江苏高二文科复习学案+练习14_对数与对数函数
对数_对数函数复习教案

一.知识归纳一)对数1、定义: 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a即有:⇔=N a b )1,0(log ≠>=a a N b a题型一、指数与对数的互化练习1 把下列指数式写成对数形式:4611(1)5625;(2)2;(3) 5.73643m-⎛⎫=== ⎪⎝⎭练习2 把下列对数形式写成指数形式:12(1)log 164;(2)lg 0.012;(3)ln 10 2.303=-=-=2、性质:①零与负数没有对数 ②01log =a ③1log =a a;3、恒等式:NaNa=log;b aba=log)1,0(≠>a a4、运算法则:NM MN aaalogloglog)1(+=NM NMaaalogloglog)2(-=Mn M analog log )3(= 其中a>0,a≠0,M>0,N>05、换底公式:)10,10,0(loglog log≠>≠>>=m m a a N aN N mm a且且二、题型讲解题型一.对数式的化简和运算 例1 计算:练习 求下列各式的值:练习、计算下列各式 (1)12lg )2(lg5lg 2lg)2(lg222+-+⋅+(2)06.0lg 61lg)2(lg )1000lg 8(lg 5lg 23++++(4) 用log a x ,log a y ,log a z 表示下列各式:二)对数函数y=log a x (a>0 , a≠1)的图象与性质:注意:研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制5. 函数y =的定义域是_____________6.方程0)2lg(lg 2=+-x x 的解集是___________________.7 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ) A42 B22 C41 D21例2、已知x,y ,z 为正数,满足zyx643==①求使2x=py 的p 的值, ②求与①中所求的p 的差最小的整数③求证:x zy1121-=④比较3x 、4y 、6z 的大小变式:已知a 、b 、c 均是不等于1的正数,且0111=++==zyxcbazyx,求abc 的值题型三、对数函数图像与性质的运用例3已知f(x)=a x ,g(x)=log a x(a>0,a≠1),若f(3)×g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能为( )练习:比较下列各组中两个值的大小: (1)6log,7log 76; (2)8.0log,log23π例4.判断下列函数的奇偶性: (1)xxx f +-=11lg)(;(2))1ln()(2x xx f -+=例4、已知不等式0)3(log )12(log 2<<+x x x x 成立,则实数x 的取值范围为( )A )31,0( B)21,0( C)1,31( D)21,31(题型四、指数、对数函数的综合问题例5.设a>0,xeax f +=)(是R 上的偶函数.(1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数例6.设函数)(log )(2xx b a x f -=且12log )2(,1)1(2==f f(1) 求a,b 的值; (2) 当[]2,1∈x 时,求)(x f 最大值备用(2011陕西卷理)已知函数()()0011>≥+++=a ,,x xax ln x f 其中()I 若()f x 在x=1处取得极值,求a 的值;()II 求()x f 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围。
江苏高二数学复习学案+练习14 对数与对数函数 文 试题

心尺引州丑巴孔市中潭学校学案14 对数与对数函数一、课前准备: 【自主梳理】 1.对数:〔1〕 一般地,如果)1,0(≠>=a a N ax,那么实数x 叫做________________,记为________,其中a叫做对数的_______,N 叫做________.〔2〕以10为底的对数记为________,以e 为底的对数记为_______. 〔3〕_____1log =a ,_____log =a a .2.对数的运算性质: 〔1〕如果0,0,1,0>>≠>N M a a,那么______log =MN a ,_______log ______,log ==n a aM NM. 〔2〕对数的换底公式:)0,1,0_________(log >≠>=N a a N a .3.对数函数:一般地,我们把函数____________叫做对数函数,其中x 是自变量,函数的定义域是______. 4.对数函数的图像与性质:【自我检测】 1.)12(log 2+=x y 的定义域为_________.2.化简:_________)2log 2)(log 3log 3(log 9384=++.3.不等式1)1lg(<-x 的解集为________________.4.利用对数的换底公式计算:_______91log 81log 251log 532=⨯⨯. 5.函数xxx f +-=11lg)(的奇偶性是____________. 6.对于任意的),0(,21+∞∈x x ,假设函数x x f lg )(=,那么2)()(21x f x f +与)2(21x x f +的大小关系是___________________________. 二、课堂活动: 【例1】填空题: 〔1〕_______5lg 38lg =+.〔2〕比较5log 2与8log 5的大小为___________.〔3〕如果函数⎥⎦⎤⎢⎣⎡∈⎥⎦⎤⎢⎣⎡+-=23,1,1)23(lg )(x x x x f ,那么)(x f 的最大值是_____________.〔4〕函数)1lg()(2x x x f -+=的奇偶性是___________.【例2】求函数)1,0)((log 2≠>-=a a x x y a 的定义域和值域.【例3】函数)(x f 满足)1,0(6log )3(222≠>-=-a a xx x f a . 〔1〕求)(x f 的解析式; 〔2〕判断)(x f 的奇偶性;〔3〕解不等式)2(log )(x x f a ≥.课堂小结 三、课后作业1._______)2(lg 50lg 2lg 25lg 2=+•+.2.函数)3(log )1(x y x -=-的定义域为_______________.3.函数)176(log 221+-=x x y 的值域是_____________.4.假设153log <a ,那么a 的取值范围是_____________. 5.设,1.1,8.0log ,8.0log 7.01.17.0===c b a那么c b a ,,的大小关系是_____________.6.设函数⎩⎨⎧>+≤=0),1lg(0,)(x x x x x f ,假设1)(>x f ,那么x 的取值范围为_________________. 7.当(]2,1∈x 时,不等式x x a log )1(2≤-恒成立,那么a 的取值范围为______________.8.函数xx f 3log )(=在区间[]b a ,上的值域为[]1,0,那么a b -的最小值为____________.9.)1,0(11log )(≠>-+=a a xxx f a. 〔1〕求)(x f 的定义域;〔2〕判断)(x f 的奇偶性并予以证明; 〔3〕求使0)(>x f 的x 的取值范围.10.对于函数)32(log )(221+-=ax x x f ,答复以下问题:〔1〕假设)(x f 的定义域为R ,求实数a 的取值范围; 〔2〕假设)(x f 的值域为R ,求实数a 的取值范围;〔3〕假设函数)(x f 在[)+∞-,1内有意义,求实数a 的取值范围.四、纠错分析学案14 对数与对数函数一、课前准备: 【自主梳理】 1.对数〔1〕以a 为底的N 的对数,Nx a log =,底数,真数.〔2〕N lg,N ln .〔3〕0,1. 2.对数的运算性质 〔1〕N M a alog log +,N M a a log log -,Mn a log .〔2〕)1,0(log log ≠>b b aNb b .3.对数函数)1,0(log ≠>=a a x y a ,()+∞,0.4.对数函数的图像与性质【自我检测】 1.),21(+∞-2.45 3.)11,1(4.12- 5.奇函数 6.)2(2)()(2121x x f x f x f +≤+.二、课堂活动: 【例1】填空题: 〔1〕3. 〔2〕8log 5log 52>.〔3〕0. 〔4〕奇函数. 【例2】解:由02>-x x 得10<<x .所以函数)(log 2x x y a -=的定义域是〔0,1〕.因为4141)21(022≤+--=-<x x x ,所以,当10<<a 时,41log )(log 2a a x x ≥-,函数)(log 2x x y a -=的值域为⎪⎭⎫⎢⎣⎡+∞,41log a ;当1>a 时,41log )(log 2aa x x ≤-,函数)(log 2x x y a -=的值域为⎥⎦⎤ ⎝⎛∞-41log ,a. 【例3】解:〔1〕)3(333log )3(222--+-=-x x x f a ,所以)33(33log )(<<--+=x x x x f a. 〔2〕定义域〔-3,3〕关于原点对称,所以)(33log )33(log 33log )(1x f xxx x x x x f a a a-=-+-=-+=+-=--,所以)(x f 为奇函数. 〔3〕x x x a a 2log 33log ≥-+,所以当1>a 时,⎪⎪⎩⎪⎪⎨⎧≥-+>>-+x x xx x x23302033解得(]⎪⎭⎫⎢⎣⎡⋃3,231,0当10<<a 时,⎪⎪⎩⎪⎪⎨⎧≤-+>>-+x xxx x x23302033解得⎥⎦⎤⎢⎣⎡23,1. 三、课后作业 1.2. 2.())3,2(2,1 . 3.(]3,-∞-.4.()+∞⋃⎪⎭⎫⎝⎛,153,0. 5.b a c >>.6.()+∞,9. 7.(]2,1.8.32.9.解:〔1〕由011>-+xx得11<<-x ,函数的定义域为〔-1,1〕; 〔2〕因为定义域关于原点对称,所以)(11log )11(log 11log )(1x f x xx x x x x f a a a-=-+-=-+=+-=--,所以函数是奇函数. 〔3〕1log 11log a a x x>-+当1>a 时,⎪⎪⎩⎪⎪⎨⎧>-+>-+111011x x x x 解得()1,0;当10<<a 时,⎪⎪⎩⎪⎪⎨⎧<-+>-+111011xx xx解得)0,1(-.10. 解:〔1〕由题可知0322>+-ax x 的解集是R ,所以012)2(2<--a ,解得()3,3-∈a〔2〕由题可知322+-ax x 取得大于0的一切实数,所以12)2(2≥--a ,解得(][)+∞⋃-∞-∈,33,a〔3〕由题可知0322>+-ax x在[)+∞-,1上恒成立,令32)(2+-=ax x x g⎩⎨⎧>--≤0)1(1g a 解得(]1,2--∈a 或012)2(2<--a 解得()3,3-∈a ,综上()3,2-∈a .。
苏教版版高考数学一轮复习第二章函数对数与对数函数教学案

