且不为0,设切线PQ的方程为x=m(y-t)-1,联立方程组x=m(y-t)-1,y2=4x,得y2-4my+4mt+4=0,由Δ=16m2-16(mt+1)=0,得t=m-1m,即P-1,m-1m,所以方程y 2-4my +4mt +4=y 2-4my +4m 2=0的根为y =2m ,所以x =m 2,即Q m 2,2m .因为FP =-2,m -1m ,FQ =m 2-1,2m ,所以FP ⋅FQ =-2m 2-1 +2m m -1m=0,所以FP ⊥FQ ,即F 在以PQ 为直径的圆上.6.(2022届河南省中原顶级名校高三上学期1月联考)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点分别为F 1-1,0 ,F 21,0 ,过点F 1的直线l 1交椭圆C 于A ,B 两点.当直线l 1的斜率为1时,点-47,37是线段AB 的中点.(1)求椭圆C 的标准方程;(2)如图,若过点F 2的直线l 2交椭圆C 于E ,G 两点,且l 1∥l 2,求四边形ABEG 的面积的最大值.【解析】 (1)设A x 1,y 1 ,B x 2,y 2 .由题意可得b 2x 21+a 2y 21-a 2b 2=0,b 2x 22+a 2y 22-a 2b 2=0.∴y 1-y 2x 1-x 2=-b 2a 2⋅x 1+x 2y 1+y 2=-b 2a 2⋅-43,即4b 23a2=1,∴b 2a2=34.∵a 2-b 2=1,∴a 2=4,b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)根据对称性知AB =EG ,AB ∥EG ,∴四边形ABEG 是平行四边形,又S 四边形ABEG =2S △F 2AB ,∴问题可转化为求S △F 2AB 的最大值.设直线l 1的方程为x =my -1,代入x 24+y 23=1,得3m 2+4 y 2-6my -9=0.则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,∴S △F 2AB =12⋅2⋅y 1-y 2 =y 1+y 2 2-4y 1y 2=6m 3m 2+4 2-4⋅-93m 2+4=121+m 23m 2+4.令1+m 2=t ,则t ≥1,且m 2=t 2-1,∴S △F 2AB =12t 3t 2+1=123t +1t .记h t =3t +1tt ≥1 ,易知h t 在1,+∞ 上单调递增.∴h t min =h 1 =4.∴S △F 2AB =123t +1t≤124=3.∴四边形ABEG 的面积的最大值是6.7.如图,AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足,点N 坐标为(-2,-3).(1)求抛物线的方程;(2)求△AOB 的面积(O 为坐标系原点).【解析】 (1)点N (-2,-3)在准线l 上,所以准线l 方程为:x =-2,则p 2=2,解得p =4,所以抛物线的方程为:y 2=8x ;(2)设A x 1,y 1 ,B x 2,y 2 ,由A 、B 在抛物线y 2=8x 上,所以y 21=8x 1y 22=8x 2 ,则y 1-y 2 y 1+y 2 =8x 1-x 2 ,又MN ⊥l ,所以点M 纵坐标为-3,M 是AB 的中点,所以y 1+y 2=-6,所以-6y 1-y 2 =8x 1-x 2 ,即k AB =-43,又知焦点F 坐标为(2,0),则直线AB 的方程为:4x +3y -8=0,联立抛物线的方程y 2=8x ,得y 2+6y -16=0,解得y =2或y =-8,所以y 1-y 2 =10,所以S △AOB =S △AOF +S △BOF =y 1-y 2 =10.8.在平面直角坐标系xOy 中,设点F (1,0),直线l :x =-1,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹E 的方程;(2)过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为M 、N .求直线MN 过定点D 的坐标.【解析】 (1)依题意,点P 在直线l :x =-1上移动,令直线l 交x 轴于点K ,而点F(1,0),又R 是线段PF 与y 轴的交点,当点P 与点K 不重合时,OR ⎳l ,而O 为FK 中点,则点R 是线段FP 的中点,因RQ ⊥FP ,则RQ 是线段FP 的垂直平分线,QP =QF ,又PQ ⊥l 于点P ,即PQ 是点Q到直线l 的距离,当点P 与点K 重合时,点R 与点O 重合,也满足上述结论,于是有点Q 到点F 的距离等于点Q 到直线l 的距离,则动点Q 的轨迹E 是以F为焦点,l 为准线的抛物线,其方程为:y 2=4x ,所以动点Q 的轨迹E 的方程为y 2=4x .