导数的最值(含参数第2课时)
2020版数学(理)人教A版新设计大一轮课件:第三章 第2节 第2课时 利用导数研究函数的极值、最值

(2)由(1)知,函数的定义域为(0,+∞),f′(x)=1x-a=1-xax(x>0). 当a≤0时,f′(x)>0在(0,+∞)上恒成立, 即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当 a>0 时,当 x∈0,1a时,f′(x)>0, 当 x∈1a,+∞时,f′(x)<0,故函数在 x=1a处有极大值. 综上可知,当a≤0时,函数f(x)无极值点, 当 a>0 时,函数 y=f(x)有一个极大值点,且为 x=1a.
解 (1)当 a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞)且 f′(x)=1x-12=2
令f′(x)=0,得x=2, 于是当x变化时,f′(x),f(x)的变化情况如下表.
x
(0,2)
2
(2,+∞)
f′(x)
+
0
-
f(x)
ln 2-1
故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
当 0<v<103 2时,y′<0,函数单调递减;
当 v>103 2时,y′>0,函数单调递增.
若 c<103 2 ,函数在(c,103 2)上单调递减,在(103 2,15)上单调递增, ∴当 v=103 2时,总用氧量最少. 若 c≥103 2,则 y 在[c,15]上单调递增, ∴当v=c时,这时总用氧量最少.
综上可知,a 的取值范围是12,+∞.
考点二 利用导数求函数的最值 【例2】 (2019·广东五校联考)已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值; (2)若f(x)在区间(0,e]上的最大值为-3,求a的值. 解 (1)易知f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令f′(x)=0,得x=1. 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. ∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
高考数学一轮复习 第十一节 第二课时 导数与函数极值、最值课件 理 新人教A版

得 f′(1)=0,即 1-a=0,解得 a=e. e
思考:对函数求导后参数a对导数值正负有什么
影响?
(2)f′(x)=1-eax, ①当 a≤0 时,f′(x)>0,f(x)为(-∞,+∞)上的增函数, 所以函数 f(x)无极值. ②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a. x∈(-∞,ln a),f′(x)<0;x∈(ln a,+∞),f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调 递增,
在[1a, 2]上是减函数.又 f(2)-f(1)=ln 2-a,∴当12<a<ln 2
时,最小值是 f(1)=-a; 当 ln 2≤a<1 时,最小值为 f(2)=ln 2-2a. 综上可知, 当 0<a<ln 2 时,函数 f(x)的最小值是-a; 当 a≥ln 2 时,函数 f(x)的最小值是 ln 2-2a.
②当 a>0 时,令 f′(x)=x1-a=0,可得 x=1a, 当 0<x<a1时,f′(x)=1-xax>0; 当 x>1a时,f′(x)=1-xax<0, 故函数 f(x)的单调递增区间为0,1a, 单调递减区间为1a,+ ∞.
提示:讨论极值在区间[1, 2]内、外确定最值!
解:由 f′(x)=1-ax=x-x a,x>0 知: (1)当 a≤0 时,f′(x)>0,函数 f(x)为(0,+∞)上的增函数,函数 f(x)无极值; (2)当 a>0 时,由 f′(x)=0,解得 x=a. 又当 x∈(0,a)时,f′(x)<0; 当 x∈(a,+∞)时,f′(x)>0, 从而函数 f(x)在 x=a 处取得极小值,且极小值为 f(a)=a-aln a, 无极大值.
2019-2020学年人教A版选修2-2 函数的最大(小)值与导数 课件(50张)

(2)[a,b]上连续不断的函数 f(x)在(a,b)上满足 f′(x)>0,则 f(a)是函数的最______值,f(b)是函数的最______值.
【答案】 小,大
题型二 闭区间上函数的最值
例 2 求下列函数的最大值和最小值. ππ
y′
+
0
-
0+
y -2
2
-2
2
由上表知 f(x)最大值为 2.
【答案】 C
x-1 (2)求 y= ,x∈[0,4]的最大值和最小值.
x2+1 【解析】 y′=-(xx2+2+21x)+21,
令 y′=0,得 x=1+ 2和 x=1- 2(舍). 又 f(0)=-1,f(4)=137,f(1+ 2)= 22-1, ∴ymax= 22-1,ymin=-1.
x f′(x)
f(x)
π -2
π 2
ππ (- 2 ,- 6 )
π -6
-
0
π-3 3 6
ππ (- 6 , 6 )
+
π x
6
f′(x)
0
3 3-π f(x)
6
ππ (6,2)
-
π 2
π -2
π
π
从上表可知,最大值为 2 ,最小值为- 2 .
(2)f′(x)=3x2-3,令 f′(x)=0,得 x=±1. ∵f(-3)=(-3)3-3×(-3)+3=-15, f(-1)=(-1)3-3×(-1)+3=5, f(1)=13-3×1+3=1, f(32)=(32)3-3×32+3=185, ∴函数的最大值是 5,最小值是-15.
互动 2 函数的最大(小)值可以有多个吗?最大(小)值点 呢?
