第2讲动能定理的应用

合集下载

第五章第2讲动能定理及其应用-2025年高考物理一轮复习PPT课件

第五章第2讲动能定理及其应用-2025年高考物理一轮复习PPT课件

高考一轮总复习•物理
第7页
3.物理意义: 合力 的功是物体动能变化的量度. 4.适用条件 (1)既适用于直线运动,也适用于曲线运动 . (2)既适用于恒力做功,也适用于 变力 做功. (3)力可以是各种性质的力,既可以同时作用,也可以 分阶段
作用.
高考一轮总复习•物理
第8页
1.思维辨析 (1) 一 定 质 量 的 物 体 动 能 变 化 时 , 速 度 一 定 变 化 , 但 速 度 变 化 时 , 动 能 不 一 定 变 化.( √ ) (2)处于平衡状态的物体动能一定保持不变.( √ ) (3)做自由落体运动的物体,动能与下落时间的二次方成正比.( √ ) (4)物体在合外力作用下做变速运动,动能一定变化.( ) (5)物体的动能不变,所受的合外力必定为零.( )
答案
高考一轮总复习•物理
第19页
解析:因为频闪照片时间间隔相同,对比图甲和乙可知图甲中滑块加速度大,是上滑阶 段;根据牛顿第二定律可知图甲中滑块受到的合力较大,故 A 错误.从图甲中的 A 点到图乙 中的 A 点,先上升后下降,重力做功为 0,摩擦力做负功;根据动能定理可知图甲经过 A 点 的动能较大,故 B 错误.对比图甲、乙可知,图甲中在 A、B 之间的运动时间较短,故 C 正 确.由于无论上滑还是下滑,受到的滑动摩擦力大小相等,故图甲和图乙在 A、B 之间克服 摩擦力做的功相等,故 D 错误.
高考一轮总复习•物理
第9页
2.运动员把质量是 500 g 的足球踢出后,某人观察它在空中的飞行情况,估计上升的
最大高度是 10 m,在最高点的速度为 20 m/s.估算出运动员踢球时对足球做的功为( )
A.50 J
B.100 J
C.150 J

第五章 第2讲 动能定理及其应用

第五章  第2讲 动能定理及其应用

C.对物体,动能定理的表达式为 WN-mgH=12mv22-12mv12
D.对电梯,其所受合力做功为12Mv22-12Mv12
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
2.[动能定理的简单应用] (2018·高考全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业来自首页 上页 下页 尾页
高频考点·分类突破
2.动能定理公式中体现的“三个关系” (1)数量关系:即合力所做的功与物体动能的变化具有等量替代关系.可以通 过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两边物理量的国际单位都是焦耳. (3)因果关系:合力的功是引起物体动能变化的原因.
解得 h′=1-Rcμocso3t73°7°=0.48 m. 答案:0.48 m
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
[拓展延伸2] 若在[典例]中斜面轨道光滑,滑块从 A 点释放后滑到 C 点,对轨 道的压力是重力的多少倍?(原 AB 高度差 h=1.38 m 不变) 解析:由 A→C 应用动能定理,设 C 点时的速度为 vC. mgh-mg(R+Rcos θ)=12mv2C① NC+mg=mRv2C② 由①②得 NC=2.3mg,故是重力的 2.3 倍. 答案:2.3
C.等于克服摩擦力所做的功
D.大于克服摩擦力所做的功
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业
首页 上页 下页 尾页
高频考点·分类突破
3.A 球[动向能右定运理动求0解.1变m力时做,功vA]=3(2m01/s9,·吉O林A′长=春0模.4拟m),如O图B所′示=,0.3竖m直,平设面此内时放∠一B直′角A′杆O=