(2)显然直线AB 与直线CD 的斜率都存在,且不为0,设直线AB 的方程为y =k(x -1),k ≠0,令A x A ,y A ,B x B ,y B ,M x M ,y M ,N x N ,y N ,由y 2A =4x A y 2B =4x B 两式相减得:(y A +y B )(y A -y B )=4(x A -x B ),则y A +y B =4k,即y M =2k,代入方程y =k (x -1),解得x M =2k 2+1,即点M 的坐标为2k 2+1,2k ,而CD ⊥AB ,直线CD 方程为y =-1k (x -1),同理可得:N 的坐标为(2k 2+1,-2k ),当2k 2+1=2k 2+1,即k =±1时,直线MN :x =3,当k ≠1且k ≠-1时,直线MN 的斜率为k MN =y M -y N x M -x N =k 1-k 2,方程为y +2k =k 1-k 2(x -2k 2-1),整理得y 1k -k =x -3,因此,∀k ∈R ,k ≠0,直线MN :y 1k-k =x -3过点(3,0),所以直线MN 恒过定点D (3,0).9.中心在原点的双曲线E 焦点在x 轴上且焦距为4,请从下面3个条件中选择1个补全条件,并完成后面问题:①该曲线经过点A 2,3 ;②该曲线的渐近线与圆x 2-8x +y 2+4=0相切;③点P 在该双曲线上,F 1、F 2为该双曲线的焦点,当点P 的纵坐标为32时,恰好PF 1⊥PF 2.(1)求双曲线E 的标准方程;(2)过定点Q 1,1 能否作直线l ,使l 与此双曲线相交于Q 1、Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出l 的方程;若不存在,说明理由.【解析】 (1)设双曲线E 的标准方程为x 2a 2-y 2b2=1a >b >0 .选①:由题意可知,双曲线E 的两个焦点分别为F 1-2,0 、F 22,0 ,由双曲线的定义可得2a =AF 1 -AF 2 =42+32-3 =2,则a =1,故b =c 2-a 2=3,所以,双曲线E 的标准方程为x 2-y 23=1.选②:圆x 2-8x +y 2+4=0的标准方程为x -4 2+y 2=12,圆心为4,0 ,半径为23,双曲线E 的渐近线方程为y =±b a x ,由题意可得4b a 1+b a2=23,解得b a =3,即b =3a ,因为c =a 2+b 2=2a =2,则a =1,b =3,因此,双曲线E 的标准方程为x 2-y 23=1.选③:由勾股定理可得PF 1 2+PF 2 2=4c 2=16=PF 1 -PF 2 2+2PF 1 ⋅PF 2 =4a 2+2PF 1 ⋅PF 2 ,所以,PF 1 ⋅PF 2 =2c 2-a 2 =2b 2,则S △F 1PF 2=12PF 1 ⋅PF 2 =b 2=12×32×4,则b =3,故a =c 2-b 2=1,所以,双曲线E 的标准方程为x 2-y 23=1.(2)假设满足条件的直线l 存在,设点Q 1x 1,y 1 、Q 2x 2,y 2 ,则x 1+x 2=2y 1+y 2=2 ,由题意可得x 21-y 213=1x 22-y 223=1 ,两式作差得x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 2 3,所以,直线l 的斜率为k =y 1-y 2x 1-x 2=3,所以,直线l 的方程为y -1=3x -1 ,即y =3x -2.联立y =3x -2x 2-y 23=1,整理可得6x 2-12x +7=0,Δ=122-4×6×7<0,因此,直线l 不存在.10.己知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为42,短轴长为2,直线l 过点P -2,1 且与椭圆C 交于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 的斜率为1,求弦AB 的长;(3)若过点Q 1,12的直线l 1与椭圆C 交于E 、G 两点,且Q 是弦EG 的中点,求直线l 1的方程.【解析】 (1)依题意,椭圆C 的半焦距c =22,而b =1,则a 2=b 2+c 2=9,所以椭圆C 的方程为:x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),依题意,直线l 的方程为:y =x +3,由y =x +3x 2+9y 2=9消去y 并整理得:5x 2+27x +36=0,解得x 1=-125,x 2=-3,因此,|AB |=1+12⋅|x 1-x 2|=325,所以弦AB 的长是325.(3)显然,点Q 1,12在椭圆C 内,设E (x 3,y 3),G (x 4,y 4),因E 、G 在椭圆C 上,则x 23+9y 23=9x 24+9y 24=9 ,两式相减得:(x 3-x 4)(x 3+x 4)+9(y 3-y 4)(y 3+y 4)=0,而Q 是弦EG 的中点,即x 3+x 4=2且y 3+y 4=1,则有2(x 3-x 4)+9(y 3-y 4)=0,于是得直线l 1的斜率为y 3-y 4x 3-x 4=-29,直线l 1的方程:y -12=-29(x -1),即4x +18y -13=0,所以直线l 1的方程是4x +18y -13=0.11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB 的斜率为k 1,点P 的坐标为1,32(1)求椭圆C 的方程;(2)求证:k 1k 为定值.