拉深件2拉深次数计算和拉深系数确定
圆筒形件的拉深

1.1 拉深系数
1) 材料的力学性能
3) 材料的表面质量
5) 润滑条件
圆筒形件的拉深
2) 材料的相对厚度 t/D
及压边圈的使用 4)
拉深次数
6) 拉深速度
1.2 拉深次数的确定
圆筒形件的拉深
拉深件一般经过几次拉深才能达到最终 尺寸形状。如果拉深件总的拉深系数 m总 大 于第一次允许的极限拉深系数 m1,即: m总> m1。
冲压工艺与模具设计
1.1 拉深系数
圆筒形件的拉深
拉深系数表示拉深后圆筒形件的直 径 d 与拉深前毛坯(或半成品)的直径 D 之比。拉深系数表示拉深时板料的变 形程度,用符号 m 表示。M 是小于1的 系数,m 值越小,说明拉深时变形程度
越大。
1.1 拉深系数
圆筒形件的拉深工件总的Fra bibliotek形系数:圆 筒 形 件 的 多 次 拉 深
说明拉深该工件的实际变形程度比第一
次容许的极限变形程度要小,工件可以一次
拉成。否则需要多次拉深才能成形。
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
冲压工艺与模具设计
拉深(拉延)

把凸模的作用力传递到平面法兰A‘B’F‘E’部分,侧壁部分是单向拉应力状态 (图2-25)。 平面法兰部分A‘B’F‘E’(图2—24b)是拉深时的主要变形区。它在径向拉应力作用 下产生塑性变形,并向中心移动,逐渐进入凸、凹模之间的间隙而形成圆筒形侧壁。 变形区在向模具中心移动时,圆周方向上的尺寸随之减小,由于受相邻材料的作用, 在圆周方向上产生切向压应力。因此,变形区处于径向受拉和切向受压的应力状态(图 2—25)。变形区在切向产生压缩变形,其外边缘由初始长度 R0α 缩小为 dα/2 (图 2—24);变形区在径向产生伸长变形,由毛坯的初始尺寸 R0 一d0 /2 变为圆筒形的 高度 H (H> R0 一d0 /2)。 在拉深时,板料的厚度也发生变化(图2—26)。 在圆筒形拉深件的侧壁上部厚度 增加最多,这是因为变形区的材料除了向径向延展外,在切向压应力作用下还向厚度 方向流动,越靠毛坯外缘,加厚的趋势越大。在侧壁下端靠圆角处的厚度减小量最大, 这是由于这个部位受拉应力作用的持续时间最长。这里是最容易被拉裂的危险断面。
补2-24-4
拉深变形特点
补2-24-1
一、直壁类零件的拉深
1、 圆筒形零件拉深的变形分析 圆筒形零件的拉深是平板毛坯在凸模的作用于逐渐被压入凹模而形成圆筒的形状。 下面来分析拉深前平板圆形毛坯上的一个扇形部分(图2—24a)在拉深过程中的变形特 点。 扇形毛坯的OC0 D0部分在全部拉深过程中都与凸模端面相接触,始终保持其平面 形状,基本上不产生塑性变形或只产生很小的塑性变形,最终成为圆筒形的底部。这 个部分在拉深过程中把凸模的作用力传递给圆筒侧壁,起到传递拉深力作用。它本身 处于两向拉应力状态(切向、径向,图2—25)。 在拉深过程中形成的圆筒形侧壁部分C'D'F'E'(图2—24b)是平板毛坯扇形的C0 D0 F0 E0部分变形而成的,它是结束了塑性变形的已变形区。在以后的拉深过程中,这个 部分起传递拉深力作用,
冷冲压工艺与模具设计复习题答案

冷冲压工艺及模具设计复习题精选一、填空题1、常用冲压设备有机械压力机、锻压机和油压机。
2、冲裁是利用模具在压力机上使板料分离的工序。
3、降低冲裁力的措施有斜刃口冲裁、阶梯式凸模冲裁和加热冲裁等方法。
4、冲裁模具根据工序的组合程度可以分为:单工序冲裁模、复合冲裁模和级进冲裁模。