第3章 2.2 第2课时 最大值、最小值的实际应用

第2课时 最大值、最小值的实际应用学习目标 1.了解导数在解决实际问题中的作用.2.能利用导数解决一些简单的恒成立问题.3.掌握利用导数解决简单的实际生活中的优化问题的方法.知识点 生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. (2)利用导数解决优化问题的实质是求函数最值. (3)解决优化问题的基本思路上述解决优化问题的过程是一个典型的数学建模过程.类型一 与最值有关的恒成立问题例1 已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求实数c 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,因为⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f ′⎝⎛⎭⎫-23=43-43a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =-2,所以f ′(x )=3x 2-x -2=(3x +2)(x -1), 令f ′(x )=0,得x =-23或x =1,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的单调增区间为⎝⎛⎭⎫-∞,-23,(1,+∞);单调减区间为⎝⎛⎭⎫-23,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 因为f (2)=2+c ,所以f (2)=2+c 为最大值. 要使f (x )<c 2(x ∈[-1,2])恒成立, 只需c 2>f (2)=2+c , 解得c <-1或c >2.故实数c 的取值范围为(-∞,-1)∪(2,+∞). 引申探究若本例中条件不变,“把(2)中对x ∈[-1,2],不等式f (x )<c 2恒成立”改为“若存在x ∈[-1,2],不等式f (x )<c 2成立”,结果如何?解 由例题解析知当x =1时,f (1)=c -32为极小值,又f (-1)=12+c >c -32,所以f (1)=c -32为最小值.因为存在x ∈[-1,2],不等式f (x )<c 2成立, 所以只需c 2>f (1)=c -32,即2c 2-2c +3>0,解得c ∈R .故实数c 的取值范围为R .反思与感悟 分离参数求解不等式恒成立问题的步骤跟踪训练1 已知函数f (x )=2x ln x ,g (x )=-x 2+ax -3对一切x ∈(0,+∞),f (x )≥g (x )恒成立,则a 的取值范围是________. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立中参数的取值范围 答案 (-∞,4]解析 由2x ln x ≥-x 2+ax -3, 得a ≤2ln x +x +3x.设h (x )=2ln x +3x +x (x >0).则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的. ∴h (x )min =h (1)=4. ∴a ≤4.类型二 实际生活中的最值问题 命题角度1 几何中的最值问题例2 请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.点E ,F 在边AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.跟踪训练2 已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案6πS 3π解析 设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh . ∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS 3π. 命题角度2 利润最大(或费用最少)问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎨⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9(或x =-9舍),当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得极大值也为最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38.综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)由题设知,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为 f (x )=20C (x )+C 1(x )=20×403x +5+6x=8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400(3x +5)2.令f ′(x )=0,即 2 400(3x +5)2=6,解得x =5,x =-253(舍去). 当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题题点 利用导数求解生活中的其他最值问题 答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.当x ∈(0,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,+∞) B .[-6,-5] C .[-6,+∞)D .[-4,-3]考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 答案 C解析 ∵x >0,∴a ≥1x -4x 2-3x 3恒成立.令1x =t ,∵x ∈(0,1],∴t ≥1, ∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,则g ′(t )=1-8t -9t 2, 易知g ′(t )图像的对称轴是t =-818=-49,∴函数g ′(t )在[1,+∞)上是减少的.又g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立, ∴g (t )在[1,+∞)上是减少的, ∴g (t )max =g (1)=-6,∴a ≥-6.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700 =-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍).所以当P =30时,f (P )取得极大值也为最大值. 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是____元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x +10×1×⎝⎛⎭⎫2x +2×4x , 即y =20x +80x +80,y ′=20-80x 2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.已知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,求a 的取值范围. 考点 利用导数求函数中参数的取值范围 题点 利用导数求恒成立问题中参数的取值范围 解 由2x ln x ≥-x 2+ax -3(x >0), 得a ≤2ln x +x +3x.设h (x )=2ln x +3x +x (x >0).则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )是减少的, 当x ∈(1,+∞)时,h ′(x )>0,h (x )是增加的. ∴h (x )min =h (1)=4.∴a ≤h (x )min =4.1.恒成立问题可转化为函数最值问题. 2.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值.一、选择题1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cmB.2033 cmC.1633cmD.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝⎛⎭⎫0,2033时,V ′>0,当h ∈⎝⎛⎭⎫2033,20时,V ′<0,故当h =2033时,体积最大.2.某工厂生产的机器销售收入y 1(万元)与产量x (千台)的函数关系为y 1=17x 2,生产总成本y 2(万元)与产量x (千台)的函数关系为y 2=2x 3-x 2(x >0),为使利润最大,应生产( ) A .9千台 B .8千台 C .7千台 D .6千台 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题答案 D解析 设利润为y ,则y =17x 2-2x 3+x 2=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x (x -6),易知递增区间为(0,6),递减区间为(6,+∞),∴当x =6时,利润最大.3.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ) A .m ≥32B .m >32C .m ≤32D .m <32考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围答案 A解析 由f ′(x )=2x 3-6x 2=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32. 4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <12考点 利用导数求函数中参数的取值范围题点 最值存在性问题答案 B解析 f ′(x )=3x 2-3a ,①当a ≤0时,f ′(x )≥0,这表明f (x )在(0,1)上是增加的,所以f (x )在(0,1)内无最值,显然不可能.