1.对数的概念如果a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N ,其中a 叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:1a log a N=N;2log a a b=b(a>0,且a≠1).(2)换底公式:log a b=错误!(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:1log a(M·N)=log a M+log a N;2log a错误!=log a M—log a N;3log a M n=n log a M(n∈R).3.对数函数的定义、图象与性质定义函数y=log a x(a>0且a≠1)叫做对数函数图象a>10<a<1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.错误!1.换底公式的两个重要结论(1)log a b=错误!;(2)log am b n=错误!log a b.其中a>0且a≠1,b>0且b≠1,m,n∈R,m≠0.2.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x. ()(3)函数y=ln错误!与y=ln(1+x)—ln(1—x)的定义域相同.()(4)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象不在第二、三象限.()[答案](1)×(2)×(3)√(4)√二、教材改编1.(log29)·(log34)=()A.错误!B.错误!C.2D.4D[(log29)·(log34)=错误!×错误!=错误!×错误!=4.故选D.]A.a>b>cB.a>c>bC.c>b>aD.c>a>bD[因为0<a<1,b<0,c=log错误!错误!=log23>1.所以c>a>b.故选D.]3.函数y=的定义域是________.[由(2x—1)≥0,,得0<2x—1≤1.,∴错误!<x≤1.,∴函数y=的定义域是.]4.函数y=log a(4—x)+1(a>0,且a≠1)的图象恒过点________.(3,1)[当4—x=1即x=3时,y=log a1+1=1.,所以函数的图象恒过点(3,1).]考点1对数式的化简与求值对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.设2a=5b=m,且错误!+错误!=2,则m等于()A.错误!B.10C.20 D.100A[由已知,得a=log2m,b=log5m,,则错误!+错误!=错误!+错误!,=log m2+log m5=log m 10=2.,解得m=错误!.]2.计算:错误!÷100错误!=________.—20 [原式=(lg 2—2—lg 52)×100错误!=lg错误!×10=lg 10—2×10=—2×10=—20.]3.计算:错误!=________.1[原式=错误!=错误!=错误!=错误!=错误!=1.]对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论.在对含有字母的对数式进行化简时,必须保证恒等变形.考点2对数函数的图象及应用对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)(2019·浙江高考)在同一直角坐标系中,函数y=错误!,y=log a(a >0,且a≠1)的图象可能是()A BC D(2)当0<x≤错误!时,4x<log a x,则a的取值范围是()A.0,错误!B.错误!,1C.(1,错误!)D.(错误!,2)(1)D(2)B[(1)对于函数y=log a,当y=0时,有x+错误!=1,得x=错误!,即y=log a的图象恒过定点错误!,0,排除选项A、C;函数y=错误!与y=log a在各自定义域上单调性相反,排除选项B,故选D.(2)构造函数f(x)=4x和g(x)=log a x,当a>1时不满足条件,当0<a<1时,画出两个函数在的图象,可知f<g,即2<log a错误!,则a>错误!,所以a的取值范围为.][母题探究]1.(变条件)若本例(2)变为:若不等式x2—log a x<0对x∈恒成立,求实数a的取值范围.[解] 由x2—log a x<0得x2<log a x,设f1(x)=x2,f2(x)=log a x,要使x∈时,不等式x2<log a x恒成立,只需f1(x)=x2在上的图象在f2(x)=log a x图象的下方即可.当a >1时,显然不成立;当0<a<1时,如图所示.要使x2<log a x在x∈上恒成立,需f1≤f2,所以有错误!≤log a错误!,解得a≥错误!,所以错误!≤a<1.即实数a的取值范围是.2.(变条件)若本例(2)变为:当0<x≤错误!时,错误!<log a x,求实数a的取值范围.[解] 若错误!<log a x在x∈成立,则0<a<1,且y=错误!的图象在y=log a x图象的下方,如图所示,由图象知错误!<log a错误!,所以解得错误!<a<1.即实数a的取值范围是.1.(2019·合肥模拟)函数y=ln(2—|x|)的大致图象为(),A BC DA[令f(x)=ln(2—|x|),易知函数f(x)的定义域为{x|—2<x<2},且f(—x)=ln(2—|—x|)=ln(2—|x|)=f(x),,所以函数f(x)为偶函数,排除选项C,D.,当x=错误!时,f错误!=ln 错误!<0,排除选项B,故选A.]2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1D[由对数函数的图象和性质及函数图象的平移变换知0<a<1,0<c<1.]3.设方程10x=|lg(—x)|的两个根分别为x1,x2,则()A.x1x2<0 B.x1x2=0C.x1x2>1D.0<x1x2<1D[作出y=10x与y=|lg(—x)|的大致图象,如图.显然x1<0,x2<0.不妨令x1<x2,则x1<—1<x2<0,所以10x1=lg(—x1),10x2=—lg(—x2),此时10x1<10x2,即lg(—x1)<—lg(—x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.]考点3对数函数的性质及应用解与对数函数有关的函数性质问题的3个关注点(1)定义域,所有问题都必须在定义域内讨论.(2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的.比较大小(1)(2019·天津高考)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c 的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b(2)已知a=log2e,b=ln 2,c=log错误!错误!,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b(1)A(2)D[(1)因为a=log52<log5错误!=错误!,b=log0.50.2>log0.50.5=1,c=0.50.2=错误!错误!>错误!,0.50.2<1,所以a<c<b,故选A.(2)因为a=log2e>1,b=ln 2∈(0,1),c=log错误!错误!=log23>log2e>1,所以c >a>b,故选D.]对数值大小比较的主要方法(1)化同底数后利用函数的单调性.(2)化同真数后利用图象比较.(3)借用中间量(0或1等)进行估值比较.解简单对数不等式(1)若log a错误!<1(a>0且a≠1),则实数a的取值范围是________.(2)若log a(a2+1)<log a2a<0,则a的取值范围是________.(1)错误!∪(1,+∞)(2)错误![(1)当0<a<1时,log a错误!<log a a=1,∴0<a<错误!;当a>1时,log a错误!<log a a=1,∴a>1.∴实数a的取值范围是错误!∪(1,+∞).(2)由题意得a>0且a≠1,故必有a2+1>2a,又log a(a2+1)<log a2a<0,所以0<a<1,同时2a>1,所以a>错误!.综上,a∈错误!.]对于形如log a f(x)>b的不等式,一般转化为log a f(x)>log a a b,再根据底数的范围转化为f(x)>a b或0<f(x)<a b.而对于形如log a f(x)>log b g(x)的不等式,一般要转化为同底的不等式来解.和对数函数有关的复合函数解决与对数函数有关的函数的单调性问题的步骤已知函数f(x)=log a(3—ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.[解](1)因为a>0且a≠1,设t(x)=3—ax,则t(x)=3—ax为减函数,x∈[0,2]时,t(x)的最小值为3—2a,当x∈[0,2]时,f(x)恒有意义,即x∈[0,2]时,3—ax>0恒成立.所以3—2a>0.所以a<错误!.又a>0且a≠1,所以a∈(0,1)∪错误!.(2)t(x)=3—ax,因为a>0,所以函数t(x)为减函数.因为f(x)在区间[1,2]上为减函数,所以y=log a t为增函数,所以a>1,当x∈[1,2]时,t(x)最小值为3—2a,f(x)最大值为f(1)=log a(3—a),所以错误!即错误!故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的,另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.已知函数f(x)=log0.5(x2—ax+3a)在[2,+∞)单调递减,则a的取值范围为()A.(—∞,4] B.[4,+∞)C.[—4,4] D.(—4,4]D[令g(x)=x2—ax+3a,因为f(x)=log0.5(x2—ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以错误!a≤2且g(2)>0,所以a≤4且4+a>0,所以—4<a≤4.故选D.]2.函数y=log a x(a>0且a≠1)在[2,4]上的最大值与最小值的差是1,则a=________.2或错误![分两种情况讨论:1当a>1时,有log a4—log a2=1,解得a=2;2当0<a<1时,有log a2—log a4=1,解得a=错误!.所以a=2或错误!.]3.设函数f(x)=若f(a)>f(—a),则实数a的取值范围是________.(—1,0)∪(1,+∞)[由题意得错误!或解得a>1或—1<a<0.]。
学案高中数学第3章指数函数对数函数和幂函数3.2_3.2.1对数练习苏教版必修4

3.2 对数函数 3.2.1 对数A 级 基础巩固1.若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( ) A .9 B .8 C .7 D .6解析:由log 2(log 3x )=0,得log 3x =1,则x =3. 同理y =4,z =2.所以x +y +z =3+4+2=9. 答案:A2.已知log 2x =3,则x -12等于( ) A.13 B.123 C.133D.24 解析:因为log 2x =3,所以x =23=8. 则x -12=8-12=18=24. 答案:D3.log 242+log 243+log 244等于( ) A .1 B .2 C .24 D.12解析:log 242+log 243+log 244=log 24(2×3×4)=log 2424=1. 答案:A4.计算log 916·log 881的值为( ) A .18 B.118 C.83 D.38解析:log 916·log 881=lg 24lg 32·lg 34lg 23=4lg 22lg 3·4lg 33lg 2=83. 答案:C5.若lg x =a ,lg y =b ,则lg x -lg ⎝ ⎛⎭⎪⎫y 102的值为( )A.12a -2b -2 B.12a -2b +1 C.12a -2b -1 D.12a -2b +2 解析:原式=12lg x -2lg y 10=12lg x -2(lg y -1)=12a -2(b -1)=12a -2b +2.答案:D6.对数式lg 14-2lg 73+lg 7-lg 18的化简结果为( )A .1B .2C .0D .3解析:lg 14-2lg 73+lg 7-lg 18=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.答案:C7.方程log 2(1-2x )=1的解x =________. 解析:因为log 2(1-2x )=1=log 22, 所以1-2x =2.所以x =-12.经检验满足1-2x >0. 答案:-128.若x >0,且x 2=916,则x log 34⎝ ⎛⎭⎪⎪⎫43=________. 解析:由x >0,且x 2=916.所以x =34.从而xlog 34⎝ ⎛⎭⎪⎪⎫43=34log 34⎝ ⎛⎭⎪⎪⎫43=43. 答案:439.已知m >0,且10x=lg(10m )+lg 1m,则x =________.解析:因为lg(10m )+lg 1m=lg ⎝ ⎛⎭⎪⎫10m ·1m =lg 10=1,所以10x=1,得x =0. 答案:010.若log a b ·log 3a =4,则b =________.解析:因为log a b ·log 3a =log 3blog 3a·log 3a =log 3b , 所以log 3b =4,b =34=81. 答案:8111.设log a 3=m ,log a 5=n .求a 2m +n的值.