5、凸模固定方法主要有三类:直接固定、黏结固定和其他固定法。
6、模架一般由标准件组成,包括上模座、下模座、导柱、导套、模柄五种标准件。
7、凹模固定方法主要有两类:螺钉固定和销钉固定。
8、弯曲毛料长度是按照弯曲件中性层展开长度计算的。
9、以后各工序拉深模的定位方式主要有三种:一是采用特定的定位板,二是凹模上加工出供半成品定位的凹窝,三是利用半成品的内孔用凸模外形来定位。
10、拉深润滑通过减少材料与压边圈及模具之间的摩擦,从而减低拉深力提高模具寿命。
11、翻边、胀形、缩口、校平等成形工序的共同特点是通过材料的局部变形来改变毛坯的形状和尺寸。
12、冷冲压工序分为分离工序和成形工序两大类。
13、在弯曲工艺方面,减小回弹最适当的措施是增加校正工序。
14、弯曲时,板料的最外层纤维频于拉裂时的弯曲半径称为最小弯曲半径。
15、冲模是利用压力机对金属或非金属材料加压,使其产生分离和变形而得到所需要冲件的工艺装备。
16、冷冲压加工获得的零件一般无需进行机械加工因而是一种节省原材料、节省能耗的无切屑的加工方法。
17、冷冲模按工序组合形式可分为单工序模和复合模。
18、冲压过程中的主要特征是自动化生产,技术要求高,精度高。
19、冷冲压生产常用的材料有黑色金属、有色金属、非金属。
20、冲裁包括冲孔、落料、切断、修边等工序,一般来说,主要是指冲孔、落料工序。
21、冲裁变形过程大致可分为弹性变形阶段、塑性变形阶段、断裂分离阶段三个阶段。
22、光亮带是紧挨圆角带并与板面垂直的光亮部分23、弯曲时,为了防止出现偏移,可采用压料和定位两种方法解决二、判断题1、金属材料发生塑性变形时,体积会发生变化,“伸长类”变形会使体积增加,“压缩类”变形会使体积减小。
拉深工艺系数

拉深件坯料形状和尺寸是以冲件形状和尺寸为基础,按体积不变原则和相似原则确定;体积不变原则,即对于不变薄拉深,假设变形前后料厚不变,拉深前坯料表面积与拉深后冲件表面积近似相等,得到坯料尺寸;相似原则,即利用拉深前坯料的形状与冲件断面形状相似,得到坯料形状;当冲件的断面是圆形、正方形、长方形或椭圆形时,其坯料形状应与冲件的断面形状相似,但坯料的周边必须是光滑的曲线连接;对于形状复杂的拉深件,利用相似原则仅能初步确定坯料形状,必须通过多次试压,反复修改,才能最终确定出坯料形状,因此,拉深件的模具设计一般是先设计拉深模,坯料形状尺寸确定后再设计冲裁模;由于金属板料具有板平面方向性和模具几何形状等因素的影响,会造成拉深件口部不整齐,因此在多数情况下采取加大工序件高度或凸缘宽度的办法,拉深后再经过切边工序以保证零件质量;切边余量可参考表4.3.1当零件的相对高度H/d很小,并且高度尺寸要求不高时,也可以不用切边工序;首先将拉深件划分为若干个简单的便于计算的几何体,并分别求出各简单几何体的表面积;把各简单几何体面积相加即为零件总面积,然后根据表面积相等原则,求出坯料直径;图 4.3.1 圆筒形拉深件坯料尺寸计算图在计算中,零件尺寸均按厚度中线计算;但当板料厚度小于1mm时,也可以按外形或内形尺寸计算;常用旋转体零件坯料直径计算公式见表4.3.3;该类拉深零件的坯料尺寸,可用久里金法则求出其表面积,即任何形状的母线绕轴旋转一周所得到的旋转体面积,等于该母线的长度与其重心绕该轴线旋转所得周长的乘积;如图4.3.2所示,旋转体表面积为 A;图4.3.2 旋转体表面积计算图1.拉深系数的定义图4.4.1 圆筒形件的多次拉深在制定拉深工艺时,如拉深系数取得过小,就会使拉深件起皱、断裂或严重变薄超差;因此拉深系数减小有一个客观的界限,这个界限就称为极限拉深系数;极限拉深系数与材料性能和拉深条件有关;从工艺的角度来看,极限拉深系数越小越有利于减少工序数;2.