②当a >0时,令f ′(x )=0,解得x =±a ,易知f (x )在x =a 处取得唯一的极小值,故极小值点在(0,1)内,所以0<a <1,即0<a <1.综上所述,a 的取值范围为(0,1).5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的距离的最小值为( )A .1 B. 2 C.22D. 3 考点 与最值有关的其他问题题点 与最值有关的其他问题答案 B解析 设P (x ,x 2-ln x ),则点P 到直线y =x -2的距离d =|x -x 2+ln x -2|12+12=|x 2-x -ln x +2|2. 设g (x )=x 2-x -ln x +2(x >0),则g ′(x )=2x 2-x -1x =(2x +1)(x -1)x. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )在(0,1)上是减少的,在(1,+∞)上是增加的,则当x =1时,g (x )取得极小值也是最小值,且g (1)=2,所以d min = 2.6.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12 C.52 D.22考点 与最值有关的其他问题题点 与最值有关的其他问题答案 D解析 令F (x )=f (x )-g (x )=x 2-ln x (x >0),则F ′(x )=2x -1x. 令F ′(x )=0,得x =22(负值舍去), 易知F (x )在x =22处取得最小值,即当|MN |取最小值时,t 的值为22. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( )A .2∶1B .1∶2C .1∶4D .4∶1考点 利用导数求解生活中的最值问题题点 用料、费用最少问题答案 A解析 设其体积为V ,高与底面半径分别为h ,r ,则V =πr 2h ,即h =V πr 2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πr V πr 2=2πr 2+2V r. 令S ′=4πr -2V r 2=0,得r =3V 2π, 当r =3V 2π时,h =V π⎝ ⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小.二、填空题8.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少.考点 利用导数求解生活中的最值问题题点 用料、费用最少问题答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎫1128 000x 3-380x +8·100x= 1 1 280x 2+800x -154(0<x ≤120). 则y ′=x 640-800x 2=x 3-803640x 2(0<x ≤120). 令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数是减少的;当x ∈(80,120]时,y ′>0,该函数是增加的,所以当x =80时,y 取得最小值.9.已知函数f (x )=x 3-3x 2+2,x 1,x 2是区间[-1,1]上任意两个值,M ≥|f (x 1)-f (x 2)|恒成立,则M 的最小值是________.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立中参数的取值范围答案 4解析 f ′(x )=3x 2-6x =3x (x -2),当-1≤x <0时,f ′(x )>0,f (x )是增加的,当0<x ≤1时,f ′(x )<0,f (x )是减少的,所以当x =0时,f (x )取得极大值,也为最大值,f (0)=2,又f (-1)=-2,f (1)=0,所以f (x )的最小值为-2,对[-1,1]上任意x 1,x 2,|f (x 1)-f (x 2)|≤f (x )max -f (x )min =4,所以M ≥|f (x 1)-f (x 2)|恒成立,等价于M ≥4,即M 的最小值为4.10.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈(0,1],都有f (x )≥0成立,则实数a 的值为________.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围答案 [4,+∞)解析 当x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3, 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间⎝⎛⎦⎤0,12上是增加的,在区间⎣⎡⎦⎤12,1上是减少的, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为________件时总利润最大.考点 利用导数求解生活中的最值问题题点 利用导数求解最大利润问题答案 25解析 由题意知502=k 100,解得k =25×104. ∴产品的单价P =25×104x =500x. ∴总利润L (x )=x 500x-1 200-275x 3 =500x -1 200-275x 3, L ′(x )=250x -12-225x 2, 令L ′(x )=0,得x =25,∴当x =25时,总利润最大.三、解答题12.已知函数f (x )=ax 4ln x +bx 4-c (x >0)在x =1处取得极值-3-c ,其中a ,b ,c 为常数.(1)试确定a ,b 的值;(2)讨论函数f (x )的单调区间;(3)若对任意x >0,不等式f (x )≥-2c 2恒成立,求实数c 的取值范围.考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围解 (1)由f (x )在x =1处取得极值-3-c ,知f (1)=b -c =-3-c ,得b =-3.又f ′(x )=4ax 3ln x +ax 4·1x+4bx 3 =x 3(4a ln x +a +4b ),由f ′(1)=0,得a +4b =0,所以a =-4b =12.(2)由(1)知f ′(x )=48x 3ln x (x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )为减函数;当x >1时,f ′(x )>0,f (x )为增函数.因此,f (x )的单调减区间为(0,1),单调增区间为(1,+∞).(3)由(2)知f (1)=-3-c 既是极小值,也是(0,+∞)内的最小值,要使f (x )≥-2c 2(x >0)恒成立,只需-3-c ≥-2c 2,即2c 2-c -3≥0.从而(2c -3)(c +1)≥0,解得c ≥32或c ≤-1. 故实数c 的取值范围为(-∞,-1]∪⎣⎡⎭⎫32,+∞. 13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用.考点 利用导数求解生活中的最值问题题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米, 所以4πr 33+πr 2l =64π3,解得l =643r 2-43r , 所以圆柱的侧面积为2πrl =2πr ⎝⎛⎭⎫643r 2-43r =128π3r -8πr 23,两端两个半球的表面积之和为4πr 2,所以y =⎝⎛⎭⎫128π3r -8πr 23×3+4πr 2×4=128πr+8πr 2. 又l =643r 2-43r >0,即r <432, 所以定义域为(0,432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r 2, 令y ′>0得2<r <432;令y ′<0得0<r <2,所以当r =2米时,该容器的建造费用最小为96π千元,此时l =83米. 四、探究与拓展14.函数f (x )=x 3-12x +3,g (x )=3x -m ,若对任意x 1∈[-1,5],存在x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的最小值是________.考点 与最值有关的其他问题题点 与最值有关的其他问题答案 14解析 f ′(x )=3x 2-12=3(x -2)(x +2),易知f (x )在[-1,2]上是减少的,在[2,5]上是增加的,所以f (x )min =f (2)=8-24+3=-13,g (x )=3x -m 在[0,2]上是增加的,所以g (x )min =g (0)=1-m ,由题意知-13≥1-m ,即m ≥14.所以m 的最小值为14.15.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值.(2)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立. 考点 利用导数求函数中参数的取值范围题点 利用导数求恒成立问题中参数的取值范围解 (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=1x ,g (x )=ln x +1x(x >0), 所以g ′(x )=x -1x 2. 令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的递减区间;当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的递增区间.因此,x =1是g (x )在(0,+∞)上的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (a )-g (x )<1a对任意x >0成立, 即ln a <g (x )对任意x >0成立. 由(1)知,g (x )的最小值为1, 所以ln a <1,解得0<a <e. 即a 的取值范围是(0,e).。
高中数学《函数的最大(小)值第二课时》专题突破含解析