解:由log a 3=m ,得a m=3, 由log a 5=n ,得a n=5, 所以a2m +n=(a m )2·a n =32×5=45.12.计算:(1)lg 25+lg 2·lg 50+lg 22; (2)lg 23-lg 9+1(lg 27+lg 8-lg 1 000)lg 0.3·lg 1.2.解:(1)原式=2lg 5+lg 2·(1+lg 5)+lg 22=2lg 5+lg 2·(1+lg 5+lg 2)=2lg 5+2lg 2=2.(2)原式=lg 23-2lg 3+1⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32(lg 3-1)·(lg 3+2lg 2-1)=(1-lg 3)·32(lg 3+2lg 2-1)(lg 3-1)·(lg 3+2lg 2-1)=-32.B 级 能力提升13.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④解析:因为lg 10=1,ln e =1, 所以①②正确.由10=lg x 得x =1010,故③错;由e =ln x 得x =e e,故④错. 答案:C14.已知2x=3,log 4 83=y ,则x +2y 等于( )A .3B .8C .4D .log 48 解析:由2x=3,得x =log 23,所以x +2y =log 23+2log 483=log 23+2×log 283log 24=log 23+log 283=log 2⎝ ⎛⎭⎪⎫3×83=log 28=3.答案:A15.地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).A 地地震级别为9.0级,B 地地震级别为8.0级,那么A 地地震的能量是B 地地震能量的________倍.解析:由R =23(lg E -11.4),得32R +11.4=lg E ,故E =1032R +11.4. 设A 地和B 地地震能量分别为E 1,E 2,则E 1E 2=1032×9+11.41032×8+11.4=1032=1010. 即A 地地震的能量是B 地地震能量的1010倍. 答案:101016.已知log 2(log 3(log 4x ))=0,且log 4(log 2y )=1,求x ·y 34的值. 解:因为log 2(log 3(log 4x ))=0,所以log 3(log 4x )=1. 所以log 4x =3.所以x =43=64.由于log 4(log 2y )=1,知log 4y =4,所以y =24=16.因此x ·y 34=64×1634=8×8=64.17.一台机器原价20万元,由于磨损,该机器每年比上一年的价格降低8.75%,问经过多少年这台机器的价值为8万元(lg 2≈0.301 0,lg 9.125≈0.960 2)?解:设经过x 年,这台机器的价值为8万元,则8=20(1-0.087 5)x,即0.912 5x=0.4. 两边取以10为底的对数, 得x =lg 0.4lg 0.912 5=lg 4-1lg 9.125-1=2lg 2-1lg 9.125-1≈10(年).所以约经过10年这台机器的价值为8万元.18.甲、乙两人解关于x 的方程:log 2x +b +c log x 2=0,甲写错了常数b ,得两根14,18;乙写错了常数c ,得两根12,64.求这个方程的真正根.解:原方程变形为(log 2x )2+b log 2x +c =0.① 由于甲写错了常数b ,得到的根为14和18.所以c =log 214·log 218=6.由于乙写错了常数c ,得到的根为12和64,所以b =-⎝ ⎛⎭⎪⎫log 212+log 264=-5. 故方程①为(log 2x )2-5log 2x +6=0, 解得log 2x =2或log 2x =3, 所以x =22或x =23.所以,这个方程的真正根为x =4或x =8.。
2020江苏高考数学一轮复习学案:第14课__对数函数 含解析

____第14课__对__数__函__数____1. 理解对数函数的定义、图象和性质.2. 能用对数函数的性质比较两个对数的大小.3. 能用对数函数的图象和性质;解决简单的综合性问题.1. 阅读必修1第81~87页,完成以下任务:(1) 对数函数的概念是什么?通过第83页例1,掌握求对数函数定义域的方法. (2) 对数函数的图象和性质是怎样的?通过第83页例2,掌握比较对数大小的方法. (3) 通过第84~85页例3、例4,掌握对数函数图象的变换.2. 由重点题目第87页习题第8、14题进一步观察和探究对数函数的图象和性质.基础诊断1. 函数y =log 2(-2)的定义域是__(0,1)__,值域是__(-∞,-2]__, 单调增区间是__⎝ ⎛⎭⎪⎫0,2__.解析:由题意得,-2>0,解得0<<1,故函数y =log 2(-2)的定义域为(0,1); 因为y =log 2(-2)=log 2⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x -122+14≤log 214=-2,所以函数的值域为(-∞,-2];因为y =log 2t 是单调增函数,所以函数g()=-2的增区间即为原函数的增区间.因为g()=-2在⎝ ⎛⎭⎪⎫0,12上单调递增,故原函数的单调增区间为⎝ ⎛⎭⎪⎫0,12.2. 函数f()=1-2log 6x 的定义域为.解析:由题意得⎩⎨⎧x>0,1-2log 6x ≥0,解得0<≤6,故函数f()的定义域为(0,6].3. 若-1<log a 34<1,则实数a 的取值范围为__⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞__.解析:由-1<log a 34<1得log a 1a <log a 34<log a a.若0<a<1,则函数y =log a 在(0,+∞)上单调递减,所以1a >34>a ,解得0<a<34;若a>1,则函数y =log a 在(0,+∞)上单调递增,所以1a <34<a ,解得a>43. 综上,a 的取值范围为⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞.4. 已知a ∈R ,函数f ()=log 2⎝ ⎛⎭⎪⎫1x+a ,若关于的方程f ()+log 22=0的解集中恰有一个元素,则a 的值为__-14或0__.解析:由题意得log 2⎝ ⎛⎭⎪⎫1x +a +log 22=0,即log 2(a 2+)=0,即a 2+-1=0.当a =0时,解得=1,符合题意; 当a ≠0时,Δ=1+4a =0,解得a =-14.综上,a 的值为0或-14.范例导航考向❶ 含对数式的大小比较例1 比较下列各组数中两个值的大小: (1) log 23.4,log 28.5; (2) log 0.31.8,log 0.32.7;(3) log a 5.1,log a 5.9(a>0,且a ≠1).解析:(1) 根据函数y =log 2单调递增可得log 23.4<log 28.5. (2) 根据函数y =log 0.3单调递减可得log 0.31.8>log 0.32.7. (3) 函数y =log a 的单调性需分两种情况讨论: ①当0<a<1时,函数y =log a 单调递减, 所以log a 5.1>log a 5.9;②当a>1时,函数y =log a 单调递增, 所以log a 5.1<log a 5.9.比较下列各组数的大小. (1) log 323与log 565;(2) log 1.10.7与log 1.20.7;(3) 已知log 12b<log 12a<log 12c ,比较2a ,2b ,2c 的大小.解析:(1) 因为log 323<log 31=0,log 565>log 51=0,所以log 323<log 565.(2) 方法一:因为0<0.7<1,1.1<1.2, 所以0>log 0.71.1>log 0.71.2, 所以1log 0.71.1<1log 0.71.2,由换底公式可得log 1.10.7<log 1.20.7.方法二:作出y =log 1.1与y =log 1.2的图象,如图所示,由两图象与直线=0.7相交可知log 1.10.7<log 1.20.7.(3) 因为y =log 12为减函数,且log 12b<log 12a<log 12c ,所以b>a>c.考向❷ 对数函数的图象(变换)与性质例2 已知函数f()=log a (a>0且a ≠1),若对于任意的∈⎣⎢⎡⎦⎥⎤13,2都有|f()|≤1成立,试求a 的取值范围.解析:因为f()=log a ,则y =|f()|的图象如图所示.由图可知,要使∈⎣⎢⎡⎦⎥⎤13,2时恒有|f()|≤1,只需|f ⎝ ⎛⎭⎪⎫13|≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a.当a>1时,a -1≤13≤a ,解得a ≥3;当0<a<1时,a -1≥13≥a ,解得0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞).(1) 已知函数f()=|lg |,若0<a<b ,且f(a)=f(b),则a +2b 的取值范围为__(3,+∞)__; 解析:画出函数f()=|lg |的图象如图所示.因为0<a<b ,f(a)=f(b),所以0<a<1,b>1,所以lg a<0,lg b>0.又因为f(a)=f(b),所以-lg a =lg b ,即ab =1,所以a +2b =a +2a ,易证μ=a +2a在区间(0,1)上单调递减,所以μ>3,即a +2b>3.(2) 已知函数f()=log a ||在(0,+∞)上单调递增,则f(-2)__<__f(a +1).(填“<”“=”或“>”) 解析:因为f()=log a ||在(0,+∞)上单调递增,所以a>1,所以a +1>2.因为f()是偶函数,所以f(-2)=f(2)<f(a +1).考向❸ 对数函数的图象与性质的综合运用例3 已知函数f()=log a (+1)-log a (1-),a>0且a ≠1. (1) 求f()的定义域;(2) 判断f()的奇偶性并予以证明; (3) 若a>1,求使f()>0的的解集. 解析:(1) 由题意得⎩⎨⎧x +1>0,1-x>0,解得-1<<1. 故所求函数f()的定义域为{|-1<<1}. (2) 由(1)知f()的定义域为{|-1<<1},且f(-)=log a (-+1)-log a (1+)=-[log a (+1)-log a (1-)]=-f(), 故f()为奇函数.(3) 因为当a>1时,f()在定义域{|-1<<1}上是增函数,所以由f()>0,得x +11-x >1,解得0<<1,所以使f()>0的的解集是{|0<<1}.自测反馈1. 设a =log 3π,b =log 23,c =log 32,则a ,b ,c 的大小关系为__a>b>c__. 解析:a =log 3π>1,b =12log 23,则12<b<1,c =12log 32<12,所以a>b>c.2. 已知函数f()=ln 1+ax1+2x(a ≠2)为奇函数,则实数a =__-2__.解析:依题意有f(-)+f()=ln 1-ax 1-2x +ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax1+2x =1,故1-a 22=1-42,所以a 2=4.又a ≠2,故a =-2.3. 已知函数f()满足:当≥4时,f()=⎝ ⎛⎭⎪⎫12x;当<4时,f()=f(+1),则f(2+log 23)的值为__124__.解析:因为1<log 23<2,所以3<2+log 23<4,所以f(2+log 23)=f(3+log 23),因为4<3+log 23<5,所以f(3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫12log 23=18×2log 23-1=18×13=124.4. 定义在R 上的偶函数f ()在[0,+∞)上单调递增,f ⎝ ⎛⎭⎪⎫13=0,则满足f ⎝⎛⎭⎫log 18x >0的的取值范围是__⎝ ⎛⎭⎪⎫0,12∪(2,+∞)__. 解析:由题意得,f (log 18)>f ⎝ ⎛⎭⎪⎫13,因为f ()为R 上的偶函数且在[0,+∞)上单调递增可得,log 18>13或log 18<-13,解得0<<12或>2,故的取值范围是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).1. 对数函数的底数与真数应满足的条件必须重视,对于含参数问题,一般都需分类讨论.2. 比较对数大小时,先与0比较分正负;正数与1比较,分大于1还是小于1.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.3. 你还有哪些体悟,写下;:。
备战高考数学复习考点知识与题型讲解14---对数与对数函数