【解析】(1)由题意知1a 2+94b 2=1,c a =12,a 2=b 2+c 2, 解得a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1.(2)证明:设M x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,由于A ,B 为椭圆C 上的点,所以x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2 x 1-x 2 4=-y 1+y 2 y 1-y 2 3,所以k 1=y 1-y 2x 1-x 2=-3x 1+x 2 4y 1+y 2=-3x 04y 0.又k =y 0x 0,故k 1k =-34,为定值.12.已知双曲线C :2x 2-y 2=2与点P 1,2 .(1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【解析】(1)双曲线的标准方程为x 2-y 22=1,∴a 2=1,b 2=2.设存在过点P 的弦AB ,使得AB 的中点为P ,设A x 1,y 1 ,B x 2,y 2 ,x 21-y 212=1,x 22-y 222=1两式相减得y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a 2,即k AB ⋅21=b 2a2得:k ⋅2=2,∴k =1.∴存在这样的弦.这时直线l 的方程为y =x +1.(2)设CD 直线方程为x +y +m =0,则点P 1,2 在直线CD 上.则m =-3,直线CD 的方程为x +y -3=0,设C x 3,y 3 ,D x 4,y 4 ,CD 的中点为Q x 0,y 0 ,x 23-y 232=1,x 24-y 242=1两式相减得k CD ⋅y 0x 0=b 2a2,则-1⋅y 0x 0=2,则y 0=-2x 0又因为Q x 0,y 0 在直线CD 上有x 0+y 0-3=0,解得Q -3,6 ,x -y +1=02x 2-y 2=2 ,解得A -1,0 ,B 3,4 ,x +y -3=02x 2-y 2=2 ,整理得x 2+6x -11=0,则x 3+x 4=-6x 3⋅x 4=-11则CD =1+k 2x 3-x 4 =410由距离公式得QA =QB =QC =QD =210所以A 、B 、C 、D 四点共圆.13.李华找了一条长度为8的细绳,把它的两端固定于平面上两点F 1,F 2处,|F 1F 2|<8,套上铅笔,拉紧细绳,移动笔尖一周,这时笔尖在平面上留下了轨迹C ,当笔尖运动到点M 处时,经测量此时∠F 1MF 2=π2,且△F 1MF 2的面积为4.(1)以F 1,F 2所在直线为x 轴,以F 1F 2的垂直平分线为y 轴,建立平面直角坐标系,求李华笔尖留下的轨迹C 的方程(铅笔大小忽略不计);(2)若直线l 与轨迹C 交于A ,B 两点,且弦AB 的中点为N (2,1),求△OAB 的面积.【解析】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义知2a =8,故a 2=16.∵在Rt △F 1MF 2中,|F 1F 2|=2c ,假设|MF 1|=x ,|MF 2|=y (x ,y >0),又∵△F 1MF 2的面积为4cm 2,x +y =8xy =8 ,故4c 2=x 2+y 2=(x +y )2-2xy =48,∴c 2=12,b 2=a 2-c 2=4,∴椭圆的标准方程为x 216+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),∵弦AB 的中点为N (2,1),∴x 1+x 2=4,y 1+y 2=2 且 x 1≠x 2.又∵A ,B 均在椭圆上,∴x 21+4y 21=16x 22+4y 22=16,得x 21-x 22=-4(y 21-y 22),即(x 1+x 2)⋅(x 1-x 2)=-4(y 1+y 2)⋅(y 1-y 2).∴(x 1-x 2)=-2(y 1-y 2).∵x 1≠x 2,∴k AB =y 1-y 2x 1-x 2=-12故直线AB 的方程为:x +2y -4=0.联立 x +2y -4=0x 2+4y 2-16=0,整理得x 2-4x =0.得 x 1=0,x 2=4,∴A (0,2),B (4,0),∴S △OAB =12×2×4=4.∴△OAB 的面积为4cm 2.14.若抛物线C :y 2=x 上存在不同的两点关于直线l :y =m x -3 对称,求实数m 的取值范围.【解析】当m =0时,显然满足.当m ≠0时,设抛物线C 上关于直线l :y =m x -3 对称的两点分别为P x 1,y 1 、Q x 2,y 2 ,且PQ 的中点为M x 0,y 0 ,则y 12=x 1,(1)y 22=x 2,(2)1 -2 得:y 12-y 22=x 1-x 2,∴k PQ =y 1-y 2x 1-x 2=1y 1+y 2=12y 0,又k PQ =-1m ,∴y 0=-m 2.∵中点M x 0,y 0 在直线l :y =m x -3 上,∴y 0=m x 0-3 ,于是x 0=52.∵中点M 在抛物线y 2=x 区域内∴y 02<x 0,即-m 2 2<52,解得-10<m <10.综上可知,所求实数m 的取值范围是-10,10 .。