高考一轮复习 -动能定理及其应用

高考一轮复习 -动能定理及其应用

第2讲动能定理及其应用知识点一动能1.定义:物体由于________而具有的能.2.公式:E k=________.3.单位:________,1 J=1 N·m=1 kg·m2/s2.4.物理意义(1)动能是状态量,v是________(选填“瞬时速度”或“平均速度”).(2)动能是________(选填“矢量”或“标量”),只有正值,动能与速度方向________(选填“有关”或“无关”).5.动能的变化物体________与________之差,即ΔE k=________________________.知识点二动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中____________.2.表达式:W=________________.3.物理意义:________的功是物体动能变化的量度.4.动能定理的特点思考辨析(1)一定质量的物体动能变化时,速度一定变化;而速度变化时,动能也一定变化.( )(2)动能不变的物体一定处于平衡状态.( )(3)物体的动能不变,所受的合力必定为零.( )(4)物体做变速运动时动能不一定变化.( )(5)合力做功不等于零时,物体的动能一定变化.( )(6)如果物体的动能增加,那么合力一定做正功.( )教材改编[人教版必修2P75T5改编]运动员把质量是500 g的足球踢出后,某人观察它在空中的飞行情况,估计上升的最大高度是10 m,在最高点的速度为20 m/s.估算出运动员踢球时对足球做的功为( ) A.50 J B.100 JC.150 J D.无法确定考点一对动能定理的理解和应用自主演练1.对“外力”的两点理解(1)“外力”可以是重力、弹力、摩擦力、电场力、磁场力等,它们可以同时作用,也可以不同时作用.(2)“外力”既可以是恒力,也可以是变力.2.动能定理公式中“=”体现的“三个关系”数量关系合力的功与物体动能的变化可以等量代换单位关系国际单位都是焦耳因果关系合力做的功是物体动能变化的原因3.“一个参考系”:高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.[多维练透]1.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为( )A.Δv=0 B.Δv=12 m/s C.ΔE k=1.8 J D.ΔE k=02.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g,则在这个过程中,下列说法正确的是( )A.对物体,动能定理的表达式为W=m-m,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W-mgH=m-m,其中W为支持力做的功D.对电梯,其所受的合力做功为M-M3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图象是( )考点二动能定理的应用师生共研题型1|应用动能定理求变力的功例1 如图所示,在半径为0.2 m的固定半球形容器中,一质量为1 kg的小球(可视为质点)自边缘上的A点由静止开始下滑,到达最低点B时,它对容器的正压力大小为15 N.重力加速度g取10 m/s2,则球自A点滑到B点的过程中克服摩擦力做的功为( )A.0.5 J B.1.0 J C.1.5 J D.1.8 J题型2|动能定理在直线运动中的应用例2 有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡.某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s的水平雪道上.接着改用另一条雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h2高处的E点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )A.动摩擦因数为tan θ B.动摩擦因数为C.倾角α一定大于θ D.倾角α可以大于θ题型3|动能定理在曲线运动中的应用(多过程问题)例3 如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙.BP为圆心角等于143°,半径R=1 m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处.现有一质量m=2 kg的物块在外力作用下将弹簧缓慢压缩到D点后(不拴接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)试求:(1)若CD=1 m,物块从D点运动到C点的过程中,弹簧对物块所做的功.(2)B、C两点间的距离x.【考法拓展1】在【例3】中,求物块释放后通过与O点等高的位置Q点时对轨道的压力.【考法拓展2】在【例3】中,若BC部分光滑,把物块仍然压缩到D点释放,求物块运动到P点时受到轨道的压力大小.练1 如图,MN为半径R=0.4 m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,O 为圆心,M、O、P三点在同一水平线上,M的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m=0.01 kg的小钢珠,小钢珠每次都在M点离开弹簧枪.某次发射的小钢珠沿轨道经过N点时恰好与轨道无作用力,水平飞出后落到OP上的Q点,不计空气阻力,取g=10 m/s2.求:(1)小钢珠经过N点时速度的大小v N;(2)小钢珠离开弹簧枪时的动能E k;(3)小钢珠在平板上的落点Q与圆心O点的距离s.练2 新型冠状病毒肺炎疫情发生后,全国人民踊跃捐款捐物,支持武汉人民抗疫.为了与时间赛跑,运送抗疫物资的某运输车以恒定功率P启动后以最大速度v m行驶.已知运输车总重为m.(1)求运输车速度为v m时的加速度;(2)假设运输车启动后经过时间t1,达到最大速度v m,求时间t1内运输车行驶的距离;(3)假设运输车启动后行驶距离s到达武汉,运输车刹车时所受合外力等于正常行驶时阻力的2倍,求运输车行驶的总时间.题后反思应用动能定理解题的基本步骤考点三动能定理与图象问题的结合多维探究题型1|v­t图象例4 [2020·湖南湘潭一中月考]质量为m的物体从高为h的斜面顶端由静止下滑,最后停在水平面上,若该物体以v0的初速度从顶端下滑,最后仍停在水平面上,如图甲所示.图乙为物体两次在水平面上运动的v­t图象,则物体在斜面上运动过程中克服摩擦力所做的功为( )A.m-3mgh B.3mgh-mC.m-mgh D.mgh-m题型2|F­x图象例5 [2020·济南模拟]静止在地面上的物体在不同合外力F的作用下通过了相同的位移x0,下列情况中物体在x0位置时速度最大的是( )题型3|E k­x图象例6 [2020·江苏卷,4]如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图象是( )练3 (多选)光滑水平面上静止的物体,受到一个水平拉力作用开始运动,拉力F随时间t变化的图象如图所示,用E k、v、x、P分别表示物体的动能、速度、位移和拉力F的功率,下列四个图象分别定性描述了这些物理量随时间变化的情况,其中正确的是( )练4 [2020·临沂二模]狗拉雪橇是人们喜爱的滑雪游戏.已知雪橇与水平雪道间的动摩擦因数μ=0.1,人和雪橇的总质量m=50 kg.在游戏过程中狗用水平方向的力拉雪橇,使雪橇由静止开始运动.人和雪橇的动能E k与其发生位移x之间的关系如图所示(g=10 m/s2).求:(1)雪橇在x=30 m时的加速度;(2)在前40 m位移过程中拉力对人和雪橇做的功.