备战高考数学复习考点知识与题型讲解第14讲对数与对数函数考向预测核心素养以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,各种题型均可能出现,中档难度.数学抽象、数学运算一、知识梳理1.对数的概念(1)定义:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.(2)常用对数与自然对数2.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N.(2)log a MN=log a M-log a N.(3)log a M n =n log a M(n∈R).3.换底公式log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0).4.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).5.对数函数的图象及性质a的范围0<a<1a>1图象性质定义域(0,+∞)值域R定点过定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nmlog a b;(3)log a b·log b c·log c d=log a d. 2.对数函数的图象与底数大小的关系如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数. 故0<c <d <1<a <b .由此我们可得到此规律:在第一象限内与y =1相交的对数函数从左到右底数逐渐增大.二、教材衍化1.(人A 必修第一册P 126练习T 3(2)改编)(log 43+log 83)·log 32=________. 解析:(log 43+log 83)·log 32=⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2·lg 2lg 3=56. 答案:562.(人A 必修第一册P 131练习T 1改编)函数y =log 711-3x的定义域为________. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <133.(人A 必修第一册P 135练习T 2改编)比较下列两个值的大小: (1)log 0.56________log 0.54; (2)log 213________log 123.答案:(1)< (2)=一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是同一个函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏1.(对数函数图象不清致误)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出当x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.2.(对数函数单调性不清致误)函数y =log 23(2x -1)的定义域是________________.解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,13.(忽视对底数的讨论致误)若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.解析:当0<a <1时,log a 34<log a a =1,所以0<a <34;当a >1时,log a 34<log a a =1,所以a >1.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞). 答案:⎝ ⎛⎭⎪⎫0,34∪(1,+∞)考点一 对数式的化简与求值(自主练透)复习指导:理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.1.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:122.计算:(lg 2)2+lg 2·lg 50+lg 25=________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:23.(2022·德州高三期中)声音大小(单位:分贝)取决于声波通过介质时,所产生的压力变化(简称声压,单位:N/m 2).已知声音大小y 与声压x 的关系式为y =10×lg ⎝ ⎛⎭⎪⎫x 2×10-52,且根据我国《城市区域环境噪音标准》规定,在居民区内,户外白昼噪声容许标准为50分贝,夜间噪声容许标准为40分贝,则在居民区内,户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的________倍.解析:当y =50时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=5,即⎝ ⎛⎭⎪⎫x 2×10-52=105,解得x =2×10-52,当y =40时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=4,即⎝ ⎛⎭⎪⎫x 2×10-52=104,解得x =2×10-3,所以户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的2×10-522×10-3=1012=10倍.答案:104.设2a =5b =m ,且1a +1b=2,则m =________.解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b=log m 2+log m 5=log m 10.因为1a +1b=2,所以log m 10=2.所以m 2=10,所以m =10.答案:10对数式化简与求值的基本原则和方法(1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”:将同底的两对数的和(差)收成积(商)的对数; ②“拆”:将积(商)的对数拆成同底的两对数的和(差).考点二 对数函数的图象及应用(思维发散)复习指导:理解对数函数概念,掌握对数函数图象的特征并求解有关问题.(1)(链接常用结论2)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1 B.a >1,0<c <1 C .0<a <1,c >1D.0<a <1,0<c <1(2)方程4x=log a x 在⎝⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,所以0<a <1;因为图象与x 轴的交点在区间(0,1)之间,所以该函数的图象是由函数y =log a x的图象向左平移不到1个单位长度后得到的,所以0<c <1.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 【答案】 (1)D (2)⎝⎛⎦⎥⎤0,22本例(2)改为若4x <log a x 在⎝⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示). 当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.|跟踪训练|1.(2022·河北高三考试)函数y =1ln (x +1)的大致图象为( )解析:选A.当x =1时,y =1ln 2>0,排除C ,D. 当x =-12时,y =1ln12=1-ln 2<0,排除B.故选A.2.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)考点三 对数函数的性质及应用(多维探究)复习指导:利用对数函数的图象,探索并了解对数函数的单调性,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,a ≠1).角度1 单调性的应用(1)(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <b B.a <b <c C .b <c <aD.c <a <b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.(0,1)∪(1,+∞)(3)已知m =⎝ ⎛⎭⎪⎫1223,n =4x ,则log 4m =________;满足log n m >1的实数x 的取值范围是________.【解析】 (1)因为a =13log 323<13log 39=23=c ,b =13log 533>13log 525=23=c ,所以a <c <b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,同时2a >1,得a >12,所以12<a <1.(3)由于m =⎝ ⎛⎭⎪⎫1223,则log 4m =12log 2m =12log 22-23=12×⎝ ⎛⎭⎪⎫-23=-13;由于m =⎝ ⎛⎭⎪⎫1223=2-23<1,由log n m >1可得m <n <1,则⎝ ⎛⎭⎪⎫1223=2-23<22x <1,则-23<2x <0,解得-13<x <0.【答案】 (1)A (2)C (3)-13⎝ ⎛⎭⎪⎫-13,0角度2 和对数函数有关的复合函数已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求a 的值.【解】 (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,即a =-1, 所以f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1]上单调递增,在[1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是[1,3).(2)若f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎨⎧a >0,3a -1a=1,解得a =12.故实数a 的值为12.对数函数性质的应用利用对数函数的性质,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.|跟踪训练|1.(2022·宁夏月考)已知函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,则a 的取值范围是( )A .(-∞,-1] B.(-∞,2] C .[5,+∞)D.[3,+∞)解析:选D.由题意,得x <-1或x >3,设g (x )=x 2-2x -3,根据二次函数的性质,可得函数g (x )在(3,+∞)上单调递增,根据复合函数的单调性的判定方法,可得函数f (x )的单调递增区间为(3,+∞),又由函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,可得a ≥3,即实数a 的取值范围是[3,+∞).2.不等式log 2(2x +3)>log 2(5x -6)的解集为________.解析:由⎩⎨⎧2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3 3.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是________. 解析:由于a >0,且a ≠1, 所以u =ax -3为增函数,所以若函数f (x )为增函数,则y =log a u 必为增函数, 所以a >1.又u =ax -3在[1,3]上恒为正, 所以a -3>0,即a >3. 答案:(3,+∞)4.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.解析:因为f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则0<m <1,n >1,所以log 12m=-log 12n ,所以mn =1,所以m +3n =m +3m .