圆锥曲线专题(点差法)

圆锥曲线专题:点差法的利用例1:椭圆C :13422=+y x 的左极点为A ,左核心为F 。

过M (-4,0)作直线l 交曲线C 于B 、C 两点(B 在M 、C 之间),N 为BC 的中点。

(1) 证明:ON BC k k ⋅为定值;(2) 求点N 的轨迹方程;(3) 是不是存在直线l ,使得FN ⊥AC ?(1)1342121=+y x ;1342222=+y x 作差得()()()()03421212121=+-++-y y y y x x x x , 因此4321212121-=++⋅--=⋅x x y y x x y y k kO N BC 。

(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=--=+=+=+=+4221341342121212122222121x y x x y y y y y x x x y x y x ()()()()()。

y x x y y x y y y y x x x x 13420432420342221212121=++=+⋅+=+-++-整理可得代入得作差得再由中点须在原椭圆内部得点N 的轨迹为:()()0x 1134222≤<-=++y x 。

(3)由F (-1,0),可知0>FN k ,0>AC k ,因此不存在直线l ,使得FN ⊥AC 。

例2:椭圆C :13422=+y x 上有两个不同的点A 、B ,已知弦AB 的中点T 在直线1=x 上,试在x 轴上找一点P ,使得BP AP =。

解:()11,y x A 、()22,y x B 、()0,0x P 、()t T ,1。

1342121=+y x ;1342222=+y x ;221=+x x ;t y y 221=+。

BP AP =PT AB ⊥⇔=-=⋅⇔1PT AB k k 021211x t x x y y -⋅-- 由()()()()03421212121=+-++-y y y y x x x x ,因此410=x 。