题后反思解决物理图象问题的基本思路(1)弄清纵坐标、横坐标所对应的物理量及图线的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)对比图线和函数关系式,利用图线的斜率、截距、交点、面积和特定值求物理量.思维拓展巧选过程规范答题[2020·江苏无锡6月模拟](12分)如图所示是滑板运动的轨道示意图,BC和DE是两段光滑的圆弧形轨道,BC的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.2.某运动员从轨道上的A点以v=3 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点与水平轨道CD的竖直高度分别为h=2 m和H=2.5 m,g=10 m/s2.(1)求运动员从A点运动到B点时的速度大小v B.(2)求水平轨道CD的长度L.(3)通过计算说明,第一次返回时,运动员能否回到B点?如果能,求出运动员回到B点时速度的大小;如果不能,求出运动员最后停止的位置距C点的距离.[教你解决问题](1)刚好沿着轨道的切线方向滑入圆弧轨道→B点速度分解→到达B点时的速度大小.(2)从B到E→动能定理→水平轨道CD的长度L.(3)从E到第一次返回左侧最高处→动能定理→总路程→最后停止的位置.解答规范解答书写区自查项目(1)滑板在B点刚好沿着轨道的切线方向滑入圆弧轨道,由题意得v B=①(1分)解得v B=6 m/s.②(1分)(2)从B到E的过程,由动能定理得mgh-μmgL-mgH=0-m③(2分)有必要的文字说明指明对象和所用规律列式规范,无连等式、无代数过程题后反思1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功的特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.第2讲动能定理及其应用基础落实知识点一1.运动2.mv23.焦耳4.(1)瞬时速度(2)标量无关5.末动能初动能m-m知识点二1.动能的变化量2.m-m3.合外力4.(3)曲线运动(4)变力做功(5)分阶段思考辨析(1)×(2)×(3)×(4)√(5)√(6)√教材改编解析:根据动能定理W-mgh=mv2得,W=150 J,故选项C正确.答案:C考点突破1.解析:取初速度方向为正方向,则Δv=|(-6)-6| m/s=12 m/s,由于速度大小没变,动能不变,故动能变化量ΔE k=0,故选项B、D正确.答案:BD2.解析:电梯上升的过程中,对物体做功的有重力mg、支持力F N,这两个力的总功(即合力做的功)才等于物体动能的增量,即W合=m-m,选项A、B错误,C正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,选项D正确.答案:CD3.解析:对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+,E k=mv2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A正确.答案:A例1 解析:在B点对小球由牛顿第二定律得F N-mg=m,解得E kB=mv2= (F N-mg)R,小球由A滑到B的过程由动能定理得mgR-W f=mv2-0,解得W f=R(3mg-F N)=×0.2×(30-15) J=1.5 J,故C正确,A、B、D错误.答案:C例2 解析:第一次停在BC上的某点,由动能定理得mgh1-μmgcos θ·-μmgs′=0mgh1-μmg=0mgh1-μmgs=0μ=A错误,B正确;在AB段由静止下滑,说明μmgcos θ<mgsin θ,第二次滑上CE在E点停下,说明μmgcos α≥mgsin α,若α>θ,则雪橇不能停在E点,所以C、D错误.答案:B例3 解析:(1)由x=12t-4t2知,物块在C点速度为v0=12 m/s,a=8 m/s2设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得W-mgsin 37°·=m代入数据得W=m+mgsin 37°·=156 J.(2)物块在CB段,根据牛顿第二定律,物块所受合力F=ma=16 N物块在P点的速度满足mg=C到P的过程,由动能定理得-Fx-mgR(1+cos 37°)=m-m解得x= m=6.125 m.答案:(1)156 J (2)6.125 m考法拓展1 解析:物块在P点时满足mg=,物块从Q点到P点过程中,由动能定理得-mgR=m-m.物块在Q点时有F N=.联立以上各式得F N=3mg=60 N.由牛顿第三定律可知物块通过Q点时对轨道压力为60 N,方向水平向右.答案:60 N 方向水平向右考法拓展 2 解析:物块从C到P的过程中,由动能定理得-mgxsin 37°-mgR(1+cos37°)=m-m物块在P点时满足F N+mg=,联立以上两式得F N=49 N答案:49 N练1 解析:(1)小钢珠沿轨道经过N点时恰好与轨道无作用力,则有mg=m解得v N==2 m/s(2)小钢珠在光滑圆弧轨道,由动能定理得-mgR=m-E k解得E k=0.06 J(3)小钢珠水平飞出后,做平抛运动,R=gt2,s=v N t解得s= m答案:(1)2 m/s (2)0.06 J (3) m练2 解析:(1)由P=fv m,解得f=,由P=F解得运输车速度为v m时的牵引力F=,由牛顿第二定律有F-f=ma,解得加速度a=.(2)由动能定理得Pt1-fx1=m,解得时间t1内运输车行驶的距离x1==.(3)运输车刹车时匀减速运动的加速度为a′=,从刹车到运输车停下需要的时间t3=,联立解得t3=,从刹车到运输车停下运动的距离x3==,运输车匀速运动的距离x2=s-x1-x3=,运输车匀速运动的时间t2=,又f=,则运输车行驶的总时间t=t1+t2+t3=.例4 解析:本题考查动能定理与图象结合的问题.若物体由静止开始从顶端下滑,由动能定理得mgh-W f=m,若该物体以v0的初速度从顶端下滑,由动能定理得mgh-W f=m-m,由题图乙可知,物体两次滑到水平面的速度关系为v2=2v1,由以上三式解得W f=mgh-m,D正确,A、B、C错误.答案:D例5 解析:由于F­x图象所包围的面积表示力做功的大小,已知物体在不同合外力F的作用下通过的位移相同,C选项中图象包围的面积最大,因此合外力做功最多,根据动能定理W合=mv2-0,可得C选项物体在x0位置时速度最大,故A、B、D错误,C正确.答案:C例6 解析:在斜面上,物块受竖直向下的重力、沿斜面向上的滑动摩擦力以及垂直斜面向上的支持力,设物块的质量为m,斜面的倾角为θ,物块沿斜面下滑的距离对应的水平位移为x,由动能定理有mgsinθ·-μ1mgcos θ·=E k-0,解得E k=(mgtan θ-μ1mg)x,即在斜面上时物块的动能与水平位移成正比,B、D项均错误;在水平面上,物块受竖直向下的重力、竖直向上的支持力以及水平向左的滑动摩擦力,由动能定理有-μ2mg(x-x0)=E k-E k0,解得E k=E k0-μ2mg(x-x0),其中E k0为物块滑到斜面底端时的动能,x0为物块沿斜面下滑到底端时的距离对应的水平位移,即在水平面上物块的动能与水平位移为一次函数关系,且为减函数,A项正确,C项错误.答案:A练3 解析:由于拉力F恒定,所以物体有恒定的加速度a,则v=at,即v与t成正比,选项B正确;由P=Fv=Fat可知,P与t成正比,选项D正确;由x=at2可知x与t2成正比,选项C错误;由动能定理可知E k=Fx=Fat2,E k与t2成正比,选项A错误.答案:BD练4 解析:(1)雪橇从20 m到40 m做匀加速直线运动,由动能定理得:F合·Δx=E k2-E k1由牛顿第二定律得:F合=ma联立解得:a=0.5 m/s2.(2)前40 m的运动过程由动能定理得:W-μmgx=E k2解得:W=2 900 J.答案:(1)0.5 m/s2(2)2 900 J。