令h (m )=m +3m,则易知h (m )在(0,1)上单调递减.当m =1时,m +3n =4,所以m +3n >4.答案:(4,+∞)[A 基础达标]1.设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A .a <b <c B.b <a <c C .b <c <aD.c <a <b解析:选D.由题知c =log 0.70.8<1,b =(13)-0.8=30.8,易知函数y =3x 在R 上单调递增,所以b =30.8>30.7=a >1,所以c <a <b ,故选D.2.函数y =ln1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,故选A.3.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0) C .(2,+∞)D.(-∞,-2)解析:选D.函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.4.(2021·高考全国卷甲)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( )A .1.5 B.1.2 C.0.8D.0.6解析:选C.由题意知4.9=5+lg V ,得lg V =-0.1,得V =10-110≈0.8,所以该同学视力的小数记录法的数据约为0.8.5.已知函数f (x )=⎝⎛⎭⎪⎫log 12x 2+a log 12x +4,若对任意的x ∈⎣⎢⎡⎭⎪⎫14,1,f (x )≤6恒成立,则实数a 的最大值为( )A .-1 B.1 C.-2D.2解析:选A.令t =log 12x ,因为x ∈⎣⎢⎡⎭⎪⎫14,1,所以t ∈(0,2],则问题可转化为对任意的t ∈(0,2],t 2+at +4≤6恒成立,即a ≤2-t 2t=2t-t 对任意的t ∈(0,2]恒成立.因为y =2t-t 在t ∈(0,2]上单调递减,所以y min =1-2=-1,所以a ≤-1,即实数a 的最大值为-1.6.(2022·四川南充月考)已知a =213,b =⎝ ⎛⎭⎪⎫1223,则log 2(ab )=________.解析:由题意,得log 2(ab )=log 2(213·2-23)=log 22-13=-13.答案:-137.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则m =________,n =________.解析:因为f (x )=|log 3x |=⎩⎨⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎨⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎨⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3.答案:1338.(2022·甘肃平凉月考)已知a >0且a ≠1,若函数f (x )=log a (ax 2-x )在[3,4]上是减函数,则a 的取值范围是________.解析:令g (x )=ax 2-x ,当a >1时,由题意得⎩⎨⎧12a ≥4,g (4)=16a -4>0,无解,当0<a <1时,由题意得⎩⎨⎧12a ≤3,g (3)=9a -3>0,解得13<a <1,综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,19.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解:(1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎨⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a1a<log a2<log aa .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝⎛⎭⎪⎫0,12∪(2,+∞).10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2. 由⎩⎨⎧1+x >0,3-x >0,解得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈[1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 综合应用]11.(多选)(2022·湖南长沙期末)设函数f (x )=log 12x ,下列四个命题正确的是( )A .函数f (x )为偶函数B .若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C .函数f (-x 2+2x )在(1,2)上为单调递增函数D .若0<a <1,则|f (1+a )|>|f (1-a )|解析:选BC.A 选项,f (x )的定义域为(0,+∞),所以f (x )是非奇非偶函数,A 错误.B 选项,由于f (a )=|f (b )|,a ≠b ,a >0,b >0,所以log 12a =-log 12b ,log 12a +log 12b =0,log 12ab =0,ab =1,B 正确.C 选项,f (-x 2+2x )=log 12(-x 2+2x ),由-x 2+2x >0,解得0<x <2,又y =-x 2+2x 的开口向下,对称轴为x =1, 根据复合函数单调性同增异减可知函数f (-x 2+2x )在(1,2)上为单调递增函数,C 正确.D 选项,由于0<a <1,所以1+a >1>1-a ,所以|f (1+a )|>|f (1-a )|,则-log 12(1+a )>log 12(1-a ),即log 12(1-a )(1+a )=log 12(1-a 2)<0,由于1-a2∈(0,1),所以log1(1-a2)>0,所以|f(1+a)|>|f(1-a)|不成立,D错2误.12.(多选)已知函数f(x)=log1(2-x)-log2(x+4),则下列结论中正确的是2( )A.函数f(x)的定义域是[-4,2]B.函数y=f(x-1)是偶函数C.函数f(x)在区间[-1,2)上是减函数D.函数f(x)的图象关于直线x=-1对称解析:选BD.函数f(x)=log1(2-x)-log2(x+4)=-log2(2-x)-log2(x+4)=-2[(2-x)(4+x)],由2-x>0,x+4>0,可得-4<x<2,即函数f(x)的定义域为(-log24,2),故A错误;由y=f(x-1)=-log2[(3-x)(3+x)]=-log2(9-x2),定义域为(-3,3),显然y=f(x-1)为偶函数,B正确;由x∈[-1,2),f(-1)=-log29,f(0)=-log8知f(-1)<f(0),故C错误;y=f(x-1)为偶函数,y=f(x-1)向左平移1个2单位得y=f(x),故y=f(x)的图象关于x=-1对称,D正确,故选BD.13.若函数y=log a(x2-ax+1)有最小值,则a的取值范围是( )A.0<a<1 B.0<a<2,a≠1C.1<a<2 D.a≥2解析:选C.当a>1时,y有最小值,则说明x2-ax+1有最小值,故x2-ax+1>0中Δ<0,即a2-4<0,所以1<a<2.当0<a<1时,y有最小值,则说明x2-ax+1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.14.已知函数f(x)=x2+ln(|x|+1),若对于x∈[1,2],f(ax2)<f(3)恒成立,则实数a 的取值范围是________.解析:易知f (x )=x 2+ln(|x |+1)是R 上的偶函数,且在[0,+∞)上为增函数,故原问题等价于|ax 2|<3对x ∈[1,2]恒成立,即|a |<3x 2对x ∈[1,2]恒成立,所以|a |<34,解得-34<a <34.答案:⎝ ⎛⎭⎪⎫-34,34[C 素养提升]15.(2022·日照高三联考)函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <-12,log a(2x +3),x ≥-12的值域为R ,则f ⎝ ⎛⎭⎪⎫12的取值范围是________.解析:当x <-12时,f (x )=x 2+2x =(x +1)2-1≥-1,而f (x )的值域是R ,所以当x ≥-12时,f (x )=log a (2x +3)的取值范围应包含(-∞,-1),又x ≥-12时,2x +3≥2,所以0<a ≤12.此时f ⎝ ⎛⎭⎪⎫12=log a 4∈[-2,0).答案:[-2,0)16.已知奇函数f (x )=log a b +ax1-ax (a >0且a ≠1).(1)求b 的值,并求出f (x )的定义域;(2)若存在区间[m ,n ],使得当x ∈[m ,n ]时,f (x )的取值范围为[log a 6m ,log a 6n ],求a 的取值范围.解:(1)由已知f (x )+f (-x )=0,得b =±1, 当b =-1时,f (x )=log a -1+ax 1-ax=log a (-1),舍去, 当b =1时,f (x )=log a 1+ax 1-ax ,定义域为⎝ ⎛⎭⎪⎫-1a ,1a . 故f (x )的定义域为⎝ ⎛⎭⎪⎫-1a ,1a .(2)当0<a <1时,f (x )=log a 1+ax1-ax =log a ⎝ ⎛⎭⎪⎫21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递减.故有⎩⎪⎨⎪⎧f (m )=log a 1+am1-am =log a6n ,f (n )=log a 1+an 1-an =log a 6m ,而y =1+ax1-ax =21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递增,所以1+am1-am <1+an1-an ,又6m <6n 与⎩⎪⎨⎪⎧1+am1-am =6n ,1+an1-an =6m矛盾,故a >1,所以⎩⎪⎨⎪⎧f (m )=log a 1+am1-am=log a 6m ,f (n )=log a 1+an 1-an =log a 6n .故方程1+ax1-ax =6x 在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根,即6ax 2+(a -6)x +1=0在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根. 设g (x )=6ax 2+(a -6)x +1(a >1),则⎩⎪⎪⎨⎪⎪⎧Δ=(a -6)2-24a >0,-1a <-a -612a <1a,g ⎝ ⎛⎭⎪⎫-1a =12a >0,g ⎝ ⎛⎭⎪⎫1a =2>0,化简得⎩⎨⎧a 2-36a +36>0,0<a <18, 解得0<a <18-122,又a >1,故1<a <18-12 2. 所以a 的取值范围是(1,18-122).。
第04讲 对数与对数函数(含对数型糖水不等式的应用)(学生版) 备战2025年高考数学一轮复习学案

第04讲 对数与对数函数(含对数型糖水不等式的应用)(8类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题常考内容,设题多为函数性质或函数模型,难度中等,分值为5-6分【备考策略】1.理解对数的概念和运算性质,熟练指对互化,能用换底公式能将一般对数转化成自然对数或常用对数2.了解对数函数的概念,能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点3.熟练掌握对数函数x y a log =0(>a 且)1≠a 与指数函数x a y =0(>a 且)1≠a 的图象关系【命题预测】本节内容通常会考查指对幂的大小比较、对数的运算性质、对数的函数模型等,需要重点备考复习1.对数的运算(1)对数的定义如果,那么把叫做以为底,的对数,记作N x a log =,其中叫做对数的底数,叫做真数(2)对数的分类一般对数:底数为,,记为N a log 常用对数:底数为10,记为,即:xx lg log 10=自然对数:底数为e (e ≈2.71828…),记为,即:x x e ln log =(3)对数的性质与运算法则①两个基本对数:①01log =a ,②1log =a a ②对数恒等式:①N a N a =log ,②N a Na =log 。