影响极限拉深系数的因素3拉深工作条件图4.4.2 凸凹模圆角半径对极限拉深系数的响但凸、凹模圆角半径也不宜过大,过大的圆角半径,会减少板料与凸模和凹模端面的接触面积及压料圈的压料面积,板料悬空面积增大,容易产生失稳起趋;凸、凹模之间间隙也应适当,太小,板料受到太大的挤压作用和摩擦阻力,增大拉深力;间隙太大会影响拉深件的精度,拉深件锥度和回弹较大;2摩擦润滑凹模和压料圈与板料接触的表面应当光滑,润滑条件要好,以减少摩擦阻力和筒壁传力区的拉应力;而凸模表面不宜太光滑,也不宜润滑,以减小由于凸模与材料的相对滑动而使危险断面变薄破裂的危险;3压料圈的压料力压料是为了防止坯料起皱,但压料力却增大了筒壁传力区的拉应力,压料力太大,可能导致拉裂;拉深工艺必须正确处理这两者关系,做到既不起皱又不拉裂;为此,必须正确调整压料力,即应在保证不起皱的前堤下,尽量减少压料力,提高工艺的稳定性;此外,影响极限拉深系数的因素还有拉深方法、拉深次数、拉深速度、拉深件的形状等;采用反拉深、软模拉深等可以降低极限拉深系数;首次拉深极限拉深系数比后次拉深极限拉深系数小;拉深速度慢,有利于拉深工作的正常进行,盒形件角部拉深系数比相应的圆筒形件的拉深系数小;3.极限拉深系数的确定由于影响极限拉深系数的因素很多,目前仍难采用理论计算方法准确确定极限拉深系数;在实际生产中,极限拉深系数值一般是在一定的拉深条件下用实验方法得出的;表4.4.1在实际生产中,并不是在所有情况下都采用极限拉深系数;为了提高工艺稳定性和零件质量,适宜采用稍大于极限拉深系数的值;1.拉深次数的确定注:1.表中拉深数据适用于08钢、10钢和15Mn钢等普通拉深碳钢及黄铜H62;对拉深性能较差的材料,如20钢、25钢、Q215钢、Q235钢、硬铝等应比表中数值大%~%;而对塑性较好的材料,如05钢、08钢、10钢及软铝等应比表中数值小%~%;2. 表中数据适用于未经中间退火的拉深;若采用中间退火工序时,则取值应比表中数值小2%~3%;3.表中较小值适用于大的凹模圆角半径〔rA=8~15t〕,较大值适用于小的凹模圆角半径〔rA=4~8t〕;注:此表适用于08钢、10钢及15Mn钢等材料;其余各项同表4.4.1之注;1查表法根据工件的相对高度即高度H与直径d之比值,从表4.4.3中查得该工件拉深次数;注:1.大的H/d值适用于第一道工序的大凹模圆角〔rA8~15t〕;2.小的H/d值适用于第一道工序的小凹模圆角〔rA4~8t〕;3.表中数据适用材料为08F钢、10F钢;3计算方法拉深次数的确定也可采用计算方法进行确定,其计算公式如下:2.各次拉深工序件尺寸的确定1工序件直径的确定确定拉深次数以后,由表查得各次拉深的极限拉深系数,适当放大,并加以调整,其原则是:无凸缘圆筒形件拉深工序计算流程如图4.4.3所示;图4.4.3 无凸缘圆筒形件拉深工序计算流程例4.4.1图4.4.4 无凸缘圆筒形件以上计算所得工序件有关尺寸都是中径尺寸,换算成工序件的外径和总高度后,绘制的工序件草图如图4.4.5所示;1.压料装置与压料力为了解决拉深过程中的起皱问题,生产实际中的主要方法是在模具结构上采用压料装置;常用的压料装置有刚性压料装置和弹性压料装置两种详见;是否采用压料装置主要看拉深过程中是否可能发生起皱,在实际生产中可按表4.4.4来判断拉深过程中是否起皱和采用压料装置;图4.4.5 拉深工序件草图压料装置产生的压料力FY大小应适当,FY太小,则防皱效果不好;FY太大,则会增大传力区危险断面上的拉应力,从而引起材料严重变薄甚至拉裂;因此,实际应用中,在保证变形区不起皱的前提下,尽量选用小的压料力;随着拉深系数的减小,所需压料力是增大的;同时,在拉深过程中,所需压料力也是变化的,一般起皱可能性最大的时刻所需压料力最大;理想的压料力是随起皱可能性变化而变化,但压料装置很难达到这样的要求;2.