《动能定理的应用》 讲义

《动能定理的应用》 讲义

《动能定理的应用》讲义一、什么是动能定理在开始探讨动能定理的应用之前,咱们得先搞清楚动能定理到底是啥。

动能定理简单来说就是:合外力对物体所做的功等于物体动能的变化量。

用数学表达式写出来就是:W 合=ΔEk ,其中 W 合表示合外力做的功,ΔEk 表示动能的变化量。

动能 Ek = 1/2 mv²,m 是物体的质量,v 是物体的速度。

那为什么要有动能定理呢?其实它就是为了让我们更方便地研究物体在力的作用下运动状态的变化。

二、动能定理的推导咱们来简单推导一下动能定理。

假设一个物体在恒力 F 的作用下,沿着直线运动,发生的位移是 s ,力 F 与位移 s 的夹角是θ 。

根据功的定义,力 F 做的功 W =Fscosθ 。

根据牛顿第二定律 F = ma ,而根据运动学公式 v² v₀²= 2as (其中 v 是末速度,v₀是初速度,a 是加速度),可以得到 s =(v² v₀²) / 2a 。

把 s 代入功的表达式,得到 W = F ×(v² v₀²) / 2a 。

又因为 a = F / m ,所以 W = 1/2 mv² 1/2 mv₀²。

这就得到了动能定理的表达式 W 合=ΔEk 。

三、动能定理的应用场景1、求变力做功在很多情况下,物体受到的力不是恒力,比如弹力、摩擦力等,这时候直接用功的定义来求力做的功就很困难。

但是用动能定理就可以很方便地解决。

比如说,一个小球从高处自由下落,落到一个竖直放置的弹簧上,压缩弹簧。

在这个过程中,弹簧对小球的弹力是不断变化的,但我们可以通过小球动能的变化来求出弹簧弹力做的功。

2、多过程问题当物体的运动过程比较复杂,包含多个阶段,每个阶段受力情况不同时,动能定理就大显身手了。

比如,一个物体先在粗糙水平面上匀减速运动,然后进入光滑斜面加速上升。

我们可以分别分析每个阶段合外力做的功,然后根据动能定理求出物体在整个过程中的末速度。

第2讲动能定理及其应用

第2讲动能定理及其应用

第2讲动能定理及其应用思维诊断(1)动能是机械能的一种表现形式,凡是运动的物体都具有动能.()(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(3)动能不变的物体所受合外力一定为零.()(4)做自由落体运动的物体,动能与下落距离的平方成正比.()(5)物体做变速运动时动能一定变化.()考点突破2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少;合外力对物体不做功,物体的动能不变.4.高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.5.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.mv2变式训练1如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A.不变B.变小C.变大D.变大变小均可能=Mv+.显然考点二动能定理的应用1.应用动能定理解题的步骤:2.注意事项:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简便.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理没有任何依据.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.[例2]如图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W f;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.2m1-④点时绳的拉力大小为F,绳与水平方向夹角为+1--2m1-+1--f m考点三用动能定理处理多过程问题优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.[例3]如图是翻滚过山车的模型,光滑的竖直圆轨道半径R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数为μ=0.5,加速阶段AB的长度l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,取g=10 m/s2.试问:(1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车能沿着出口平直轨道CD滑行多远的距离?(3)要使小车不脱离轨道,求平直轨道BC段的长度范围.[解析](1)设小车恰好通过最高点的速度为mg=mv20R①变式训练3如图所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8 m,质量为m=2 kg的小物块M从斜面顶端A处由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g=10 m/s2,下滑时逆着毛的生长方向.求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零).(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程.示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.A.2 m/sB.8 m/s类题拓展质量均为m的两物块A、B以一定的初速度在水平面上只受摩擦力而滑动,如图所示是它们滑动的最大位移x与初速度的平方v20的关系图象,已知v202=2v201,下列描述中正确的是()A.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是对B做功的2倍B.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是v2H H⎛⎫11质点在轨道最低点时受重力和支持力,根据牛顿第三定律可知,支持力2R,得v=gR.对质点的下滑过程应用动能定理,,C正确..甲车的刹车距离随刹车前的车速v变化快,甲车的刹车性能好乙车与地面间的动摩擦因数较大,乙车的刹车性能好.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好。

第2讲 动能定理及其应用

第2讲  动能定理及其应用

用,在 0~6 s 内其速度与时间的关系图像和该拉力的功率与时间的关系图像分
别如图所示。下列说法中正确的是(g 取 10 m/s2)
()
A.0~6 s 内拉力做的功为 140 J B.物体在 0~2 s 内所受的拉力为 4 N C.物体与粗糙水平地面间的动摩擦因数为 0.5 D.合外力在 0~6 s 内做的功与 0~2 s 内做的功相等
()
A.FL=12Mv2
B.Fs=12mv2
C.Fs=12mv20-12(M+m)v2
D.F(L+s)=12mv20-12mv2
解析:根据动能定理,对子弹,有-F(L+s)=12mv2-12mv20,选项 D 正确; 对木块,有 FL=12Mv2,选项 A 正确;由以上二式可得 Fs=12mv20-12(M +m)v2,选项 C 正确,只有选项 B 错误。 答案:ACD
联立解得:t=
2L gsin θ-μ1cos θ
可见, t 与 m 无关,小华与小明下滑的时间相同。
[答案] (1)2.4 m (2)2 2 m/s (3)见解析
[规律方法] (1)在恒力作用下的直线运动问题可以应用牛顿运动定律与运动学公式结合求
解,也可以应用动能定理求解。 (2)在不涉及时间的问题中,可优先考虑应用动能定理。 (3)动能定理中的位移和速度均是相对于同一参考系的,一般以地面为参考系。
(2)冲上斜面的过程,由动能定理得 -mgLsin 30°=0-12mv2A 解得冲上斜面 AB 的长度 L=5 m。 [答案] (1)5 2 m/s (2)5 m
考法(四) 动能定理与 v-t、P-t 图像的合
[例 4] (多选)放在粗糙水平地面上质量为 0.8 kg 的物体受到水平拉力的作
(1)求滑梯的高度 h; (2)若小明裤料与滑板间的动摩擦因数 μ1=13,求他从滑梯上由静止滑到底 端的瞬时速度大小; (3)若体重比小明重、穿相同裤料的小华,从滑梯上由静止滑到底端,有 人认为小华滑行的时间比小明长。这种说法是否正确?简要说明理由。

第2讲 动能定理及其应用(师)

第2讲 动能定理及其应用(师)