③换底公式:aba b a b b c c a ln ln lg lg log log log ===;推广1:对数的倒数式ab b a log 1log =1log log =⋅⇒a b b a 推广2:d d c b a c b a c b a c b a log log log log 1log log log =⇒=。
④积的对数:()N M MN a a a log log log +=;(01)xa N a a =>≠且x a N a N a 0,1a a >≠且lg N ln N⑤商的对数:N M NMa a alog log log -=;⑥幂的对数:❶b m b a ma log log =,❷b nb a a n log 1log =,❸b n mb a ma n log log =,❹mna ab b nm log log =2.对数函数(1)对数函数的定义及一般形式形如:()0,10log >≠>=x a a x y a 且的函数叫做对数函数(2)对数函数的图象和性质图象定义域:()∞+,0值域:R当1=x 时,0=y 即过定点()0,1当时,;当时,当时,;当时,性质在()∞+,0上为增函数(5)在()∞+,0上为减函数3.对数型糖水不等式(1) 设 n N +Î, 且 1n >, 则有 12log log (1)n n n n ++<+ (2) 设 1,0a b m >>>, 则有 log log ()a a m b b m +<+(3) 上式的倒数形式:设 1,0a b m >>>, 则有 log log ()b b ma a m +>+1.(2024·重庆·三模)已知2log 5,85ba ==,则ab =.1a >01a <<01x <<(,0)y Î-∞1x >(0,)y Î+∞1x >(,0)y Î-∞01x <<(0,)y Î+∞2.(2024·青海·模拟预测)若3log 5a =,56b =,则3log 2ab -=( )A .1B .-1C .2D .-23.(2024·四川·模拟预测)若实数m ,n ,t 满足57m n t ==且112m n+=,则t =( )A.B .12CD1.(2024·河南郑州·三模)已知log 4log 4a b b a +=,则22a b 的值为.2.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .3.(2024·辽宁丹东·一模)若23a=,35b =,54c =,则4log abc =( )A .2-B .12CD .11.(2024·河南·三模)函数()f x = )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞1.(2023·广东珠海·模拟预测)函数()lg(21)f x x =-的定义域是( )A .1,2æö-∞ç÷èøB .1,2æö+∞ç÷èøC .1,2æù-∞çúèûD .1,2éö+∞÷êëø2.(2024·青海海南·二模)函数()2lg 10()x f x x-=的定义域为( )A.(B.(,)-∞+∞U C.[D.(È1.(2024高三·全国·专题练习)已知函数① y =log ax ;② y =log bx ;③ y =log cx ;④ y =log dx 的大致图象如图所示,则下列不等关系正确的是( )A .a +c <b +aB .a +d <b +cC .b +c <a +dD .b +d <a +c2.(2024·广东深圳·二模)已知0a >,且1a ≠,则函数1log a y x a æö=+ç÷èø的图象一定经过( )A .一、二象限B .一、三象限C .二、四象限D .三、四象限3.(2024·陕西渭南·二模)已知直线240mx ny +-=(0m >,0n >)过函数()log 12a y x =-+(0a >,且1a ≠)的定点T ,则26m n+的最小值为 .1.(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1x a,y =log a (x +12)(a >0,且a ≠1)的图象可能是( )A .B .C .D .2.(2024·全国·模拟预测)若函数()log 21(0a y x a =-+>,且1)a ≠的图象所过定点恰好在椭圆221(0,0)x y m n m n+=>>上,则m n +的最小值为 .1.(辽宁·高考真题)函数212log (56)y x x =-+的单调减区间为( )A .52,æö+∞ç÷èøB .(3)+∞,C .52æö-∞ç÷èø,D .()2-∞,2.(2024·江苏南通·模拟预测)已知函数()ln(2)f x ax =+在区间(1,2)上单调递减,则实数a 的取值范围是( )A .a<0B .10a -£<C .10a -<<D .1a ³-3.(2024·全国·高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î在R 上单调递增,则a 的取值范围是( )A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞4.(2024·北京·高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( )A .12122log 22y y x x ++<B .12122log 22y y x x ++>C .12212log 2y y x x +<+D .12212log 2y y x x +>+1.(23-24高三下·青海西宁·开学考试)已知函数()()2lg 1f x x ax =++在区间(),2-∞-上单调递减,则a 的取值范围为 .2.(2022高三·全国·专题练习)函数()()215log 232f x x x =-++的单调递减区间为 .3.(23-24高三上·甘肃白银·阶段练习)已知()()312,1log ,1a a x a x f x x x ì-+£=í>î是R 上的单调递减函数,则实数a 的取值范围为.1.(山东·高考真题)函数2()log 31()xf x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞2.(22-23高三上·河北·阶段练习)已知函数()()2lg 65f x ax x =-+的值域为R ,那么a 的取值范围是 .3.(23-24高一下·上海闵行·阶段练习)函数()[]212log 2,2,6y x x x =+-Î的最大值为 .1.(2024高三·全国·专题练习)函数()[]ln ,1,e f x x x x =+Î的值域为.2.(2023高一·全国·课后作业)函数()212log 617y x x =-+的值域是 .3.(2024高三·全国·专题练习)已知函数()()2log 14f x x x =££,则函数()()()221g x f x f x éù=++ëû的值域为 .1.(2024高三·全国·专题练习)已知函数)2()log f x x =-是奇函数,则=a.2.(23-24高一上·安徽阜阳·期末)若函数()()(e e ln 1x x m n f x x -=-++(m ,n 为常数)在[]1,3上有最大值7,则函数()f x 在[]3,1--上( )A .有最小值5-B .有最大值5C .有最大值6D .有最小值7-3.(2024·江苏泰州·模拟预测)已知函数()21log 1f x a b x æö=-+ç÷+èø,若函数()f x 的图象关于点()1,0对称,则log a b =( )A .-3B .-2C .12-D .13-1.(22-23高二下·江西上饶·阶段练习)已知函数())3ln3f x x x =--+,[2023,2023]x Î-的最大值为M ,最小值为m ,则M m += .2.(2024·宁夏银川·二模)若()1ln 1f x a b x++-=是奇函数,则b = .1.(2024·天津·高考真题)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2022·天津·高考真题)已知0.72a =,0.713b æö=ç÷èø,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b>>3.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b<<4.(2021·全国·高考真题)设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c<<B .b<c<aC .b a c<<D .c<a<b1.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c<a<bC .b<c<aD .a c b<<2.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a<<B .b a c<<C .a c b <<D .a b c<<3.(2024·全国·模拟预测)若log 4a =,14log 7b =,12log 6c =,则( )A .a b c >>B .b c a >>C .c b a>>D .a c b>>4.(23-24高三上·河北保定·阶段练习)设3log 4a =,0.8log 0.7b =,511.02c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b a c<<D .c<a<b5.(2024·山西·二模)设202310121011a æö=ç÷èø,202510131012b æö=ç÷èø,则下列关系正确的是( )A .2e a b <<B .2e b a <<C .2e a b <<D .2e b a <<1.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==-=-,则( )A .0a b>>B .0a b >>C .0b a >>D .0b a>>1. 比较大小: 7log 4 与 9log 6?2.(2024·重庆·模拟预测)设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c<a<b B .b<c<a C .b a c<<D .a b c<<一、单选题1.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x ìü==-£-£íýîþ,,则A B =I ( )A .11510x x ìü££íýîþB .{2,3,4}C .{2,3}D .11310x x ìü££íýîþ2.(2024·贵州贵阳·三模)已知()()40.34444,log ,log log a b a c a ===,则( )A .a b c>>B .a c b>>C .b c a>>D .c a b>>3.(2024·天津滨海新·三模)已知2log 0.42a =,0.4log 2b =,031log 0.4c =.,则( )A .a b c>>B .b a c>>C .c a b>>D .a c b>>4.(2024·江苏宿迁·三模)已知函数()f x 为R 上的奇函数,且当0x >时,22()log 13f x x =-,则(f =( )A .59B .59-C .49D .49-5.(2024·河北沧州·模拟预测)直线4x =与函数()()12log (1),log a f x x a g x x =>=分别交于,A B 两点,且3AB =,则函数()()()h x f x g x =+的解析式为( )A .()2log h x x =-B .()4log h x x =-C .()2log h x x=D .()4log h x x=6.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .67.(2024·四川成都·模拟预测)已知定义在R 上的奇函数()f x 满足(3)(1)f x f x +=-,且当(2,0)x Î-时,2()log (3)f x x =+,则(2021)(2024)f f -=( )A .1B .1-C .21log 3-D .21log 3--二、填空题8.(2024·湖北·模拟预测)若函数()()()2ln e R x f x a x x =--Î为偶函数,则=a.9.(2024·吉林·模拟预测)若函数()ln(1)f x ax =+在(1,2)上单调递减,则实数a 的取值范围为.10.