第二课时 函数的最大(小)值课标要求素养要求1.能利用导数求某些函数的在给定闭区间上不超过三次的多项式函数的最大值、最小值.2.体会导数与单调性、极值、最大(小)值的关系.区别函数的极值和最大(小)值,借助于求函数的最大(小)值的运算,提升学生的数学运算和直观想象素养.新知探究观察如图所示的函数y =f (x ),x ∈[-3,2]的图象,回忆函数最值的定义,回答下列问题:问题1 图中所示函数最值点与最值分别是什么?提示 最大值点是x =2,最大值是3;最小值点是x =0,最小值是-3.问题2 图中所示函数的极值点与极值分别是什么?提示 极大值点是x =-2,极大值是2;极小值点是x =0,极小值是-3.问题3 一般地,函数的最值与函数的极值有什么关系?提示 函数的最值可能是极值,也可能是区间端点的函数值.1.函数f (x )在闭区间[a ,b ]上的最值 函数的最大值与最小值最多只有一个,极大值与极小值则可能有多个(1)函数f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定能够取得最大值与最小值,函数的最值必在端点处或极值点处取得.(2)求函数y=f(x)在[a,b]上最值的步骤①求函数y=f(x)在(a,b)内的极值.②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.2.最值与极值的区别与联系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间的整体而言.(2)在函数的定义区间内,极大(小)值可能有多个,但最大(小)值只有一个(或者没有).(3)函数f(x)的极值点为定义域中的内点,而最值点可以是区间的端点.(4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.如图是y=f(x)在区间[a,b]上的函数图象.显然f(x1),f(x3),f(x5)为极大值,f(x2),f(x4),f(x6)为极小值.最大值y=M=f(x3)=f(b)分别在x=x3及x=b处取得,最小值y=m=f(x4)在x=x4处取得.拓展深化[微判断]1.函数的最大值不一定是函数的极大值.(√)2.函数f(x)在区间[a,b]上的最大值与最小值一定在区间端点处取得.(×)提示 也可能在极值点处取到.3.有极值的函数一定有最值,有最值的函数不一定有极值.(×)提示 有极值的函数不一定有最值,如图所示,导函数f(x)有极值,但没有最值.4.函数f (x )在区间[a ,b ]上连续,则f (x )在区间[a ,b ]上一定有最值,但不一定有极值.(√)[微训练]1.连续函数y =f (x )在[a ,b ]上( )A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值解析 由函数的最值与极值的概念可知,y =f (x )在[a ,b ]上的最大值一定大于极小值.答案 D2.(多空题)函数f (x )=13x 3-x 2-3x +6在[-4,4]上的最大值为________,最小值为________.解析 f ′(x )=x 2-2x -3,令f ′(x )>0,得x <-1或x >3,令f ′(x )<0,得-1<x <3,故f (x )在(-∞,-1),(3,+∞)上单调递增,在(-1,3)上单调递减,故f (x )的极大值为f (-1)=233,极小值为f (3)=-3,又f (-4)=-583,f (4)=-23,故f (x )的最大值为f (-1)=233,最小值为f (-4)=-583.答案 233 -583[微思考]1.若函数的最大值与最小值所构成的集合为A ,则A 中的元素个数可能是多少?提示 可能为0,1,2.2.在开区间内的连续函数f (x )在此开区间上只有一个极值点,那么这个极值是最值点吗?提示 是.题型一 求函数的最值【例1】 求下列各函数的最值.(1)f (x )=x 3-3x 2+6x -2,x ∈[-1,1];(2)f (x )=12x +sin x ,x ∈[0,2π].解 (1)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3,∵f ′(x )在[-1,1]内恒大于0,∴f (x )在[-1,1]上为增函数.故当x =-1时,f (x )min =-12;当x =1时,f (x )max =2.即f (x )的最小值为-12,最大值为2.(2)f ′(x )=12+cos x ,令f ′(x )=0,又x ∈[0,2π],解得x =2π3或x =4π3,计算得f (0)=0,f (2π)=π,f (2π3)=π3+32,f(4π3)=2π3-32.所以当x =0时,f (x )有最小值f (0)=0;当x =2π时,f (x )有最大值f (2π)=π.规律方法 求解函数在定区间上的最值,需注意以下几点(1)对函数进行准确求导,并检验f ′(x )=0的根是否在给定区间内.(2)研究函数的单调性,正确确定极值和端点函数值.(3)比较极值与端点函数值的大小,确定最值.【训练1】 求下列函数的最值:(1)f (x )=2x 3-6x 2+3,x ∈[-2,4];(2)f (x )=e -x -e x ,x ∈[0,a ],a 为正实数.解 (1)f ′(x )=6x 2-12x =6x (x -2).令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表x -2(-2,0)0(0,2)2(2,4)4f ′(x )+0-0+f (x )-37↗极大值3↘极小值-5↗35∴当x =4时,f (x )取最大值35.当x =-2时,f (x )取最小值-37.即f (x )的最大值为35,最小值为-37.(2)f ′(x )=(1e x)′-(e x )′=-1e x-e x =-1+e 2xe x.当x ∈[0,a ]时,f ′(x )<0恒成立,即f (x )在[0,a ]上是减函数.故当x =a 时,f (x )有最小值f (a )=e -a -e a ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.即f (x )的最小值为e -a -e a ,最大值为0.题型二 含参数的函数的最值问题【例2】 已知f (x )=ax -ln x ,a ∈R .(1)当a =1时,求曲线f (x )在点(2,f (2))处的切线方程;(2)是否存在实数a ,使f (x )在区间(0,e]上的最小值是3,若存在,求出a 的值;若不存在,说明理由.解 (1)当a =1时,f (x )=x -ln x ,f ′(x )=1-1x =x -1x ,∴所求切线的斜率为f ′(2)=12,切点为(2,2-ln 2),∴所求切线的方程为y -(2-ln 2)=12(x -2),即x -2y +2-2ln 2=0.(2)假设存在实数a ,使f (x )=ax -ln x ,x ∈(0,e]有最小值3,f ′(x )=a -1x =ax -1x.①当a ≤0时,f (x )在(0,e]上单调递减,故f (x )min =f (e)=a e -1=3,解得a =4e(舍去),所以此时不存在符合题意的实数a ;②当0<1a <e ,即a >1e时,f (x )在(0,1a )上单调递减,在(1a ,e )上单调递增,故f (x )min=f(1a )=1+ln a =3,解得a =e 2,满足条件;③当1a ≥e ,即0<a ≤1e 时,f (x )在(0,e]上单调递减,故f (x )min =f (e)=a e -1=3,解得a =4e(舍去),所以此时不存在符合题意的实数a .综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.规律方法 对参数进行讨论,其实质是讨论导函数大于0,等于0,小于0三种情况.若导函数恒大于0或小于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值.【训练2】 已知a ∈R ,函数f (x )=x 2(x -a ),求f (x )在区间[0,2]上的最大值.解 f ′(x )=3x 2-2ax .令f ′(x )=0,解得x 1=0,x 2=2a 3.(1)当2a 3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a .(2)当2a 3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而f (x )max =f (0)=0.(3)当0<2a3<2,即0<a <3时,f (x )在[0,2a 3]上单调递减,在[2a 3,2]上单调递增,从而f (x )max ={8-4a (0<a ≤2),0 (2<a <3),综上所述,f (x )max ={8-4a (a ≤2),0 (a >2).题型三 由函数的最值求参数问题【例3】 已知函数f(x)=ax3-6ax2+b,x∈[-1,2]时,f(x)的最大值为3,最小值为-29,求a,b的值.解 由题设知a≠0,否则f(x)=b为常数,与题设矛盾.∵f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).(1)当a>0时,列表如下:x-1(-1,0)0(0,2)2f′(x)+0-f(x)-7a+b b -16a+b由表可知,当x=0时,f(x)取得最大值.∴f(0)=3,即b=3.又f(-1)=-7a+3,f(2)=-16a+3<f(-1),∴f(2)=-16a+3=-29,∴a=2.(2)当a<0时,同理可得,当x=0时,f(x)取得最小值f(0)=-29,∴b=-29.又f(-1)=-7a-29,f(2)=-16a-29>f(-1),∴f(2)=-16a-29=3,∴a=-2.综上可得,a=2,b=3或a=-2,b=-29.规律方法 已知函数在某区间上的最值求参数的值(或范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值,根据已知最值列方程(不等式)解决问题.【训练3】 已知函数h(x)=x3+3x2-9x+1在区间[k,2]上的最大值是28,求k 的取值范围.解 ∵h(x)=x3+3x2-9x+1,∴h′(x)=3x2+6x-9.令h′(x)=0,得x1=-3,x2=1,当x变化时,h′(x),h(x)的变化情况如下表:x (-∞,-3)-3(-3,1)1(1,+∞)h ′(x )+0-0+h (x )28-4当x =-3时,取极大值28;当x =1时,取极小值-4.而h (2)=3<h (-3)=28,如果h (x )在区间[k ,2]上的最大值为28,则k ≤-3.所以k 的取值范围为(-∞,-3].一、素养落地1.通过学习函数最值的概念及求解方法,培养数学抽象和数学运算素养.2.