第2讲动能定理及其应用[基础知识·填一填][知识点1]动能1.定义:物体由于运动而具有的能.2.公式:E k =12m v 2.3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关.4.单位:焦耳,1J =1N·m =1kg·m 2/s 2.5.动能的相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12m v 22-12m v 21.[知识点2]动能定理1.内容:合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式(1)W =ΔE k .(2)W =E k2-E k1.(3)W =12m v 22-12m v 21.3.物理意义:合外力的功是物体动能变化的量度.4.适用范围广泛(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.判断正误,正确的划“√”,错误的划“×”.(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√)(2)动能不变的物体一定处于平衡状态.(×)(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.(√)(4)物体在合外力作用下做变速运动时,动能一定变化.(×)(5)物体的动能不变,所受的合外力必定为零.(×)(6)做自由落体运动的物体,动能与时间的二次方成正比.(√)[教材挖掘·做一做]1.(人教版必修2P74第1题改编)改变汽车的质量和速度,都能使汽车的动能发生变化,则下列说法正确的是()A.质量不变,速度增大到原来的2倍,动能增大为原来的2倍B.速度不变,质量增大到原来的2倍,动能增大为原来的4倍C.质量减半,速度增大到原来的4倍,动能增大为原来的2倍D.速度减半,质量增大到原来的4倍,动能不变答案:D2.(人教版必修2P75第4题改编)民用航空客机的紧急出口打开时,会自动生成一个由气囊构成的斜面,模型简化如图所示.光滑斜面的竖直高度AB=3.2m,斜面长AC=4.0 m,斜面与水平地面CD段间由一段小圆弧平滑连接.当物体由静止开始滑下,其与地面间的动摩擦因数为0.5,不计空气阻力,g取10m/s2.(1)人滑到斜面底端C时的速度大小;(2)人离开C点后还要在地面上滑行多远才能停下?解析:(1)在AC过程中由动能定理得m v2C,mgh=12解得v C=8m/s.(2)设人在CD水平面上滑行的距离为s在AD过程中由动能定理得mgh-μmgs=0解得s=6.4m.答案:(1)8m/s(2)6.4m考点一对动能定理的理解及简单应用[考点解读]1.做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号.2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.4.若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.[典例赏析][典例1](2017·全国卷Ⅱ)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1.重力加速度大小为g .求:(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.[解析](1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得-μmgs 0=12m v 21-12m v 20①解得μ=v 20-v 212gs 0(2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小,设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得v 20-v 21=2a 1s 0②v0-v1=a1t③s1=12a2t2④联立②③④式得a2=s1(v1+v0)22s20.[答案](1)v20-v212gs0(2)s1(v0+v1)22s20用好动能定理的“5个”突破突破①——研究对象的选取动能定理适用于单个物体,当题目中出现多个物体时可分别将单个物体取为研究对象,应用动能定理.突破②——研究过程的选取应用动能定理时,选取不同的研究过程列出的方程是不相同的.因为动能定理是个过程式,选取合适的过程往往可以大大简化运算.突破③——受力分析运用动能定理时,必须分析清楚物体在过程中的全部受力情况,找出哪些力不做功,哪些力做功,做多少功.从而确定出外力的总功,这是解题的关键.突破④——位移的计算应用动能定理时,要注意有的力做功与路程无关,只与位移有关,有的力做功却与路程有关.突破⑤——初、末状态的确定动能定理的计算式为标量式,v为相对同一参考系的速度,所以确定初、末状态动能时,必须相对于同一参考系而言.[题组巩固]1.(2018·全国卷Ⅱ)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功解析:A[由动能定理可知W拉-W f=E k-0,因此,E k<W拉,故A正确,B错误;E k可能大于、等于或小于W f,选项C、D错误.]2.(2019·运城模拟)如图所示,将一光滑圆轨道固定竖直放置,其中A 点为圆轨道的最低点,B 点为圆水平直径与圆弧的交点.一个质量为m 的物体静置于A 点,现用始终沿轨道切线方向、大小不变的外力F 作用于物体上,使其沿圆轨道到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为()A.2mg πB.3mg πC.4mg πD.5mg π解析:D[物体由A 点运动到最高点的过程,由动能定理可得F ·12πR -mg ·2R =12m v 2-0,物体刚好经过最高点,在最高点对物体由牛顿第二定律得mg =m v 2R ,联立以上两式解得F =5mg π,因此外力F 至少为5mgπ,故D 正确,A 、B 、C 错误.]3.物体在水平面上从x 轴坐标原点O 以v 0=20m/s 的初速度沿x 轴正方向开始运动,由x 1=20m 处滑上一个倾角为45°的斜面,又滑了下来,物体每次经过斜面底端时都不损失机械能.已知动摩擦因数均为μ=0.50,g 取10m/s 2.求:物体停止运动时位置的坐标.(计算结果保留三位有效数字)解析:沿斜面上滑位移为L 时速度减到零,由动能定理得:-μmgx 1-μmg cos 45°L -mgL sin 45°=0-12m v 20解得L sin 45°=12v 20-μgx 1(1+μ)g下滑后停在坐标x 2处,由动能定理得:mgL sin 45°-μmgL cos 45°-μmg (x 1-x 2)=0解得x 2=x 1-L sin 45°=13.3m.答案:13.3m考点二动能定理在多过程中的应用[考点解读]1.由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析多过程问题往往比较复杂,但是,用动能定理分析问题,是从总体上把握其运动状态的变化,并不需要从细节上了解.因此,动能定理的优越性就明显地表现出来了,分析力的作用是看力做的功,也只需把所有的力做的功累加起来即可.2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式.3.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点.(1)重力的功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.(3)弹簧弹力做功与路径无关.[典例赏析][典例2](2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切,BC为圆弧轨道的直径,O为圆心,OA和OB之间的夹角为α,.