(2024·四川成都·三模)函数()ln 2m x f x x -=+的图象过原点,且()()e e 2x x g x f x m l l --=++,若()6g a =,则()g a -=.一、单选题1.(2024·黑龙江·模拟预测)设函数()ln ||f x x a =-在区间(2,3)上单调递减,则a 的取值范围是( )A .(,3]-∞B .(,2]-∞C .[2,)+∞D .[3,)+∞2.(2024·山东菏泽·模拟预测)已知函数()()()2e 1ln 2013mx f x m x+=->-是定义在区间(),a b 上的奇函数,则实数b 的取值范围是( )A .(]0,9B .(]0,3C .20,3æùçúèûD .10,3æùçúèû3.(2024·河北·三模)已知(),,1,a b c Î+∞,8ln ln10a a =,7ln ln11b b =,6ln ln12cc =,则下列大小关系正确的是( )A .c b a>>B .a b c>>C .b c a>>D .c a b>>4.(2024·广西贵港·模拟预测)已知函数41()log (41)2xf x x =+-,若(1)(21)-£+f a f a 成立,则实数a 的取值范围为( )A .(,2]-∞-B .(,2][0,)-∞-È+∞C .4[2,]3-D .4(,2][,)3-∞-+∞U 5.(2024·湖北黄冈·模拟预测)已知7ln 5a =,2cos 5b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .b c a >>C .c b a >>D .c a b>>6.(2024·陕西安康·模拟预测)已知函数()13,4443log (4)1,4a x x f x x x ì-£ïï-=íï->ïî是R 上的单调函数,则实数a 的取值范围是( )A .()0,1B.(C.(D .()1,37.(2024·河北衡水·模拟预测)设0,1a a >≠,若函数())23log 1a x a f x a x a æö-=+ç÷-èø是偶函数,则=a ( )A .12B .32C .2D .38.(2024·湖北黄冈·二模)已知a b c d ,,,分别满足下列关系:1715161731615,log 16,log ,tan 162a b c d ====,则a b c d ,,,的大小关系为( )A .a b c d<<<B .c a b d <<<C .a c b d <<<D .a d b c<<<二、多选题9.(2024·山东菏泽·模拟预测)已知函数()0,01ln ,1x f x x x <<ì=í³î,若0a b >>,且1³ab ,则下列关系式一定成立的为( )A .()()b f a bf a =B .()()()f ab f a f b =+C .()()a f f a f b b æö³-ç÷èøD .()()()ln2f a b f a f b +<++三、填空题10.(2024·陕西西安·模拟预测)函数1log 2x a y x a -=++(0a >且1a ≠)的图象恒过定点(),k b ,若m n b k +=-且0m >,0n >,则91m n +的最小值为 .1.(2024·全国·高考真题)已知1a >且8115log log 42a a -=-,则=a .2.(2024·全国·高考真题)设函数()()ln()f x x a xb =++,若()0f x ³,则22a b +的最小值为( )A .18B .14C .12D .13.(2023·北京·高考真题)已知函数2()4log x f x x =+,则12f æö=ç÷èø.4.(2023·全国·高考真题)(多选)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lgp p L p =´,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车105060:电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ).A .12p p ³B .2310p p >C .30100p p =D .12100p p £5.(2022·天津·高考真题)化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .66.(2022·浙江·高考真题)已知825,log 3a b ==,则34a b -=( )A .25B .5C .259D .537.(2022·全国·高考真题)若()1ln 1f x a b x ++-=是奇函数,则=a ,b = .8.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 109.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 满足5lg LV =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( ) 1.259»)A .1.5B .1.2C .0.8D .0.610.(2020·全国·高考真题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b。
基本初等函数之对数与对数函数,附练习题

对数与对数函数(讲义)知识点睛一、对数与对数的运算1.对数(1)如果x a N =(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.常用对数:10log lg N N =;自然对数:e log ln N N =.(2)当a >0,且a ≠1时,x a N =⇔log a x N =.(3)负数和零没有对数;log 10a =,log 1a a =.2.对数的运算性质(1)如果a >0,且a ≠1,M >0,N >0,那么①log ()log log a a a M N M N ⋅=+;②log log log aa a MM N N=-;③log log ()n a a M n M n =∈R .(2)换底公式:log log log c a c bb a=(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)log (010)a b a b a a b =>≠>,;.二、对数函数及其性质1.定义:一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数log (0,1)a y x a a =>≠且的图象和性质:0<a <1a >1图象定义域(0,+∞)值域R性质①过定点(1,0),即x =1时,y =0②在(0,+∞)上是减函数②在(0,+∞)上是增函数3.对数函数底数变化与图象分布规律1log a y x =;②log b y x =;③log c y x =;④log d y x =,则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<;x ∈(0,1)时,log log log log a b c d x x x x >>>.4.反函数对数函数与指数函数互为反函数,互为反函数的两个函数的图象关于直线y x =对称.精讲精练1.把下列指数式化为对数式,对数式化为指数式.(1)32=8_______________;(2)415625-=_______________;(3)13127=3-_______________;(4)lg 0.0013=-_____________;(5)0.3log 2=a _____________;(6)ln x =_____________.2.求下列各式的值.(1)43log (927)⨯(2)1lg lg 4lg 52++(3)661log 12log 2-(4)22333399(log 2)(log )log log 422++⋅(5)2345log 3log 4log 5log 2⋅⋅⋅(6)48525(log 5log 5)(log 2log 2)++3.已知234log [log (log )]0x =,则x 的值为_________.4.已知3485log 4log 8log log 25m ⋅⋅=,那么m 的值为()A .9B .18C .12D .275.已知4823log 3x y ==,,则x +2y 的值为()A .3B .8C .4D .log 486.已知log 3a m =,log 2a n =,那么a 2m +3n =()A .17B .72C .108D .317.已知lg lg 2lg(2)x y x y +=-,则xy的值为_________.8.设lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则2(lg )ab的值等于()A .2B .12C .4D .149.已知函数()lg f x x =.若()1f ab =,则22()()f a f b +=_____.10.下列函数表达式中是对数函数的是()A .0.01log (0)y x x =>B .22log y x =C .2log (2)(2)y x x =+>-D .2ln(1)y x =+11.若点(a ,b )在lg y x =图象上,且a ≠1,则下列点也在此图象上的是()A .1()b a ,B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )12.若函数log ()a y x b =+(a >0,a ≠1)的图象过两点(-1,0)和(0,1),则()A .a =2,b =2B .2a b ==C .a =2,b =1D .a b ==13.直接写出下列函数的定义域:311log (2)_______________2345log (3)_______________16_______________ln(1)x y x y y y y x y x -=-====-=+=+();();();();();().14.已知()f x 的定义域为[0,1],则函数12[log (3)]y f x =-的定义域是_____________.15.函数212log (613)y x x =++的值域为()A .RB .[8,+∞)C .(-∞,-2]D .[-3,+∞)16.函数log a y x =在区间[2,π]上最大值比最小值大1,则a =__________.17.下列判断不正确的是()A .22log 3.4log 4.3<B .0.20.3log 0.4log 0.4<C .67log 7log 6>D .30.3log log 4π<18.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度19.函数21log (01)1a x y a a x +=>≠-,的图象过定点P ,则点P 的坐标为()A .(1,0)B .(-2,0)C .(2,0)D .(-1,0)20.已知函数()log (1)a f x x =+,()log (1)a g x x =-(a >0,且a ≠1).(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x +的奇偶性,并说明理由.21.设a ,b ∈R 且a ≠2,定义在区间(-b ,b )上的函数1()lg12axf x x+=+满足:()()0f x f x +-=.(1)求实数a 的值;(2)求b 的取值范围.22.已知关于x 的方程212log 210x a x ⋅--=有实数根,求a 的取值范围.23.已知函数2log [(21)]a y x a x a =--+的定义域为R ,求实数a 的取值范围.回顾与思考________________________________________________________________________________________________________________________________________________________________________【参考答案】1.(1)2log 83=;(2)51log 4625=-;(3)2711log 33=-;(4)3100.001-=;(5)0.32a =;(6)e x =2.(1)11;(2)1;(3)12;(4)4;(5)1;(6)543.644.A 5.A 6.B 7.48.A 9.210.A 11.D 12.A13.