第3章-刚体力学基础

合集下载

第3章刚体力学基础

第3章刚体力学基础

描述质点系转动的动力学方程
z
取惯性坐标系
dt
oxyz
刚体所受的对
转轴的力矩
x
o
M r F
定义:在垂直于转轴的平 面轴内的,距外离力dF的与乘力积线到转
y z轴为固定转轴
z
M
F
F F
r
垂直转轴的外力分量产生沿
d
转轴方向的力矩, 平行于转
轴的外力分量产生的力矩被
轴承支承力的力矩所抵消
一 、作用于定轴刚体的合外力矩
相对于定轴的合外力矩
(力对转轴的力矩)
M z M iz ri Fi sin i
i
i
即作用在各质元的 力矩的 z 分量之和
二、刚体定轴转动定理
由于刚体只能绕 z 轴转动, 引起转动的力矩只有z方向,
因此转动动力学方程
Mz
dLz dt
dL M
dt
Li
Ri
m
i
v
i
oo ri
mi vi
解:
z
J z mi ri2
i
m i
x
2 i
y
2 i
i
Jy Jx
x
o
yi
ri
m
x
i
i
y
例 均质圆盘:m, R . 求以直径为轴的转动惯量 解:
J 1 mR2 4
例3-6(P181) 挂钟摆锤的转动惯量
解:
o
m1 l
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
m2 R
例 计算钟摆的转动惯量。(已知:摆锤质量为m,半 径为r,摆杆质量也为m,长度为2r)

第3章 刚体力学

第3章 刚体力学

说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z

s r
v r
an r 2
O
at r

dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

刚体力学基础PPT课件

刚体力学基础PPT课件

转动:分定轴转动和非定轴转动 刚体的平面运动
5
二、刚体定轴转动的描述
1.刚体定轴转动的特点 轴上各点都保持不动,轴外各点在同一时间间隔内转过的角度一样。
以某转动平面与转轴的交点为原点,转动平面上所有质元都绕着这个 原点作圆周运动。
2.描述 可类似地定义绕定轴转动的刚体的:
*角位置 (t)

i



ri
z
切向加速度 法向加速度
ai ri
ani ri 2

ri
vi

§3-2 定轴转动刚体的转动惯量
一、刚体定轴转动定律
(1)单个质点m
与转轴刚性连接
Ft mat mr
M rF sinθ
z
M
Ft
F
O
r
m
Fn
M rFt mr 2 M mr2
一、刚体运动分类
2.转动 如果刚体上的所有质元都绕某同一直线作圆周运动,这种运动就称之为转动,
这条直线称为转轴。
A
A
分为定轴转动和非定轴转动
*非定轴转动 若转轴方向或位置变化,这种转动称为非定轴转动
A
A
* 定轴转动 若转动轴固定不动,这种转动称为定轴转动. 这个转
轴称为固定轴,
转动平面:垂直于固定轴的平面
内力(F质i2j 量)元刚受体外力Fej ,
Mej Mij mjrj2
外力矩
内力矩
z
O rj
Fej
m j
Fij
Mej Mij mjrj2
j
j
Mij M ji Mij 0
j

刚体力学基础第三章

刚体力学基础第三章

二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J mR2
a
c
b
J miri2
i
(1) 平行轴定理
J z' :刚体绕任意轴的转动惯量 J z :刚体绕通过质心的轴 L :两轴间垂直距离
J z' J z ML2
m R O
z' z M
L C
平行轴定理证明:
rrii


rri oro
ri
ri2 ri2 ro2 2ri ro

r

F
力对轴的力矩
MZ

r

F
z
Mo

F
O . r


M o z F//
F
(2)力对任意点的力矩,在 通过该点的任一轴上的 投影,等于该力对该轴 的力矩
h r
F
A F
Fn
3.3.2 刚体绕定轴转动定律
对Pi :
Fi

F内i

mi ai
法向:...
dt


d
dt

d 2
dt 2
第二类问题 ------ 积分问题
已知角速度或角加速度及初始条件,求转动运动方程 = (t)
t
0
dt
0
t

0
dt
0
对于刚体绕定轴匀变速转动,角加速度 = 常量,有
0 t

0
0t

1 2
t 2
s O
i=1
z
z
(x,y,z)
O
yO
y
x
i=2
i=3
x i = 3+2+1= 6
当刚体的运动受到某些限制 ——自由度减少
三. 刚体的平动
刚体运动时,若在刚体内所作的任一条直线都始终保持和自
身平行 — 刚体平动
平动的特点: 刚体中各质点的运动情况相同.
rA rB BA
rA rB
vA vB aA aB
A A
A B B
B
O
结论: 刚体的平动可归结为质点运动.
例 一大型回转类“观览圆盘”如图所示。圆盘的半径R=25 m, 供人乘坐的吊箱高度L=2 m。若大圆盘绕水平轴均速转动, 转速为0.1 r/min。
求 吊箱底部A点的轨迹及A点的速度和加速度的大小。

z ω,v
r' P

刚体
r
×基点O
参 考 方

矢量表示
刚体转动的角速度矢量



k
角加速度矢量



d


k
dt
速度与角速度的矢量关系式
v

dr

ω
r
dt
加速度与角加速度的矢量关系式
a dv d(ω r) dω r ω dr
直径 对称轴
Jx

Jy

1 4
mR
2
JC

1 2
m(
R12

R22 )
球壳
(半径为R)
中心轴
JC

2 3
mR
2
球体
(半径为R)
中心轴
JC

2 5
mR
2
3.3.4 刚体定轴转动定律的应用
M Jβ
例 一轻绳绕在半径 r =20 cm 的飞轮边缘,在绳端施以F=98 N
的拉力,飞轮的转动惯量 J=0.5 kg·m2,飞轮与转轴间的摩擦
dt dt dt
dt