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平sinα=35轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.[审题指导](1)研究对象:小球(2)过程分析小球①C 力的合成法牛顿第二定律F 向=mv 2R ②A →动能定理动量p =m v 1③C →竖直方向的分运动为匀加速运动,由运动学公式求解时间t[解析](1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α①F 2=(mg )2+F 20②设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤(2)设小球到达A 点的速度大小为v 1,作CD ⊥PA ,交PA 于D 点,由几何关系得DA =R sin α⑥CD =R (1+cos α)⑦由动能定理有-mg ·CD -F 0·DA =12m v 2-12m v 21⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为p =m v 1=m 23gR 2⑨(3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ⑩v ⊥=v sin α⑪由⑤⑦⑩⑪式和题给数据得t =355R g⑫答案:(1)34mg5gR 2(2)m 23gR 2(3)355R g利用动能定理求解多过程问题的基本思路1.弄清物体的运动由哪些过程组成.2.分析每个过程中物体的受力情况.3.各个力做功有何特点,对动能的变化有无影响.4.从总体上把握全过程,表达出总功,找出初、末状态的动能.5.对所研究的全过程运用动能定理列方程.[题组巩固]1.(2019·山东潍坊)如图所示,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直,质量为m 的小球从A 点左上方距A 点高为h 的斜面上方P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度为g ,取R =509h ,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球被抛出时的速度v 0;(2)小球从C 到D 过程中摩擦力做的功W f .解析:(1)小球到达A 点时,速度与水平方向的夹角为θ,如图所示,则有v yv 0=tan θ,竖直方向上有v 2y =2gh ,联立以上两式,得v 0=432gh(2)小球从P 经A 、B 、C 至D 全过程,重力做功为零,弹力都不做功,只有摩擦力做功,就全过程应用动能定理W f =0-12m v 20,解得W f =-169mgh答案:(1)432gh(2)-169mgh2.(2019·银川模拟)如图所示,一质量m=0.4kg的滑块(可视为质点)静止于动摩擦因数μ=0.1的水平轨道上的A点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为P=10.0W.经过一段时间后撤去外力,滑块继续滑行至B点后水平飞出,恰好在C点以5m/s的速度沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D处装有压力传感器.已知轨道AB的长度L=2.0m,半径OC和竖直方向的夹角α=37°,圆形轨道的半径R=0.5m.(空气阻力可忽略,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8),求:(1)滑块运动到D点时压力传感器的示数.(2)水平外力作用在滑块上的时间t.解析:(1)滑块由C点运动到D点的过程,由动能定理得:mgR(1-cos37°)=12m v2D-12m v2C解得:v D=33m/s在D点,对滑块由牛顿第二定律得:F N′-mg=m v2D R解得:F N=25.6N根据牛顿第三定律得滑块对轨道的压力F N′=F N=25.6N,方向竖直向下.(2)滑块离开B点后做平抛运动,恰好在C点沿切线方向进入圆弧形轨道,由几何关系可知,滑块运动在B点的速度为v B=v C cos37°=4m/s滑块由A点运动到B点的过程,由动能定理得:Pt-μmgL=12m v2B-0解得:t=0.4s.答案:(1)25.6N(2)0.4s3.(2019·郴州模拟)如图甲所示是高速公路出口的匝道,车辆为了防止在转弯时出现侧滑的危险,必须在匝道的直道上提前减速.现绘制水平面简化图如图乙所示,一辆质量m =2000kg的汽车原来在水平直道上做匀速直线运动,行驶速度v0=108km/h,恒定阻力F f=1000N.现将汽车的减速运动简化为两种方式:方式一为“小踩刹车减速”,司机松开油门使汽车失去牵引力,在水平方向上仅受匀速运动时的恒定阻力作用;方式二为“刹车减速”,汽车做匀减速直线运动的加速度a=6m/s2.(1)求汽车原来匀速直线行驶时的功率.(2)司机在离弯道口Q距离为x1的地方开始减速,全程采取“小踩刹车减速”,汽车恰好能以15m/s的安全速度进入弯道,求出汽车在上述减速直线运动的过程中克服阻力做功的大小以及距离x1的大小.(3)在离弯道口Q距离为125m的P位置,司机先采取“小踩刹车减速”滑行一段距离x2后,立即采取“刹车减速”,汽车仍能恰好以15m/s的安全速度进入弯道,求x2的大小.解析:(1)汽车匀速运动的速度为:v0=108km/h=30m/s因为汽车做匀速直线运动,所以牵引力为:F=F f汽车的功率为:P=F v0故P=F f v0=30kW(2)全程采取“小踩刹车减速”时,由动能定理得:-W f=12m v21-12m v20解得克服阻力做功为:W f=6.75×105J 又:W f=F f x1解得:x1=675m(3)从P到Q的过程中,由动能定理得:-F f x2-ma(125m-x2)=12m v21-12m v20解得:x2=75m.答案:(1)30kW(2)6.75×105J675m(3)75m考点三动能定理中的图象问题[考点解读]1.解决动能定理与图象问题的基本步骤2.四类图象所围“面积”的意义[典例赏析][典例3](2017·江苏卷)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k与位移x关系的图线是()[解析]C[设物块与斜面间的动摩擦因数为μ,物块的质量为m,则物块在上滑过程中根据动能定理有-(mg sin θ+μmg cos θ)x =E k -E k0,即E k =E k0-(mg sin θ+μmg cos θ)x ,物块沿斜面下滑的过程中有(mg sin θ-μmg cos θ)(x 0-x )=E k ′,由此可以判断C 项正确.][母题探究]母题典例3探究1.动能定理与F -x 图象结合问题探究2.动能定理与P -t 图象结合问题探究3.动能定理与v -t 图象结合问题[探究1](2019·临沂模拟)(多选)水平面上质量为m =6kg的物体,在大小为12N 的水平拉力F 的作用下做匀速直线运动,从x =2.5m 位置处拉力F 逐渐减小,力F 随位移x 变化规律如图所示,当x =7m 时拉力减为零,物体也恰好停下,g 取10m/s 2,下列结论正确的是()A .物体与水平面间的动摩擦因数为0.2B .合外力对物体所做的功为-27JC .物体匀速运动时的速度为3m/sD .