(1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(0;(5)(12)(23)⋃,,;(6)(10)(02]-⋃,,14.5[22,15.C16.2π或2π17.D18.C 19.B20.(1)(-1,1);(2)偶函数,证明()()()()f x g x f x g x -+-=+21.(1)2a =-;(2)102b ≤<22.02a ≤<23.33(11)(1122,-⋃+对数与对数函数(随堂测试)1.函数22()log (2)f x x x a =-+的值域为[0,+∞),则正实数a 等于()A .1B .2C .3D .42.求函数2log (4)(01)a y x x a a =->≠,且的单调递减区间.【参考答案】1.B2.当01a <<时,f (x )的单调递减区间为(0,2];当1a >时,f (x )的单调递减区间为[2,4)对数与对数函数(作业)1.求下列各式的值.(1)lg +(2)553log 10log 0.125+(3)22(lg 2)(lg 5)lg 4lg 5++⋅(4)22lg 5lg83+(5)20321log log ()52-+-(6)231lg 25lg 2lg log 9log 22+-⨯2.下列对数运算中,一定正确的是()A .lg()lg lg M N M N +=⋅B .ln ln n M n M =C .lg()lg lg M N M N⋅=+D .lg log lg a b b a=3.已知3log 2a =,那么33log 22log 6-用a 表示是()A .5a -2B .-a -2C .3a -(1+a )2D .3-a 2-14.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是()A .log log log a c c b b a ⋅=B .log log log a c c b a b ⋅=C .log ()log log a a a bc b c =⋅D .log ()log log a a a b c b c+=+5.已知x ,y 为正实数,则下列式子中正确的是()A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y⋅=+D .lg()lg lg 222x y x y⋅=⋅6.设方程22(lg )lg 30x x --=的两实根是a ,b ,则log log a b b a +等于()A .1B .-2C .-4D .103-7.在(2)log (5)a y a -=-中,实数a 的取值范围是()A .5a >或2a <B .23a <<或35a <<C .25a <<D .34a <<8.函数()ln1xf x x =+-的定义域为()A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)9.已知函数12()2log f x x =的值域为[-1,1],则函数()f x 的定义域为()A .22B .[11]-,C .1[2]2,D .2(])2-∞⋃∞,+10.已知3log 6a =,5log 10b =,7log 14c =,则()A .c b a >>B .b c a >>C .a c b >>D .a b c>>11.已知2log 3.45a =,4log 3.65b =,3log 0.31()5c =,则()A .a b c >>B .b a c >>C .a c b >>D .c a b>>12.函数12log 2y x =+的单调增区间为()A .()-∞∞,+B .(2)-∞-,C .(2)-∞+,D .(2)(2)-∞-⋃∞,,+13.若函数log (01)a y x a =<<在区间[a ,2a ]上的最大值是最小值的3倍,则a的值为()A .22B .24C .12D .1414.函数log (2)5a y x =-+过定点()A .(1,0)B .(3,1)C .(3,5)D .(1,5)15.当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象大致是()A .B .C .D .16.设函数()(01)x x f x ka a a a -=->≠,在()-∞+∞,上既是奇函数又是增函数,则()log ()a g x x k =+的图象是()A .B .C .D .17.已知函数e 1(1)()ln (1)x x f x x x ⎧-=⎨>⎩≤,则(ln 2)f 的值为_________.18.函数12log (1)()2(1)x x x f x x ⎧⎪=⎨⎪<⎩≥的值域是_________________.19.已知13log 2a =,0.62b =,4log 3c =,则a ,b ,c 的大小关系为_____________.20.给出下列命题:12log 2log a a x x =;2函数2log (1)y x =+是对数函数;3函数1ln1xy x+=-与ln(1)ln(1)y x x =+--的定义域相同;4若log log a a m n <,则m n <.其中正确的命题是_________.21.已知函数()f x 在[0)+∞,上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,求x 的取值范围.22.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,求实数a 的取值范围.23.已知函数3()2log f x x =+(1≤x ≤9),求函数22[()]()y f x f x =+的最大值.【参考答案】24.(1)1;(2)3;(3)1;(4)2;(5)4;(6)12-25.D26.B27.B28.D29.D30.B31.B32.A33.D34.C35.B36.B37.C38.A39.C40.141.(2)-∞,42.a <c <b43.③44.11010x <<45.1a >或10a -<<46.22阅读材料反函数趣谈在指数函数2x y =中,x 为自变量,y 为因变量.如果把y 当成自变量,x 当成因变量,同学们思考一下,x 是不是y 的函数?在指数函数2x y =中,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式2x y =可得到对数式2log x y =.这样,对于任意一个(0)y ∈+∞,,通过式子2log x y =,在R 中都有唯一确定的x 和它对应.此时,可以把y 作为自变量,x 作为y 的函数,这时我们就说2log x y =((0))y ∈+∞,是函数2x y =()x ∈R 的反函数.注意到,在函数2log x y =中,y 是自变量,x 是函数,但是习惯上,我们通常用x 表示自变量,y 表示函数,因此我们对调函数2log x y =中的字母,把它写成2log y x =,这样,对数函数2log y x =((0))x ∈+∞,是指数函数2x y =()x ∈R 的反函数.由前面的讨论可知,指数函数2x y =()x ∈R 与对数函数2log y x =((0))x ∈+∞,是互为反函数的.类似地,我们可以得到对数函数log (01)a y x a a =>≠,且和指数函数x y a =(01)a a >≠,且互为反函数.在上面的讨论过程中我们发现,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点,这就保证了对于任意一个(0)y ∈+∞,,都有唯一确定的2log x y =和它对应,进而才能得到反函数.这就启发我们,不是任意的函数都存在反函数的,只有一一对应的函数才存在反函数.一一对应的函数是指值域中的每一个元素y 只有定义域中的唯一的一个元素x 和它相对应,即定义域中的元素x 和值域中的元素y ,通过对应法则y=f (x )存在着一一对应关系.清楚了反函数存在的条件后,我们接下来讨论反函数的性质.通过画出指数函数2x y =与对数函数2log y x =的图象后,我们发现它们是关于直线y=x 对称的,也就是互为反函数的两个函数的图象是关于直线y=x 对称的.这与我们前面的分析也是一致的,原函数与反函数是定义域、值域互换,对应法则互逆.研究反函数的性质离不开函数的单调性和奇偶性,下面的结论同学们可以自己尝试证明.一个函数与它的反函数在相应区间上单调性是一致的,也就是说如果原函数在某个区间上是单调递增(减)的,那么它的反函数在相应区间上也是单调递增(减)的.关于奇偶性,如果一个奇函数存在反函数,那么它的反函数也是奇函数;一般情况下偶函数是不存在反函数的,例外情况是f (x )=C (C 为常数).学习了反函数这种重要的工具,它可以帮助我们解决很多问题.当原函数的性质不容易研究时,我们可以考虑研究它的反函数.比如当直接求原函数的值域比较困难时,可以通过求其反函数的定义域来确定原函数的值域,来看一道具体的例题.【例】已知函数10110x xy =+,求它的值域.解析:先计算它的反函数,由10110x x y =+得到(110)10x x y +=,解得101x y y =-,反函数即为lg 1y x y =-,反函数的定义域为原函数的值域,也就是01y y >-,原函数的值域即为(01),.练习题1.下列函数中,有反函数的是()A .22y x x=+B .||y x =C .2lg y x =D .11y x =-2.函数21x y =-的反函数为_____________.3.已知函数1212x x y -=+,求它的值域.【参考答案】1.D2.2log (1)y x =+3.(-1,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与对数函数
1._______)2(lg 50lg 2lg 25lg 2
=+∙+.
2.函数)3(log )1(x y x -=-的定义域为_______________.
3.函数)176(log 221+-=x x y 的值域是_____________.
4.若15
3log <a ,则a 的取值范围是_____________. 5.设,1.1,8.0log ,8.0log 7.01.17.0===c b a 则c b a ,,的大小关系是_____________.
6.设函数⎩
⎨⎧>+≤=0),1lg(0,)(x x x x x f ,若1)(>x f ,则x 的取值范围为_________________. 7.当(]2,1∈x 时,不等式x x a log )1(2≤-恒成立,则a 的取值范围为______________.
8.函数x x f 3log )(=在区间[]b a ,上的值域为[]1,0,则a b -的最小值为____________.
9.已知)1,0(11log )(≠>-+=a a x
x x f a . (1)求)(x f 的定义域;
(2)判断)(x f 的奇偶性并予以证明;
(3)求使0)(>x f 的x 的取值范围.
10.对于函数)32(log )(2
21+-=ax x x f ,回答下列问题:
(1)若)(x f 的定义域为R ,求实数a 的取值范围;
(2)若)(x f 的值域为R ,求实数a 的取值范围;
(3)若函数)(x f 在[)+∞-,1内有意义,求实数a 的取值范围.
1.2.
2.())3,2(2,1 .
3.(]3,-∞-.
4.()+∞⋃⎪⎭⎫ ⎝⎛,153,0.
5.b a c >>.
6.()+∞,9.
7.(]2,1.
8.3
2. 9.解:(1)由
011>-+x x 得11<<-x ,函数的定义域为(-1,1); (2)因为定义域关于原点对称,所以
)(11log )11(log 11log )(1x f x
x x x x x x f a a a
-=-+-=-+=+-=--,所以函数是奇函数. (3)1log 11log a a x x >-+ 当1>a 时,⎪⎪⎩⎪⎪⎨⎧>-+>-+111011x x x x 解得()1,0;当10<<a 时,⎪⎪⎩⎪⎪⎨⎧<-+>-+111011x
x x x 解得)0,1(-.
10. 解:(1)由题可知0322>+-ax x 的解集是R ,所以012)2(2<--a ,解得()3,3-∈a
(2)由题可知322+-ax x 取得大于0的一切实数,所以012)2(2≥--a ,解得
(][)+∞⋃-∞-∈,33,a
(3)由题可知0322>+-ax x 在[)+∞-,1上恒成立,令32)(2+-=ax x x g
⎩⎨⎧>--≤0)1(1g a 解得(]1,2--∈a 或012)2(2<--a 解得()3,3-∈a ,综上()
3,2-∈a .。