拉深力与压力机公称压力1拉深力2压力机公称压力单动压力机,其公称压力应大于工艺总压力;该类零件的拉深过程,其变形区的应力状态和变形特点与无凸缘圆筒形件是相同的;但有凸缘圆筒形件拉深时,坯料凸缘部分不是全部进入凹模口部,当拉深进行到凸缘外径等于零件凸缘直径包括切边量时,拉深工作就停止;因此,拉深成形过程和工艺计算与无凸缘圆筒形件的差别主要在首次拉深;图4.5.1 有凸缘圆形件与坯料图1.有凸缘圆筒形件的拉深变形程度注:1.表中大值适于大的圆角半径由t/D=2%~%时的R=10~12t到t/D=%~%时的R=20~25t,小值适用于底部及凸缘小的圆角半径,随着凸缘直径的增加及相对拉深深度的减小,其值也跟着减小;2.表中数值适用于10钢,对于比10钢塑性好的材料取表中的大值;塑性差的材料,取表中小数值;2.有凸缘圆筒形件的拉深方法1窄凸缘圆筒形件的拉深可以将窄凸缘圆筒形件当作无凸缘圆筒形件进行拉深,在最后两道工序中将工序件拉成具有锥形的凸缘,最后通过整形压成平面凸缘;图4.5.2为窄凸缘圆筒形件及其拉深工艺过程,材料为10钢,板厚为1mm; 2宽凸缘圆筒形件的拉深方法如果根据极限拉深系数或相对高度判断,拉深件不能一次拉深成形时,则需进行多次拉深;a 窄凸缘拉深件b窄凸缘件拉深过程Ⅰ-第一次拉深Ⅱ-第二次拉深Ⅲ-第三次拉深Ⅳ-成品图4.5.2 窄凸缘圆筒形件的拉深第一次拉深时,其凸缘的外径应等于成品零件的尺寸加修边量,在以后的拉深工序中仅仅使已拉深成的工序件的直筒部分参加变形,逐步地达到零件尺寸要求,第一次拉深时已经形成的凸缘外径必须保持在以后拉深工序中不再收缩;因为在以后的拉深工序中,即使凸缘部分产生很小的变形,筒壁传力区将会产生很大的拉应力,使危险断面拉裂;为此在调节工作行程时,应严格控制凸模进入凹模的深度;对于多数普通压力机来说,要严格做到这一点有一定困难,而且尺寸计算还有一定误差,再加上拉深时板料厚度有所变化,所以在工艺计算时,除了应精确计算工序件高度外,通常有意把第一次拉入凹模的坯料面积加大3%~5%有时可增大至10%,在以后各次拉深时,逐步减少这个额外多拉入凹模的面积,最后使它们转移到零件口部附近的凸缘上;用这种办法来补偿上述各种误差,以免在以后各次拉深时凸缘受力变形;宽凸缘圆筒形件多次拉深的工艺方法通常有两种:一种是中小型、料薄的零件,采用逐步缩小筒形部分直径以增加其高度的方法图;用这种方法制成的零件,表面质量较差,其直壁和凸缘上保留着圆角弯曲和局部变薄的痕迹,需要在最后增加整形工序;3.有凸缘圆筒形拉深工序件高度的计算图4.5.3 宽凸缘筒形件的拉深方法图4.5.4 宽凸缘圆筒形件拉深工序计算流程阶梯形件图4.5.5的拉深与圆筒形件的拉深基本相同,也就是说每一阶梯相当于相应圆筒形件的拉深;而其主要问题是要决定该阶梯形件是一次拉成,还是需要多次才能拉成;图4.5.5 阶梯形件1.判断能否一次拉深成形判断所给阶梯形件能否一次拉深成形的方法是,先求出零件的高度h与最小直径dn之比,然后查表4.4.3,如果拉深次数为1,则可一次拉深成形,否则就要多次拉深成形;2.阶梯形件多次拉深的方法图4.5.6 阶梯形多次拉深方法图4.5.7 电喇叭底座的拉深1.