高中数学教学课例《圆锥曲线的中点弦问题——点差法的应用》课程思政核心素养教学设计及总结反思


次的安索帕杉树班,平常课堂氛围不是很活跃,因此在
设计导入新课时,多从激发学生的课堂积极性入手。
知识层面:本节课是学生在已经掌握了椭圆中中点
弦所在直线斜率的推导步骤,并且能够“复述”通过类
比推理,将推导方法应用到双曲线中,并用此方法解决
中点弦问题的两种题型。
本节课是在学习椭圆中点弦所在直线斜率公式推
教学策略选 导后的进一步学习,通过类比提出问题,激发学生的学
4、课堂的组织语言上,仍然显得不是那么自然,
在 PPT 与板演方面,没有得到很好的衔接。
5、在课堂改革的潮流下,对课堂“复述”小组合
作没有体现得淋漓精致,对学生活动后没有进行评价打
分,给予鼓励。
反思:
“学最好的别人,做最好的自己”,工作第二年,
自己在课堂讲课方面有一定的进步,但仍然认为自己可
以更好。对教学设计上,在问题引入方面应该多下功夫
择与设计 习兴趣,引导学生类比推理,并以小组合作探究的方式,
对双曲线进行探究。从而得出结论。
探究二:点差法的应用——以定点为中点的弦所在
直线方程
例 1、过椭圆内一点引一条弦,使得弦被点平分,
求这条弦所在直线方程。 教学过程
设计意图:通过例题让学生对知识学以致用,并从”
一题多解“引导学生,一方面让学生感受点差法的简便,
吸引学生。在题组设计方面,不能贪心,应尽量挑选典
型例题,最好结合高考题进行分析。在时间考虑方面,
应尽量让当堂检测时间充裕,给学生考虑消化的时间。
学习一直在路上,课赛遇到很多高手,自己收获很
多,希望再接再厉。
求弦中点的轨迹方程。
情感态度价值观:在整个学生过程中培养学生的合
作能力与坚强的意志品质。

点差法在圆锥曲线中的应用

用 汜 I 重l 。
2 ) 一2 , 所 以 + 4 y一 0。 那 么 弦 中 点 轨 迹 在
作者 单位 : 云 南 省 富 源 县 胜 境 中学
21
二、 求 弦中 点的 轨迹 方程
例 2 已 知 椭 圆 x 2 + z 一 1, 求斜率为 2
一 肤 式 ’
3 b ( 2 ) 联立( 1 ) ( 2 ) 可得, a 。 一 号, b 。 一号, 由
此 可求 出椭 圆方程 为 3 x。 - b9 y 一2 。
点 关 于 直 三 抛 线 q - 物  ̄ = 线 O 0 6 1 焦 点 F 且 倾 斜 角 为 , 设B A 中 点 为 M , 若 对称 , 则 实数 总 . 的 取 值 4
占 姜

范 围 是


AB 与 OM 的 夹 角 的 正 切 值 为 2, 求 椭 圆 方 程 。
点 差 法在 圆锥 曲线 中 的应 用
■ 胡 玉 胜
点 差 法 就 是 在求 解 圆锥 曲线 问题 时 , 利 用直线 和 圆 锥 曲线 的 两 个 交 点 , 把 交 点 代 人 圆锥 曲线 的 方 程 并 作 差 , 得 到 一 个 与 直 线 的 已知 椭 圆 内 , 所 以 所 求 弦 中 点 的 轨 迹 方 程 为 +4 y一 0 ( 在 已知 椭 圆内 ) 。 三、 求 圆锥 曲线 方 程
( Xl — 2 )十 。 ( l + 2 )( yl — 2 )一 O ・ 由