物体在减速阶段所受合外力的冲量为12N·s解析:ABC [物体做匀速运动时,由平衡条件得F f =F =12N ,μ=F f mg =12N 6×10N=0.2,故A 正确;图象与坐标轴围成的“面积”表示拉力做的功,则由图象可知W F =12×2.5J +12×(7-2.5)×12J =57J ,滑动摩擦力做的功为W f =-μmgx =-0.2×6×10×7J =-84J ,所以合外力做的功为W 合=-84J +57J =-27J ,故B 正确;由动能定理得W 合=0-12m v 20,解得v 0=3m/s ,故C 正确;由动量定理得I =0-m v 0=-6×3N·s =-18N·s ,故D 错误.][探究2]动能定理与P -t 图象结合问题(2019·南平模拟)(多选)放在粗糙水平地面上质量为0.8kg 的物体受到水平拉力的作用,在0~6s 内其速度与时间的关系图象和该拉力的功率与时间的关系图象分别如图所示.下列说法中正确的是()A .0~6s 内拉力做的功为140JB .物体在0~2s 内所受的拉力为4NC .物体与粗糙水平地面的动摩擦因数为0.5D .合外力在0~6s 内做的功与0~2s 内做的功相等解析:AD [由于P -t 图象与t 轴围成的“面积”表示拉力所做的功,所以0~6s 内拉力做的功为W =12×2×60J +4×20J =140J ,故A 正确;由水平拉力的功率P =F v 可得,在0~2s 内拉力F =P v 6N,2~6s ,拉力F ′=P ′v ′=2N ,故B 错误;物体在水平面上只受摩擦力和拉力,在2~6s 内物体受力平衡可得F f =μmg =F ′,解得μ=F ′mg =2N 0.8×10N =0.25,故C 错误;由v -t 图象可知,物体在2s 末的速度与6s 末的速度相等,由动能定理W 合=ΔE k 可知,0~6s 与0~2s 动能的变化量相同,所以合外力在0~6s 内做的功与0~2s 内做的功相等,故D 正确.][探究3]动能定理与v -t 图象结合问题(2019·昆明模拟)低空跳伞是一种危险性很高的极限运动,通常从高楼、悬崖、高塔等固定物上起跳,在极短时间内必须打开降落伞,才能保证着地安全,某跳伞运动员从高H =100m 的楼层起跳,自由下落一段时间后打开降落伞,最终以安全速度匀速落地.若降落伞视为瞬间打开,得到运动员起跳后的速度v 随时间t 变化的图象如图所示,已知运动员及降落伞装备的总质量m =60kg ,开伞后所受阻力大小与速率成正比,即F f =k v ,g 取10m/s 2,求:(1)打开降落伞瞬间运动员的加速度.(2)打开降落伞后阻力所做的功.解析:(1)匀速运动时,则有:mg =k v解得:k =120N/(m·s -1)打开降落伞的瞬间,速度为:v 1=18m/s由牛顿第二定律得:k v 1-mg =ma解得:a =26m/s 2方向竖直向上(2)根据图线围成的面积知,自由下落的位移为:x 1=12×2×18m =18m 则打开降落伞后的位移为:x 2=H -x 1=100m -18m =82m由动能定理得:mgx 2+W f =12m v 2-12m v 21代入数据解得:W f =-58170J.答案:(1)26m/s 2,方向竖直向上(2)-58170J思想方法用动能定理巧解往复运动问题方法阐述对于具有重复性的往复运动过程,由于动能定理只涉及物体的初末状态,而不计运动过程的细节,所以用动能定理分析这类问题可使解题过程简化.1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.[典例赏析][典例](2019·江苏泰州模拟)如图所示,足够长的固定木板的倾角为37°,劲度系数为k =36N/m 的轻质弹簧的一端固定在木板上的P 点,图中AP 间距等于弹簧的自然长度.现将质量m =1kg 的可视为质点的物块放在木板上,在外力作用下将弹簧压缩到某一位置B点后释放.已知木板PA 段光滑,AQ 段粗糙,物块与木板间的动摩擦因数μ=38,物块在B 点释放后向上运动,第一次到达A 点时速度大小为v 0=33m/s ,取重力加速度g =10m/s 2.(1)求物块第一次向下运动到A 点时的速度大小v 1;(2)请说出物块最终的运动状态,并求出物块在A 点上方运动的总路程s .[审题指导](1)把握过程构建运动模型过程①物块上滑匀变速直线运动过程②物块下滑匀变速直线运动过程③物块在A 点下方往复运动(2)选好过程,列出方程①过程①②分别列出动能定理方程.②对多次往复后的全程列出动能定理方程.[解析](1)设物块从A 点向上滑行的最大距离为s 1.根据动能定理,上滑过程有:-mgs 1sin 37°-μmgs 1cos 37°=0-12m v 20下滑过程有:mgs 1sin 37°-μmgs 1cos 37°=12m v 21-0联立解得:s 1=1.5m ,v 1=3m/s(2)物块最终在A 点下方做往复运动,最高点为A根据动能定理:μmgs cos 37°=12m v 20代入数据解得:s =4.5m.[答案](1)3m/s (2)物块最终在A 点下方做往复运动4.5m1.应用动能定理求解往复运动问题时,要确定物体的初状态和最终状态.2.重力做功与物体运动路径无关,可用W G =mgh 直接求解.3.滑动摩擦力做功与物体运动路径有关,可用W f =-F f s 求解,其中s 为物体相对滑行的路程.[题组巩固]1.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件.解析:(1)因为摩擦力始终对物体做负功,所以物体最终在圆心角为2θ的圆弧轨道上做往复运动.对整体过程由动能定理,得mgR ·cos θ-μmg cos θ·s =0所以总路程为s =R μ(2)对B →E 过程mgR (1-cos θ)=12m v 2①F N -mg =m v 2R②由①②,得F N =(3-2cos θ)mg由牛顿第三定律可知,物体对轨道的压力是(3-2cos θ)·mg ,方向竖直向下.(3)设物体刚好到D 点,则mg =m v 2D RL ′取最小值时,对全过程由动能定理,得mgL ′sin θ-μmg cos θ·L ′-mgR (1+cos θ)=12m v 2D ④由③④,得L ′=3+2cos θ2(sin θ-μcos θ)·R 故应满足的条件为L ′≥3+2cos θ2(sin θ-μcos θ)·R .答案:(1)R μ(2)(3-2cos θ)mg ,方向竖直向下(3)L ′≥3+2cos θ2(sin θ-μcos θ)·R 2.如图所示,在竖直平面内,粗糙的斜面AB 长为2.4m ,其下端与光滑的圆弧轨道BCD 相切于B ,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =1.0m ,现有一个质量为m =0.2kg 可视为质点的滑块,从D 点的正上方h =1.6m 的E 点处自由下落,滑块恰好能运动到A 点(sin 37°=0.6,cos 37°=0.8,g 取10m/s 2,计算结果可保留根号).求:(1)滑块第一次到达B 点的速度.(2)滑块与斜面AB 之间的动摩擦因数.(3)滑块在斜面上运动的总路程及总时间.解析:(1)第一次到达B 点的速度为v 1,根据动能定理得:mg (h +R cos 37°)=12m v 21代入数据解得:v 1=43m/s(2)从E 到A 的过程中,由动能定理得:mg (h +R cos 37°-L AB sin 37°)-μmg cos 37°·L AB =0代入数据解得:μ=0.5(3)全过程由动能定理得:mg (h +R cos 37°)-μmg cos 37°s =0代入数据解得:s =6m沿斜面上滑加速度为:a 1=g sin 37°+μg cos 37°=10m/s 2沿斜面下滑加速度为:a 2=g sin 37°-μg cos 37°=2m/s 2因为v 212a 1=v 222a 2,解得:v 2=a 2a 1v 1=15v 1v 3=a 2a 1v 215v 1…v n =15n -1v 1则:t =v 1a 1+v 2a 1+v 3a 1+…+v n a 1+v 2a 2+v 3a 2+…+v n a 2代入数据解得:t =315+535s.答案:(1)43m/s (2)0.5(3)6m 315+535s。