拉深变形特点曲面形状零件主要是指球面、锥面、抛物面形状冲件以及诸如汽车覆盖件一类冲件;这类零件的拉深成形,其变形区、受力情况及变形特点并不是单一的,而是属于复合类冲压成形工序;从电动喇叭罩的成形实验中,可以大致了解这类曲面零件的变形特点;图4.5.8这一典型零件拉深成形的变形数值表明,曲面零件拉深成形共同特点是由拉深和胀形两种变形方式的复合;显然,不同曲面形状零件拉深成形的成形极限和成形方法的判断是不同的;材料:08 厚度图4.5.8 电动喇叭罩拉深成形应变数值曲面形状零件在开始拉深成形时,中间部分坯料几乎不与模具表面接触,处于“悬空”状态;随着拉深过程的进行,悬空材料逐渐减少,但仍比圆筒形件拉深时大得多;坯料处于这种悬空状态,抗失稳能力较差,在切向压应力作用下很容易起皱;所以起皱成为曲面零件拉深要解决的主要问题;为此,常常采用压边装置、加大凸缘尺寸、带压料筋的拉深模图4.5.9图4.5.9 带压料筋的拉深模图图反拉深模2.球面冲件的拉深所以,在这种情况下拉深系数不能作为工艺设计的根据;由于球面形状零件拉深时的主要成形障碍是坯料起皱,所以坯料的相对厚度t/D×100成为决定拉深难易和选定拉深方法的主要依据;在实际生产中,半球面件图的拉深方法主要有以下三种:①t/D×100>3时,不用压边即可拉成;不过应注意的是:尽管坯料的相对厚度大,仍然易起小皱,因此必须采用带校正作用的凹模,以便对冲件起校正作用;拉深这种冲件最好采用摩擦压力机;②t/D×100=~3时 ,需采用带压边圈的拉深模; ③t/D×100<时,则采用具有拉深筋的凹模或反拉深;图各种球形件3.抛物面零件的拉深1浅抛物面冲件h/d<~;其拉深特点与半球面件差不多,因此,拉深方法与半球面冲件相似;2 深抛物面冲件h/d>~;其拉深的难度有所提高;为了使坯料中间部分紧密贴模而又不起皱,必须加大径向拉应力;但这一措施往往受到坯料顶部承载能力的限制,所以在这种情况下应该采用多工序逐渐成形的办法,特别是当零件深度大而顶部的圆角半径又小时,更应如此;多工序逐渐成形的主要要点是采用正拉深或反拉深的方法,在逐渐地增加深度的同时减小顶部的圆角半径;为了保证冲件的尺寸精度和表面质量,在最后一道工序里应保证一定的胀形成分;应使最后一道工序所用的中间毛坯的表面积稍小于成品冲件的表面积;4. 锥面零件的拉深锥面零件的拉深成形机理与球面形状零件一样,具有拉深、胀形两种机理;由于锥形冲件各部分的尺寸比例关系图不同,其冲压难易程度和应采用的成形方法也有很大差别;锥形件拉深成形极限表现为起皱与破裂,起皱出现在中间悬空部分靠凹模圆角处,破裂是在胀形部分的冲头转角处;图锥形件示意图盒形件拉深时的金属流动锥面零件拉深成形方法主要依据下列参数进行判断:1. 形件拉深变形特点盒形件是非旋转体零件,与旋转体零件的拉深相比,其拉深变形要复杂些;盒形件的几何形状是由四个圆角部分和四条直边组成,拉深变形时,圆角部分相当于圆筒形件拉深,而直边部分相当于弯曲变形;但是,由于直边部分和圆角部分是联在一块的整体,因而在变形过程中相互受到牵制,圆角部分的变形与圆筒形件拉深不完全一样,直边变形也有别于简单弯曲;若在盒形件毛坯上画上方格网,其纵向间距为a,横向间距为b,且a=b;拉深后方格网的形状和尺寸发生变化图:横向间距缩小,而且愈靠近角部缩小愈多,即b>b1>b2>b3;纵向间距增大,而且愈向上,间距增大愈多,即a1>a2>a3>a ; 这说明,直边部分不是单纯的弯曲,因为圆角部分的材料要向直边部分流动,故使直边部分还受挤压;同样,圆角部分也不完全与圆筒形零件的拉深相同,由于直边部分的存在,圆角部分的材料可以向直边部分流动,这就减轻圆角部分材料的变形程度与相同圆角半径的圆筒形冲件比;由以上分析可知,盒形件拉深的特点如下:图盒形件拉深时的应力分布2.盒形件工序计算。