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;若函数在一个开区间内只有一个极值,这个极值就是最值.3.已知最值求参数时,可先用参数表示最值,有时需分类讨论.二、素养训练1.函数f (x )=x 3-3x (|x |<1)( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.答案 D2.函数y =x -sin x ,x ∈[π2,π]的最大值是( )A.π-1B.π2-1C.πD.π+1解析 因为y ′=1-cos x ,当x ∈[π2,π]时,y ′>0,则函数在区间[π2,π]上为增函数,所以y的最大值为y max=π-sin π=π,故选C.答案 C3.已知函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2都有|f(x1)-f(x2)|≤t,则实数t的最小值是( )A.20B.18C.3D.0解析 因为f′(x)=3x2-3=3(x-1)(x+1),x∈[-3,2],所以f(x)在[-1,1]上单调递减,在[1,2]和[-3,-1]上单调递增.f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上,f(x)max=1,f(x)min=-19,又由题设知在[-3,2]上|f(x1)-f(x2)|≤f(x)max-f(x)min=20,所以t≥20,故选A.答案 A4.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为________.解析 f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0得x=3或x=-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.答案 -715.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.解析 f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0.即-3×4+2a×2=0,故a=3.由此可得f(x)=-x3+3x2-4.f′(x)=-3x2+6x,由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,∴当m∈[-1,1]时,f(m)min=f(0)=-4.答案 -4基础达标一、选择题1.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A.f (a )-g (a ) B.f (b )-g (b )C.f (a )-g (b )D.f (b )-g (a )解析 令F (x )=f (x )-g (x ),∵f ′(x )<g ′(x ),∴F ′(x )=f ′(x )-g ′(x )<0,∴F (x )在[a ,b ]上单调递减,∴F (x )max =F (a )=f (a )-g (a ).答案 A2.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A.[0,1) B.(0,1)C.(-1,1)D.(0,12)解析 ∵f ′(x )=3x 2-3a ,令f ′(x )=0,可得a =x 2,又∵x ∈(0,1),∴0<a <1,故选B.答案 B3.函数f (x )=x +2cos x 在区间[-π2,0]上的最小值是( )A.-π2B.2C.π6+ 3 D.π3+1解析 f ′(x )=1-2sin x ,因为x ∈[-π2,0],所以sin x ∈[-1,0],所以-2sin x ∈[0,2].所以f ′(x )=1-2sin x >0在[-π2,0]上恒成立.所以f (x )在[-π2,0]上单调递增.所以f (x )min =-π2+2cos (-π2)=-π2.答案 A4.若函数f (x )=a sin x +13sin 3x 在x =π3处有最值,则a 等于( )A.2B.1C.233D.0解析 ∵f (x )在x =π3处有最值,∴x =π3是函数f (x )的极值点.又∵f ′(x )=a cos x +cos 3x ,∴f ′(π3)=a cos π3+cos π=0,解得a =2.答案 A5.关于函数f (x )=13x 3-4x +4.下列说法中:①它的极大值为283,极小值为-43;②当x ∈[3,4]时,它的最大值为283,最小值为-43;③它的单调减区间为[-2,2];④它在点(0,4)处的切线方程为y =-4x +4,其中正确的个数为( )A.1B.2C.3D.4解析 ∵函数f (x )=13x 3-4x +4,∴f ′(x )=x 2-4=(x -2)·(x +2).由f ′(x )=(x -2)(x +2)>0,得x >2或x <-2,此时函数单调递增;由f ′(x )=(x -2)(x +2)<0,得-2<x <2,此时函数单调递减,∴③正确;当x =-2时,函数f (x )取得极大值f (-2)=283,当x =2时,函数f (x )取得极小值f (2)=-43,∴①正确;x ∈[3,4]时,f (x )单调递增,它的最大值为f (4)=433-4×4+4=283,最小值为f (3)=333-4×3+4=1,∴②错误;f ′(0)=-4,f (0)=4,∴它在点(0,4)处的切线方程为y =-4x +4,∴④正确,故选C.答案 C二、填空题6.(多空题)设函数f (x )=ln x x,x ∈[1,4],则f (x )的最大值为________,最小值为________.解析 由f (x )=ln x x 得f ′(x )=1-ln x x 2,令f ′(x )>0,则1-ln x >0,解得0<x <e ;令f ′(x )<0,则1-ln x <0,解得x >e.∴函数f (x )在[1,e]上单调递增,在[e ,4]上单调递减,且f (1)=0,f (4)=ln 44>0,∴f (x )的最大值为f (e)=ln e e =1e ,f (x )的最小值为f (1)=0.答案 1e 07.已知f (x )=-x 2+mx +1在区间(-2,-1)上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析 f ′(x )=m -2x ,令f ′(x )=0,得x =m 2.由题意得m 2∈(-2,-1),故m ∈(-4,-2).答案 (-4,-2)8.已知函数f (x )=-23x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是________.解析 ∵f ′(x )=-2x 2+4ax +3=-2(x -a )2+3+2a 2,∴f ′(x )max =3+2a 2=5,∵a >0,∴a =1.∴f ′(x )=-2x 2+4x +3,f ′(1)=-2+4+3=5.又f (1)=-23+2+3=133,∴所求切线方程为y -133=5(x -1).即15x -3y -2=0.答案 15x -3y -2=0三、解答题9.已知函数f (x )=a ln x -bx 2,a ,b ∈R ,且曲线y =f (x )在x =1处与直线y =-12相切.(1)求a ,b 的值;(2)求f (x )在[1e ,e ]上的最大值.解 (1)f ′(x )=a x-2bx (x >0).由曲线y =f (x )在x =1处与直线y =-12相切,得{f ′(1)=0,f (1)=-12,即{a -2b =0,-b =-12,解得{a =1,b =12.(2)由(1),得f (x )=ln x -12x 2,定义域为(0,+∞).f ′(x )=1x -x =1-x 2x .令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,所以f (x )在[1e,1)上单调递增,在(1,e]上单调递减,所以f (x )在[1e ,e ]上的最大值为f (1)=-12.10.已知函数f (x )=2e x (x +1).(1)求函数f (x )的极值;(2)求函数f (x )在区间[t ,t +1](t >-3)上的最小值.解 (1)f ′(x )=2e x (x +2),由f ′(x )>0,得x >-2;由f ′(x )<0,得x <-2.∴f (x )在(-2,+∞)上单调递增,在(-∞,-2)上单调递减.∴f (x )的极小值为f (-2)=-2e -2,无极大值.(2)由(1),知f (x )在(-2,+∞)上单调递增,在(-∞,-2)上单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2)上单调递减,在(-2,t +1]上单调递增,∴f (x )min =f (-2)=-2e -2.②当t ≥-2时,f (x )在[t ,t +1]上单调递增,∴f (x )min =f (t )=2e t (t +1),∴f (x )min ={-2e -2,-3<t <-2,2e t (t +1),t ≥-2.能力提升11.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值为________.解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1.令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f(1a )=-ln a -1=-1.解得a =1.答案 112.已知函数f (x )=ln x +a x .(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.解 函数f (x )=ln x +a x的定义域为(0,+∞),f ′(x )=1x -ax 2=x -a x 2,(1)∵a <0,∴f ′(x )>0,故函数在其定义域(0,+∞)上是增加的.∴f (x )的单调增区间为(0,+∞).(2)当x ∈[1,e]时,分如下情况讨论:①当a ≤1时,f ′(x )≥0,函数f (x )是单调递增,其最小值为f (1)=a ≤1,这与函数在[1,e]上的最小值是32相矛盾;②当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )是减少的,在(a ,e]上有f ′(x )>0,f (x )是增加的,所以,函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a = e.