β

r
ω
v





r
an v

z ω,v
r' P

刚体
r
×基点O
参 考 方

定轴
三. 刚体定轴转动运动学的两类问题
第一类问题 ------ 微分问题
已知刚体转动运动方程 = (t),求角速度、角加速度
d
2 02 2 0
例 电动机转子作定轴转动,开始时它的角速度0 = 0,经150s 其转速达到12000r/min,已知转子的角加速度与时间t的平
方成正比。
求 在这段时间内,转子转过的圈数。
解 设 kt 2 (k为比例常量)
d kt 2
dt
分离变量并积分: d t kt2dt
第3章 刚体力学基础
“伦敦眼”(高135米) 坐落在伦敦泰晤士河畔,是伦敦的地标性建筑。
刚体运动随处可见,摩天轮是一种具有水平转轴、能在铅垂平面内回 转的装置。轮盘和座舱的运动各有什么样的特点?如何描述?
§3.1 刚体运动概述
一. 刚体
特殊的质点系,形状和体积不变化 —— 理想化模型
二. 自由度
确定物体的位置所需要的独立坐标数 —— 物体的自由度数
R
r dr
O
圆环的质量为: dm 2πrdr
圆环的转动惯量为


m πR 2
dJ r2dm r2 2πrdr 2πr3dr
则整个圆盘的转动惯量为
J
dJ 2π
R r3dr
0


m πR 2
1 4
R4

1 mR2 2
讨论 质量分布对转动惯量的影响?
v Ax

dxA dt

R sin(t
0)
v Ay

dyA dt

R cos(t
0)
vA
v
2 Ax

v
2 Ay

R

25
300
0.26 m / s
aAx

dv Ax dt

R 2 cos(t
0)
aAy

dv Ay dt

R 2 sin(t
0)
讨论:.............
解 2π 2π π
T 10 60 300
吊箱平动
xA xB R cos(t 0)
yA yB L Rsin(t 0) L
x
2 A

( yA

L)2

R2
xA xB R cos(t 0)
yA yB L Rsin(t 0) LaA a源自2 Axa
2 Ay

R 2

25 2
3002

2.7 103
m / s2
§3.2 刚体定轴转动的运动学规律
刚体定轴转动
刚体内各点都绕同一直线(转轴)作圆周运动___刚体转动
转轴固定不动 — 定轴转动
z
刚体的平动和绕定轴转动是刚体的 两种最简单最基本运动
一. 描述 刚体绕定轴转动的角量
求解力若受矩重力分物分析B析下F,T1降取的时如力,图矩滑所:块示MA的1 的正加方F速T向1r度a及绳C 中的张力a1。A
FT 2的力矩:M 2 FT 2r
J l / 2 x2dx 1 ml2
l / 2
12
(2) 以细杆的一端O为坐标原点,取如图所示的坐标
则此时的转动惯量为: J l x2dx l 3 1 ml 2
0
33
例 试求一质量为m,半径为R的均质细圆环对通过其中心且垂
直于环面的转轴的转动惯量。 J r2dm
J miri2
i
对质量离散分布的质点系 J miri2
r
i
对质量连续分布的刚体 J r2dm
r 2dl 质量线分布,为线密度( m )
J

L
L
r 2dS 质量面分布,为面密度( m )
S
S
V
r 2dV 质量体分布,为体密度(
角坐标 f (t) (运动学方程)
角速度
d f '(t)
dt
转动平O面 P(t)

x
角加速度


d
dt

d2
dt 2

f "(t)
二. 定轴转动刚体上各点的速度和加速度
任意点都绕同一轴作圆周运动,
且 , 都相同
v r'
an r' 2
a

dv dt

r'
不计,绳与滑轮间无相对滑动,(见图)
求 (1) 飞轮的角加速度
(2) 如以重量P =98 N的物体挂在绳 端,试计算飞轮的角加速
rO
解 (1) Fr J


Fr J

98 0.2 0.5

39.2
rad/s 2
TF
(2) mg T ma
Tr J


J
mgr mr2
两者区别


m V
)
例 试求质量为m,长为l 的均质细杆对如下给定轴的转动惯量。
(1) 转轴垂直于杆并通过杆的中点;
(2) 转轴垂直于杆并通过杆的一端。
J r2dm
解 (1) 取如图所示的坐标 在细杆上x 处取线元dx 线元的质量为
O O
x x dx
x'
dm dx m dx
细杆对过中点的垂直转l 轴的转动惯量为
N 1687.5102 268102 r


§3.3 刚体绕定轴转动定律
相关文档
最新文档