拉深工艺与拉深模设计(二)

4.凸、凹模工作表面粗糙度 凹模: 型腔表面Ra0.8μm, 圆角表面Ra0.4μm 凸模: Ra1.6μm∼0.8μm 5.拉深凸模的出气孔尺寸
4.6.4 凸、凹模的结构形式
拉深凸模与凹模的结构形式取决于工件的形状、尺寸以 及拉深方法、拉深次数等工艺要求,不同的结构形式对拉 深的变形情况、变形程度的大小及产品的质量均有不同的 影响。 当毛坯的相对厚度较大,不易起皱,不需用压边圈压边 时,应采用锥形凹模。
3.压边圈的形式 (1)平面压边圈 适用于一般拉深模
(2)弧形压边圈 适用于 (t / D ×100) < 0.3 , 且小凸缘和较大圆角半径
(3)带限位装置的压边圈 适于拉深板料较薄或带较宽凸缘的零件
(4)局部压边的压边圈 ) 适于拉深带宽凸缘工件
(5)带拉深筋的压边圈 适用于凸缘特别小或半球形工件
2.中间拉深的凸、凹模尺寸
Dd i = Di 0
+δ d 0 −δ p
D p i = (Ddi − Z )
式中:
Di—各工序的基本尺寸。 —
3.凸、凹模制造公差 非圆形凸、凹模的制造公差可根据工件的公 差来选定。工公差为 ITl3 级以上时, 和 可按IT6 ~8 级取,工件公差在 ITl4 级以下时, 按 ITl0 级 取;圆形凸凹模制造公差查表获得。
4.5 其它旋转体件的拉深
学习目标: 了解其它常见旋转体拉深件的结构、拉深过 程;理解它们的拉深工序安排。 教学要求: 能够计算阶梯圆筒件的拉深次数,确定各种 形状的阶梯圆筒件的拉深工序安排;理解难拉深 的球面、锥形等曲面旋转体拉深件的工艺方案。
4.5.1 阶梯圆筒件的拉深 1. 拉深次数 一次拉深的条件:
4.8 盒形件的拉深
圆筒件的拉深系数

若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。
拉深件展开计算公式

拉深件展开计算公式【实用版】目录1.拉深件的概念及其应用2.拉深件的展开计算公式3.应用举例正文一、拉深件的概念及其应用拉深件是一种常见的金属加工工艺,主要用于制造各种金属制品,如汽车零部件、电器外壳等。
拉深件是指通过压力作用,使金属材料在一定的模具形状下产生塑性变形,从而获得所需形状和尺寸的零件。
拉深件的制造过程包括拉伸、深拉、整形等步骤,其质量直接影响到产品的性能和外观。
二、拉深件的展开计算公式拉深件的展开计算公式是金属塑性加工中一个重要的计算方法,主要用于预测拉深后的零件形状和尺寸。
拉深件展开计算公式主要包括以下几个方面:1.拉伸系数拉伸系数是指拉深前后金属材料的长度变化与原始长度之比,用λ表示。
它是一个重要的参数,直接影响到拉深件的尺寸和形状。
2.拉深件的展开面积拉深件的展开面积是指拉深后零件展开后的总面积。
它主要取决于拉深件的形状、尺寸和材料性质等因素。
3.拉深件的展开公式拉深件的展开计算公式如下:S = λ^2 * A其中,S 表示拉深件的展开面积,λ表示拉伸系数,A 表示拉深件的原始面积。
三、应用举例假设我们要制造一个直径为Φ200mm,高度为 H100mm 的圆柱形拉深件,材料为钢。
首先需要计算拉深系数λ,根据拉伸工艺参数和材料性质,可得拉伸系数λ=1.2。
然后,根据原始面积 A=π*(Φ/2)^2=π*(200/2)^2=10000π,代入公式 S = λ^2 * A,可得拉深件的展开面积S=1.2^2 * 10000π=14400π。