③当a ≥e 时,显然函数f (x )在[1,e]上单调递减,其最小值为f (e)=1+a e ≥2,与最小值是32相矛盾.综上所述,a 的值为 e.创新猜想13.(多选题)下列关于函数f (x )=(2x -x 2)e x 的判断正确的是( )A.f (x )>0的解集是{x |0<x <2}B.f (-2)是极小值,f (2)是极大值C.f (x )没有最小值,也没有最大值D.f (x )有最大值无最小值解析 由f (x )>0得0<x <2,故A 正确.f ′(x )=(2-x 2)e x ,令f ′(x )=0,得x =±2,当x <-2或x >2时,f ′(x )<0,当-2<x <2时,f ′(x )>0,∴当x =-2时,f (x )取得极小值,当x =2时,f (x )取得极大值,故B 正确.当x →-∞时,f (x )<0,当x →+∞时,f (x )<0,且f (2)>0,结合函数的单调性可知,函数f (x )有最大值无最小值,故C 不正确,D 正确.答案 ABD14.(多选题)已知函数f (x )=x 2+x -1e x ,则下列结论正确的是( )A.函数f (x )存在两个不同的零点B.函数f (x )既存在极大值又存在极小值C.当-e<k <0时,方程f (x )=k 有且只有两个实根D.若x ∈[t ,+∞)时,f (x )max =5e 2,则t 的最小值为2解析 A.令f (x )=0,解得x =-1±52,所以A 正确;B.f ′(x )=-x 2-x -2e x =-(x +1)(x -2)e x ,当f ′(x )>0时,-1<x <2,当f ′(x )<0时,x <-1或x >2,(-∞,-1),(2,+∞)是函数的单调递减区间,(-1,2)是函数的单调递增区间,所以f (-1)是函数的极小值,f (2)是函数的极大值,所以B 正确.C.当x →+∞时,y →0,根据B 可知,函数的最小值是f (-1)=-e ,再根据单调性可知 ,当-e<k <0时,方程f (x )=k 有且只有两个实根,所以C 正确;D.由图象可知,t 的最大值是2,所以不正确.故选ABC.答案 ABC。
第3章 第2节 第2课时 导数与函数的极值、最值-2022届高三数学一轮复习讲义(新高考)

第2课时导数与函数的极值、最值一、教材概念·结论·性质重现1.函数的极值与导数条件f ′(x0)=0x0附近的左侧f ′(x)>0,右侧f ′(x)<0x0附近的左侧f ′(x)<0,右侧f ′(x)>0图象形如山峰形如山谷极值 f (x0)为极大值 f (x0)为极小值极值点x0为极大值点x0为极小值点(1)函数的极大值和极小值都可能有多个,极大值和极小值的大小关系不确定.(2)对于可导函数f (x),“f ′(x0)=0”是“函数f (x)在x=x0处有极值”的必要不充分条件.(1)函数f (x)在[a,b]上有最值的条件一般地,如果在区间[a,b]上函数y=f (x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f (x)在区间[a,b]上的最大值与最小值的步骤①求函数y=f (x)在区间(a,b)上的极值;②将函数y=f (x)的各极值与端点处的函数值f (a),f (b)比较,其中最大的一个是最大值,最小的一个是最小值.(1)求函数的最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.(2)若函数f (x)在区间[a,b]内是单调函数,则f (x)一定在区间端点处取得最值;若函数f (x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.(3)函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.1.判断下列说法的正误,对的打“√”,错的打“×”.(1)函数的极大值不一定比极小值大.(√)(2)对可导函数f (x),f ′(x0)=0是x0点为极值点的充要条件.(×)(3)函数的极大值一定是函数的最大值.(×)(4)开区间上的单调连续函数无最值.(√)2.f (x)的导函数f ′(x)的图象如图所示,则f (x)的极小值点的个数为()A.1B.2C.3D.4A解析:由题意知在x=-1处f ′(-1)=0,且其两侧导数符号为左负右正,f (x)在x=-1左减右增.故选A.3.函数f (x)=2x-x ln x的极大值是()A.1e B.2e C.e D.e2C解析:f ′(x)=2-(ln x+1)=1-ln x.令f ′(x)=0,得x=e.当0<x<e时,f ′(x)>0;当x>e时,f ′(x)<0.所以x=e时,f (x)取到极大值,f (x)极大值=f (e)=e.4.若函数f (x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4 B.2或6 C.2 D.6C解析:函数f (x)=x(x-c)2的导数为f ′(x)=3x2-4cx+c2.由题意知,f (x)在x=2处的导数值为12-8c+c2=0,解得c=2或6.又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正.当c =2时,f (x )=x (x -2)2的导数在x =2处左侧为负,右侧为正,即在x =2处有极小值.而当c =6时,f (x )=x (x -6)2在x =2处有极大值.故c =2.5.函数f (x )=2x 3-2x 2在区间[-1,2]上的最大值是________. 8 解析:f ′(x )=6x 2-4x =2x (3x -2). 由f ′(x )=0,得x =0或x =23.因为f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,所以最大值为8.考点1 利用导数求函数的极值——综合性考向1 根据函数的图象判断函数的极值(多选题)已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则( )A .函数f (x )有极大值f (2)B .函数f (x )有极大值f (-2)C .函数f (x )有极小值f (-2)D .函数f (x )有极小值f (2)BD 解析:由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.根据函数的图象判断极值的方法根据已知条件,分情况确定导数为0的点,及导数为0点处左右两侧导数的正负,从而确定极值类型.考向2 已知函数解析式求极值已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,定义域为(0,+∞),且f ′(x )=1x -12=2-x2x . 令f ′(x )=0,解得x =2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表. x (0,2) 2 (2,+∞)f ′(x ) + 0 - f (x )↗ln 2-1↘(2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x . 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0,x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0, x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点,且为x =1a .求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数; (2)求f ′(x )=0的根;(3)判断在f ′(x )=0的根的左、右两侧f ′(x )的符号,确定极值点;(4)求出函数f (x )的极值. 考向3 已知函数的极值求参数设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)·x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x , f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0. 所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.已知函数极值点或极值求参数的两个关键(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证该点左右两侧的正负.1.(多选题)定义在区间⎣⎢⎡⎦⎥⎤-12,4上的函数f (x )的导函数f ′(x )图象如图所示,则下列结论正确的是( )A .函数f (x )在区间(0,4)单调递增B .函数f (x )在区间⎝ ⎛⎭⎪⎫-12,0单调递减 C .函数f (x )在x =1处取得极大值 D .函数f (x )在x =0处取得极小值ABD 解析:根据导函数图象可知,f (x )在区间⎝ ⎛⎭⎪⎫-12,0上,f ′(x )<0,f (x )单调递减,在区间(0,4)上,f ′(x )>0,f (x )单调递增.所以f (x )在x =0处取得极小值,没有极大值.所以A ,B ,D 选项正确,C 选项错误.故选ABD .2.(2020·青岛一模)已知函数f (x )=⎩⎨⎧3x -9,x ≥0,x e x ,x <0(e =2.718…为自然对数的底数).若f (x )的零点为α,极值点为β,则α+β=( )A .-1B .0C .1D .2C 解析:当x ≥0时,f (x )=3x -9为增函数,无极值.令f (x )=0,即3x -9=0,解得x =2,即函数f (x )的一个零点为2;当x <0时,f (x )=x e x <0,无零点,f ′(x )=e x +x e x =(1+x )e x ,则当-1<x <0时,f ′(x )>0.当x <-1时,f ′(x )<0,所以当x =-1时,函数f (x )取得极小值.综上可知,α+β=2+(-1)=1.故选C .3.函数f (x )=2x +1x 2+2的极小值为________.-12 解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2. 