。 一 一

那么
za
Mf . 1 _ , 一 1 。由 题意知, 点M 在抛物线内
A B的斜率为1 得

一笔。 矗 一

圆锥曲线点差法应用个性化教案

圆锥曲线点差法应用个性化教案第一章:圆锥曲线点差法概述1.1 圆锥曲线点差法的定义1.2 圆锥曲线点差法的意义1.3 圆锥曲线点差法与传统解法对比第二章:圆锥曲线点差法的基本原理2.1 圆锥曲线点差法的数学原理2.2 圆锥曲线点差法的适用范围2.3 圆锥曲线点差法的局限性第三章:圆锥曲线点差法的应用实例3.1 求解圆锥曲线的方程3.2 求解圆锥曲线与直线的交点3.3 求解圆锥曲线的切线和法线第四章:圆锥曲线点差法在高考题中的应用4.1 2010年高考题解析4.2 2024年高考题解析4.3 2024年高考题解析第五章:圆锥曲线点差法的拓展与延伸5.1 圆锥曲线点差法在实际问题中的应用5.2 圆锥曲线点差法与其他数学方法的结合5.3 圆锥曲线点差法在数学竞赛中的应用第六章:圆锥曲线点差法在求解轨迹问题中的应用6.1 利用点差法求解动点的轨迹方程6.2 利用点差法判断动点的轨迹形状6.3 实际问题中的轨迹问题求解案例第七章:圆锥曲线点差法在求解参数问题中的应用7.1 利用点差法求解圆锥曲线中的参数问题7.2 利用点差法求解动点在圆锥曲线上的参数问题7.3 参数问题在实际应用中的案例分析第八章:圆锥曲线点差法在求解交点问题中的应用8.1 利用点差法求解圆锥曲线与直线的交点8.2 利用点差法求解圆锥曲线与圆的交点8.3 交点问题在实际应用中的案例分析第九章:圆锥曲线点差法在求解切线和法线问题中的应用9.1 利用点差法求解圆锥曲线的切线9.2 利用点差法求解圆锥曲线的法线9.3 切线和法线问题在实际应用中的案例分析第十章:圆锥曲线点差法在求解最值问题中的应用10.1 利用点差法求解圆锥曲线上的最值问题10.2 利用点差法求解圆锥曲线与直线、圆的最值问题10.3 最值问题在实际应用中的案例分析第十一章:圆锥曲线点差法在解决几何问题中的应用11.1 利用点差法解决圆锥曲线与几何图形的位置关系11.2 利用点差法求解圆锥曲线中的角度和距离问题11.3 几何问题在实际应用中的案例分析第十二章:圆锥曲线点差法在解决函数问题中的应用12.1 利用点差法求解圆锥曲线与函数的关系12.2 利用点差法解决圆锥曲线中的函数最值问题12.3 函数问题在实际应用中的案例分析第十三章:圆锥曲线点差法在解决物理问题中的应用13.1 利用点差法解决圆锥曲线与物理运动的关系13.2 利用点差法解决物理中的力学和光学问题13.3 物理问题在实际应用中的案例分析第十四章:圆锥曲线点差法在解决实际生活中的问题14.1 利用点差法解决工程和测量问题14.2 利用点差法解决地理和天文问题14.3 实际生活问题在案例分析中的应用第十五章:圆锥曲线点差法的教学实践与反思15.1 圆锥曲线点差法教学设计与实践15.2 圆锥曲线点差法教学效果评估与反思15.3 圆锥曲线点差法教学的改进与优化建议重点和难点解析本文主要介绍了圆锥曲线点差法的应用,共分为十五个章节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中“点差法”的应用丹江口市一中数学组 严高翔在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为()()1122,,x y x y 、,代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率,设而不求,优化运算。

本文列举数例,以供参考。

一.以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

解:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则 1642121=+y x ,1642222=+y x 两式相减得 0)(4)(22212221=-+-y y x x于是0))((4))((21212121=-++-+y y y y x x x x ∴21244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。