根据展开面积 S,可以设计拉深模具,并进行拉深加工,从而得到所需的拉深件。
模具第四章拉深模设计

7)确定各次拉深半成品的高度:
h10.2(5 D d1 2d1)0.4d r 3 1 1(d10.3r1 2 ) h20.2(5 D d2 2d2)0.4d r3 2 2(d20.3r2 2 )
hn0.2(5 D dn 2dn)0.4d r3 n n(dn0.3rn 2 )
D0max 的拉深系数——极限拉深系数 (圆角部分不破裂,周边变形区坯料不 失稳起皱)
mc
d D0 m ax
3、影响极限拉深系数的因素
– 板料的力学性能 – 板料的相对厚度:t/D; t/D大,抗失
稳能力强,不易起皱。 – 模具结构及其参数:有无压边圈、凹
模圆角半径、凸模圆角半径。 – 拉深工艺条件:拉深次数、压边条件、
C=(1.1-1.20)t
用压边的一次拉深 光洁拉深
C=(1.0-1.15)t
C=(0.95-1.05)t
二、凸凹模结构形式
无压料一次拉深成形的凹模结构
a)圆弧形 b)锥形 c)渐开线形 d)等切面形
无压料多次拉深的凸、凹模结构
有压料多次拉深的凸、凹模结构
四、凸凹模刃口尺寸及公差(1)
• 当工件要求外形尺寸 (D) 时:
二、常用拉深模
无压边装置的以后各次拉深模
1-推件板 2-拉深凹模 3-拉深凸模 4-压边圈 5-顶杆 6-弹簧
有压边装置的以后各次拉深模
§4-7凸凹模工作部分的设计
一、拉深模间隙:间隙太大时,拉深件壁不 直或成锥形;间隙太小,模具磨损加剧, 工件易拉裂。
不用压边的浅拉深 多次拉深
C=(1.0-1.05)t
§4-5拉深件的起皱与破裂
一、起皱 拉深件的起皱: 受切向压应力失 稳而起皱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸件(系列2)
拉伸件拉伸次数计算
和拉伸系数确定
编辑员 :yanhuo1573
编辑时间:2013-12-5
使用软件:CAD;ProE/UG
筒形拉伸件的拉伸系数和拉伸次数的计算方法。
现在开始来第一步:检查图纸,
d n= Φ100mm
t = 0.5mm
H = 155mm
根据第一节(拉伸件系列1)讲的毛坯展开方法:
H = 158mm(放切边余量)
D = Φ268mm
第二步:计算总拉伸系数
根据公式m 总= d n / D
m 总=100/268=0.3731 根据公式m 总= m1*m2*…m n
求 m1=?
m2=?
m n=?
第三步:查表第一次拉伸系数,及以后各次拉伸系数,拉伸件材质为SUS304:
相对厚度为t/D*100=0.186
m2…n=0.78-0.81之间
第四步:假设第一次拉伸系数,以后各次拉伸系数
假设 m1=0.52-0.55之间我们取0.55 m2=0.78-0.81之间我们取0.80 m3=0.78-0.81之间我们取0.81 m 总= m1*m2*…m n
m 总= 0.55*0.80*0.81=0.3564 前面算出 m 总= d n / D=0.3731
0.3731>0.3564假设三次满足拉伸条件,假设成立。
第五步:计算出每次拉伸直径。
根据公式:d1= m1*D
d2= m2* d1
d3= m3* d2
求出: d1=Φ147.4
d2=Φ117.92
d3=Φ95.5
从以上的结果假设三次拉伸成立,每拉伸直径是小数,我们相对可以取整,如下: 最后: d1=Φ148mm
d2=Φ120mm
d3=Φ110mm。