令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增, 所以f (x )极小值=f (-2)=-12.4.设函数f (x )=ax 3-2x 2+x +c (a ≥0).(1)当a =1,且函数图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x+1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f ′(x )=3x 2-4x +1=(3x -1)(x -1).令f ′(x )>0,解得x <13或x >1;令f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增;在⎝ ⎛⎭⎪⎫13,1上单调递减,极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )≥0或f ′(x )≤0恒成立.①当a =0时,f ′(x )=-4x +1,显然不满足条件;②当a >0时,f ′(x )≥0或 f ′(x )≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.综上,a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点2 利用导数求函数的最值——应用性(2020·北京卷)已知函数f (x )=12-x 2. (1)求曲线y =f (x )的斜率等于-2的切线方程;(2)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.解:(1)因为f (x )=12-x 2, 所以f ′(x )=-2x .设切点为(x 0,12-x 20),则-2x 0=-2,即x 0=1,所以切点为(1,11). 由点斜式可得切线方程为y -11=-2(x -1),即2x +y -13=0. (2)显然t ≠0,因为y =f (x )在点(t,12-t 2)处的切线方程为y -(12-t 2)=-2t (x -t ), 即y =-2tx +t 2+12.令x =0,得y =t 2+12;令y =0,得x =t 2+122t .所以S (t )=12×(t 2+12)·t 2+122|t |=(t 2+12)24|t |,t ≠0,显然为偶函数. 只需考察t >0即可(t <0时,结果一样), 则S (t )=t 4+24t 2+1444t =14⎝ ⎛⎭⎪⎫t 3+24t +144t , S ′(t )=14⎝ ⎛⎭⎪⎫3t 2+24-144t 2 =3(t 4+8t 2-48)4t 2 =3(t 2-4)(t 2+12)4t 2 =3(t -2)(t +2)(t 2+12)4t 2. 由S ′(t )>0,得t >2;由S ′(t )<0,得0<t <2.所以S (t )在(0,2)上单调递减,在(2,+∞)上单调递增,所以t =2时,S (t )取得极小值,也是最小值为S (2)=16×168=32. 综上所述,当t =±2时,S (t )min =32.求函数f (x )在区间[a ,b ]上的最大值与最小值的步骤(1)求函数在区间(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.已知k ∈⎝ ⎛⎦⎥⎤12,1,函数f (x )=(x -1)e x -kx 2. (1)求函数f (x )的单调区间; (2)求函数f (x )在[0,k ]上的最大值.解:(1)由题意得f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ).因为k ∈⎝ ⎛⎦⎥⎤12,1,所以1<2k ≤2.令f ′(x )>0,所以⎩⎨⎧ x >0,e x -2k >0或⎩⎨⎧ x <0,e x-2k <0,解得x >ln 2k 或x <0. 所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0). 令f ′(x )<0,所以⎩⎨⎧x >0,e x -2k <0或⎩⎨⎧x <0,e x-2k >0,解得0<x <ln 2k . 所以函数f (x )的单调递减区间为(0,ln 2k ).所以函数f (x )的单调递增区间为(ln 2k ,+∞),(-∞,0),单调递减区间为(0,ln 2k ).(2)令φ(k )=k -ln (2k ),k ∈⎝ ⎛⎦⎥⎤12,1,φ′(k )=1-1k =k -1k ≤0. 所以φ(k )在⎝ ⎛⎦⎥⎤12,1上是减函数. 所以φ(1)≤φ(k )<φ⎝ ⎛⎭⎪⎫12.所以1-ln 2≤φ(k )<12<k ,即0<ln (2k )<k . 所以f ′(x ),f (x )随x 的变化情况如下表:f (k )-f (0)=(k -1)e k -k 3-f (0) =(k -1)e k -k 3+1 =(k -1)e k -(k 3-1)=(k -1)e k -(k -1)(k 2+k +1) =(k -1)[e k -(k 2+k +1)]. 因为k ∈⎝ ⎛⎦⎥⎤12,1,所以k -1≥0.对任意的k ∈⎝ ⎛⎦⎥⎤12,1,y =e k 的图象恒在直线y =k 2+k +1的下方, 所以e k -(k 2+k +1)≤0.所以f (k )-f (0)≥0,即f (k )≥f (0).所以函数f (x )在[0,k ]上的最大值f (k )=(k -1)e k -k 3.考点3 极值与最值的综合应用——综合性(2020·山东师范大学附中高三质评)已知函数f (x )=x 2·e ax +1-b ln x -ax (a ,b ∈R ).(1)若b =0,曲线f (x )在点(1,f (1))处的切线与直线y =2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,+∞),求a 的最小值. 解:(1)当b =0时,f (x )=x 2e ax +1-ax ,x >0, f ′(x )=x e ax +1(2+ax )-a . 由f ′(1)=e a +1(2+a )-a =2,得e a +1(2+a )-(a +2)=0,即(e a +1-1)(2+a )=0,解得a =-1或a =-2. 当a =-1时,f (1)=e 0+1=2,此时直线y =2x 恰为切线,舍去.所以a =-2.(2)当b =2时,f (x )=x 2e ax +1-2ln x -ax ,x >0. 设t =x 2e ax +1(t >0),则ln t =2ln x +ax +1, 故函数f (x )可化为g (t )=t -ln t +1(t >0).由g ′(t )=1-1t =t -1t ,可得g (t )的单调递减区间为(0,1),单调递增区间为(1,+∞),所以g (t )的最小值为g (1)=1-ln 1+1=2. 此时,t =1,函数f (x )的值域为[2,+∞). 问题转化为:当t =1时,ln t =2ln x +ax +1有解, 即ln 1=2ln x +ax +1=0,得a =-1+2ln xx . 设h (x )=-1+2ln x x,x >0,则h ′(x )=2ln x -1x 2, 故h (x )的单调递减区间为(0,e),单调递增区间为(e ,+∞), 所以h (x )的最小值为h (e)=-2e ,故a 的最小值为-2e .求解函数极值与最值综合问题的策略(1)求极值、最值时,要求步骤规范,函数的解析式含参数时,要讨论参数的大小.(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.1.(2021·福建三校联考)若方程8x =x 2+6ln x +m 仅有一个解,则实数m 的取值范围为( )A .(-∞,7)B .(15-6ln 3,+∞)C .(12-61n 3,+∞)D .(-∞,7)∪(15-6ln 3,+∞)D 解析:方程8x =x 2+6ln x +m 仅有一个解等价于函数m (x )=x 2-8x +6ln x +m (x >0)的图象与x 轴有且只有一个交点.对函数m (x )求导得m ′(x )=2x -8+6x =2x 2-8x +6x =2(x -1)(x -3)x. 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增; 当x ∈(1,3)时,m ′(x )<0,m (x )单调递减; 当x ∈(3,+∞)时,m ′(x )>0,m (x )单调递增,所以m (x )极大值=m (1)=m -7,m (x )极小值=m (3)=m +6ln 3-15.所以当x 趋近于0时,m (x )趋近于负无穷,当x 趋近于正无穷时,m (x )趋近于正无穷,所以要使m (x )的图象与x 轴有一个交点,必须有m (x )极大值=m -7<0或m (x )极小值=m +6ln 3-15>0,即m <7或m >15-6ln 3.故选D . 2.已知函数f (x )=⎩⎨⎧-x 3+x 2(x <1),a ln x (x ≥1).(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e ](e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0时,函数f (x )取得极小值为f (0)=0,函数f (x )的极大值点为x =23. (2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0, 所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e ]上单调递增, 则f (x )在 [1,e ]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e ]上的最大值为a ; 当a <2时,f (x )在[-1,e ]上的最大值为2.。
5.3 5.3.2 第二课时 函数的最大[小]值公开课
![5.3 5.3.2 第二课时 函数的最大[小]值公开课](https://img.taocdn.com/s3/m/0269882882c4bb4cf7ec4afe04a1b0717fd5b3b2.png)
[跟踪训练] 已知 a 是实数,函数 f(x)=x2(x-a),求 f(x)在区间[0,2]上的最大值. 解:f′(x)=3x2-2ax.