例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。

若存在这样的直线l ,求出它的方程,若不存在,说明理由。

策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。

本题属于中点弦问题,应考虑点差法或韦达定理。

解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B则221=+x x ,221=+y y122121=-y x ,122222=-y x两式相减,得0))((21))((21212121=-+--+y y y y x x x x ∴22121=--=x x y y k AB 故直线)1(21:-=-x y AB由⎪⎩⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x08324)4(2<-=⨯⨯--=∆这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。

评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。

由此题可看到中点弦问题中判断点的M 位置非常重要。

(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。

二.求弦中点的轨迹方程例1 . 已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程. 解 设弦的两个端点分别为()()1122,,,P x y Q x y ,PQ 的中点为(),M x y .则221112x y +=,(1)222212x y +=,(2) ()()12-得:()2222121202x x y y -+-=,()1212121202x x y y y y x x +-∴++=-. 又121212122,2,2y y x x x y y y x x -+=+==-,40x y ∴+=.弦中点轨迹在已知椭圆内,∴所求弦中点的轨迹方程为40x y +=(在已知椭圆内).例 2. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .解 设()()1122,,A x y B x y 、,AB 中点(),M x y ,则122x x x +=.()():150l a x y --+=,l ∴过定点()1,5N -,51AB MN y k k x +∴==-. 又 ()2111y x =+,(1) ()2221y x =+,(2)()()12-得:()()()()2212121212112y y x x x x x x -=+-+=-++,1212122AB y y k x x x x -∴==++-.于是5221y x x +=+-,即227y x =-. 弦中点轨迹在已知抛物线内,∴所求弦中点的轨迹方程为227y x =-(在已知抛物线内).三.求与中点弦有关的圆锥曲线的方程例1. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。

解:设椭圆的方程为12222=+b x a y ,则5022=-b a ┅┅①设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则210=x ,212300-=-=x y 12021==+x x x ,12021-==+y y y 又1221221=+b xa y ,1222222=+bx a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b 即0)()(212212=-+--x x a y y b222121ba x x y y =-- 322=b a ┅┅②联立①②解得752=a ,252=b所求椭圆的方程是1257522=+x y例2. 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.分析:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强。

知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题.技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式.解法二,用韦达定理.解法一:由e =22=a c ,得21222=-ab a ,从而a 2=2b 2,c =b . 设椭圆方程为x 2+2y 2=2b 2,1122(,),(,)A x y B x y 在椭圆上.则 222222112222,22x y b x y b +=+=, 两式相减得,22221212()2()0x x y y -+-=,12121212.2()y y x xx x y y -+=--+即:设AB 中点为00(,)x y , 则k AB =-002y x , 又00(,)x y 在直线y =21x 上,0012y x =,于是-2y x =-1, k AB =-1, 设l 的方程为y =-x +1. 右焦点(b ,0)关于l 的对称点设为(x ′,y ′),⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y =-x +1. 解法二:由e =21,22222=-=ab a ac 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1), 将l 的方程代入C的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则12x x +=22214k k +,12y y +=1212(1)(1)()2k x k x k x x k -+-=+-=-2212kk+.直线l :y =21x 过AB 的中点(2,22121y y x x ++), 则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一.四. 求直线的斜率例 1 已知椭圆221259x y +=上不同的三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .(1)证 略.(2)解128x x +=,∴设线段AC 的中点为()04,D y .又A C 、在椭圆上,∴22111259x y +=,(1)22221259x y +=,(2) ()()12-得:22221212259x x y y --=-, ()()1212121200998362525225x x y y x x y y y y +-∴=-=-⋅=--+. ∴直线DT 的斜率02536DT y k =,∴直线DT 的方程为()0025436y y y x -=-. 令0y =,得6425x =,即64,025T ⎛⎫⎪⎝⎭,∴直线BT 的斜率955644425k -==-五. 圆锥曲线上两点关于某直线对称问题例1. 已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P的中点,则12432121=+y x ,12432222=+y x两式相减得,0)(4)(322212221=-+-y y x x 即0))((4))((321212121=-++-+y y y y x x x xx x x 221=+,y y y 221=+,412121-=--x x y y∴x y 3= 这就是弦21P P 中点P 轨迹方程。

它与直线m x y +=4的交点必须在椭圆内联立⎩⎨⎧+==m x y x y 43,得⎩⎨⎧-=-=my m x 3 则必须满足22433x y -<,即22433)3(m m -<,解得1313213132<<-m 例2. 若抛物线 2:C y x =上存在不同的两点关于直线():3l y m x =-对称,求实数m 的取值范围.解 当0m =时,显然满足.当0m ≠时,设抛物线C 上关于直线():3l y m x =-对称的两点分别为()()1122,,P x y Q x y 、,且PQ 的中点为()00,M x y ,则211y x =,(1)222y x =,(2) ()()12-得:221212y y x x -=-,1212120112PQ y y k x x y y y -∴===-+,又1PQ k m =-,02my ∴=-. 中点()00,M x y 在直线():3l y m x =-上,()003y m x ∴=-,于是052x =. 中点在抛物线2y x =区域内M 200y x ∴<,即2522m ⎛⎫-< ⎪⎝⎭,解得m <<综上可知,所求实数m的取值范围是(.六. 证明定值问题例1. 已知AB 是椭圆()222210x y a b a b+=>>不垂直于x 轴的任意一条弦,P 是AB的中点,O 为椭圆的中心.求证:直线AB 和直线OP 的斜率之积是定值.证明设()()1122,,,A x y B x y 且12x x ≠,则2211221x y a b +=,(1)2222221x y a b +=,(2)()()12-得:2222121222x x y y a b--=-,()()2121221212b x x y y x x a y y +-∴=--+,()()2121221212AB b x x y y k x x a y y +-∴==--+. 又1212OPy y k x x +=+,221AB OPb k k a ∴=-⋅,22AB OP b k k a ∴⋅=-(定值). 七.处理存在性问题例1 已知双曲线22112x y -=,过()1,1B 能否作直线l ,使l 与双曲线交于P ,Q 两点,且B 是线段PQ 的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由.解 假设这样的直线存在,设,P Q 的坐标分别为()()1122,,,x y x y ,则122x x +=,122y y +=,又2211112x y -=,(1)2222112x y -=,(2) ()()12-得:()()()()12121212102x x x x y y y y +--+-=,∴()()121220x x y y ---=PQ ∴的斜率 12122y y k x x -==-又直线l 过,,P Q B 三点,l ∴的方程为 ()121y x -=-,即21y x =-.但若将21y x =-代入22112x y -=整理得方程22430x x -+=,而此方程无实数解,所以满足题设的直线不存在.例2 (湖北卷2012年理科21题)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由||||(0,1)DM m DA m m =>≠且, 可得0x x =,0||||y m y =,所以0x x =,01||||y y m=. ① 因为A 点在单位圆上运动,所以22001x y +=. ②将①式代入②式即得所求曲线C 的方程为222 1 (0,1)y x m m m+=>≠且.因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-,(0,.(Ⅱ)解法1:如图2、3,0k ∀>,设11(,)P x kx ,22(,)H x y ,则11(,)Q x kx --,1(0,)N kx ,直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得 222222211(4)40m k x k x x k x m +++-=.依题意可知此方程的两根为1x -,2x ,于是由韦达定理可得 21122244k x x x m k -+=-+,即212224m x x m k =+. 因为点H 在直线QN 上,所以2121222224km x y kx kx m k -==+.于是11(2,2)PQ x kx =--,22112121222242(,)(,)44k x km x PH x x y kx m k m k =--=-++.而PQ PH ⊥等价于2221224(2)04m k x PQ PH m k -⋅==+,即220m -=,又0m >,得m =(lby lfx )故存在m =使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.图2 (01)m <<图3 (1)m >图1第21题解答图解法2:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --,1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得m =故存在m =使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。

相关文档
最新文档