令 f′(x)=0,解得 x1=0,x2=23a. ①当23a≤0,即 a≤0 时,f′(x)在[0,2]上满足 f′(x)≥0,所以 f(x)在[0,2]上单调递 增,从而 f(x)max=f(2)=8-4a. ②当23a≥2,即 a≥3 时,f′(x)在[0,2]上满足 f′(x)≤0,所以 f(x)在[0,2]上单调递 减,从而 f(x)max=f(0)=0. ③当 0<23a<2,即 0<a<3 时,f(x)在0,23a上单调递减,在23a,2上单调递增,从而 f(x)max=80- (42a<(a<03<)a≤. 2),综上 f(x)max=80-(4aa>(2)a≤. 2),
(2)①当1a≤1,即 a≥1 时,函数 f(x)在区间[1,2]上是减函数,所以 f(x)的最小 值是 f(2)=ln 2-2a.
②当1a≥2,即 0<a≤12时,函数 f(x)在区间[1,2]上是增函数,所以 f(x)的最小值 是 f(1)=-a.
③当 1<1a<2,即12<a<1 时,函数 f(x)在1,1a上是增函数,在1a,2上是减函数. 又 f(2)-f(1)=ln 2-a. 所以当12<a<ln 2 时,最小值是 f(1)=-a. 当 ln 2≤a<1 时,最小值为 f(2)=ln 2-2a. 综上可知,当 0<a<ln 2 时,函数 f(x)的最小值是-a; 当 a≥ln 2 时,函数 f(x)的最小值是 ln 2-2a.
-m
∴g(t)在[0,2]上有最小值 g(2)=-3-m, 存在 t∈[0,2],使 h(t)<-2t+m 成立, 等价于 g(t)的最小值 g(2)<0. ∴-3-m<0,∴m>-3, ∴实数 m 的取值范围为(-3,+∞).
高中数学选择性必修二 课件 5 3 2 第2课时函数的最大(小)值与导数课件(共58张)

[跟进训练] 1.已知函数 f (x)=excos x-x. (1)求曲线 y=f (x)在点(0,f (0))处的切线方程; (2)求函数 f (x)在区间0,π2上的最大值和最小值.
[解] (1)因为 f (x)=excos x-x,所以 f ′(x)=ex(cos x-sin x)-1,f ′(0)=0. 又因为 f (0)=1,所以曲线 y=f (x)在点(0,f (0))处的切线方程为 y=1.
函数的最大值、最小值是比较整个定义区间的函数值得出的,函 数的极值是比较极值点附近的函数值得出的,函数的极值可以有多 个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点 取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为 最值,最值只要不在端点必定是极值.
当连续函数 f (x)在开区间(a,b)内只有一个导数为零的点时,若 在这一点处 f (x)有极大值(或极小值),则可以判定 f (x)在该点处取得 最大值(或最小值),这里(a,b)也可以是无穷区间.
4.函数 y=3x-4x3 在区间[0,2]上的最大值是( ) A.1 B.2 C.0 D.-1 A [设 f (x)=3x-4x3,∴f ′(x)=-12x2+3=3(2x+1)(1-2x). ∵x∈[0,2],∴当 x=12时,f ′(x)=0. 又 f (0)=0,f 12=1,f (2)=-26, ∴函数 y=3x-4x3 在区间[0,2]上的最大值是 1.]
第五章 一元函数的导数及其应用
5.3 导数在研究函数中的应用 5.3.2 函数的极值与最大(小)值 第2课时 函数的最大(小)值与导数
学习目标
核心素养
1.理解函数的最值的概念.(难点) 1.通过函数最大(小)值存在性的
2.了解函数的最值与极值的区别 学习,体现直观想象核心素养.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.3函数的最大(小)值与导数(第1课时)
班别: 学号: 姓名:
学习目标:(1)理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值充分条件;
(2)掌握用导数求函数的极值及最值的方法和步骤 学习重点:利用导数求函数的最大值和最小值的方法.
学习难点:函数的最(大、小)值与函数的极(大、小)值的区别与联系. 教学过程:
一、课前准备:
复习1:利用函数的单调性,证明下列不等式
(1)1,0x e x x >+≠
(2) sin ,(0,)x x x π<∈
(3)ln ,0x x x e x <<>
复习2: 已知函数2()f x x px q =++,试确定,p q 的值,使得当1x =时,有最小值4
二、典例分析
例1. 己知函数f (x )=a x
+blnx+c (a >0)的图像在点(1,f (1))处的切线方程为x-y-2=0 (1)用a 表示b ,c ;
(2)若函数g (x )=x-f (x )在x ∈(0,1]上的最大值为2,求实数a 的取值范围.
三、课堂练习:
已知2)(,ln )(2
3+-+==x ax x x g x x x f .
(Ⅰ)求函数)(x f 的单调区间;
(Ⅱ)对一切的),0(+∞∈x 时,2)()(2+'≤x g x f 恒成立,求实数a 的取值范围.
四、课堂小结 :
⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,区间端点; ⑵函数)(x f 在闭区间[]b a ,上连续,则)(x f 在闭区间[]b a ,上有最大值与最小值; ⑶闭区间[]b a ,上的连续函数一定有最值;开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.
五、课后作业:
已知函数
(1)若函数()f x 在[1,)+∞上是单调函数,求实数a 的取值范围;
(2)已知函数()x x x g 1+=,对于任意,总存在使得12()()f x g x ≤成立,求正实数a 的取值范围.。