第2讲 动能定理及应用

第2讲 动能定理及应用

第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能。

2.公式:E k =12m v 2。

3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。

4.动能是标量,是状态量。

5.动能的变化:ΔE k =12m v 22-12m v 21。

二、动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。

2.表达式:W =E k2-E k1=12m v 22-12m v 21。

3.物理意义:合力做的功是物体动能变化的量度。

4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。

(2)动能定理既适用于恒力做功,也适用于变力做功。

(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用。

【自测 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变,则物体所受合力一定为零答案 A命题点一 动能定理的理解1.两个关系(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。

(2)因果关系:合力做功是引起物体动能变化的原因。

2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。

当然动能定理也就不存在分量的表达式。

【例1 随着高铁时代的到来,人们出行也越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。

在启动阶段,列车的动能( )图1A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的加速度成正比答案 B解析 列车在启动阶段做v 0=0的匀加速直线运动,列车的动能E k =12m v 2=12m (at )2=12m ·(2ax ),可见B 正确,A 、C 、D 错误。

【针对训练1】 (多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( )A .物体的重力势能增加了3 JB .物体的重力势能减少了3 JC .物体的动能增加了4.5 JD .物体的动能增加了8 J答案 AC解析 因为重力做负功时重力势能增加,所以重力势能增加了3 J ,A 正确,B 错误;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 正确,D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲动能定理的应用
命题点备考重点备考说明动能定理
的简单应

1.动能定理的考查是选考中的重点和难
点,单独命题可能性不大,一般以计算题
的形式考查学生综合能力,可以与曲线
运动、牛顿运动定律结合,也可以与电
场、磁场结合,难点较大,分值较高。

2.复习重点放在以下几个方面:
(1)掌握用动能定理求解单体多过程问
题;
(2)掌握用动能定理求解变力做功问题。

不要求用动能
定理求解几个
物体组成的系
统的有关问
题。

动能定理
解决单个
物体多个
运动过程
的问题
1.动能
(1)定义:物体由于运动而具有的能量叫做动能。

(2)公式:E k=1
2
mv2。

(3)单位:焦耳(J),1 J=1 N·m=1 kg·m2/s2。

(4)动能是标量,只有正值,没有负值。

(5)动能是状态量,也具有相对性,因为v为瞬时速度,且与参考系的选择有关,一般以地面为参考系。

2.动能定理
(1)内容:所有外力对物体做的总功(也叫合外力的功)等于物体动能的变化。

(2)表达式:W总=E k2-E k1。

(3)对定理的理解:
当W总>0时,E k2>E k1,物体的动能增大。

当W总<0时,E k2<E k1,物体的动能减少。

当W总=0时,E k2=E k1,物体的动能不变。

3.对动能定理的理解
(1)“外力”可以是重力、弹力、摩擦力、电场力、磁场力等,它们可以同时作用,也可以不同时作用。

(2)“外力”既可以是恒力,也可以是变力。

(3)公式中“=”体现的三个关系:
数量关系合力做的功与物体动能的变化相等
单位关系国际单位都是焦耳
因果关系合力做功是物体动能变化的原因
考点1 动能定理解决恒力做功问题
[例1] 如图所示,质量为m的小球,从离地面高H处由静止开始释放,落到地面后继续陷入泥中h深度而停止,设小球受到空气阻力为f,重力加速度为g,则下列说法正确的是( )
A.小球落地时动能等于mgH
B.小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能
C.整个过程中小球克服阻力做的功等于mg(H+h)
)
D.小球在泥土中受到的平均阻力为mg(1+H
h
应用动能定理的流程
[随堂练1] 将一小球竖直向上抛出,小球在运动过程中所受到的空气阻力不可忽略。

a为小球运动轨迹上的一点,小球上升和下降经过a 点时的动能分别为E k1和E k2。

从抛出开始到小球第一次经过a点时重力所做的功为W1,从抛出开始到小球第二次经过a点时重力所做的功为W2。

下列选项正确的是( )
A.E k1=E k2,W1=W2
B.E k1>E k2,W1=W2
C.E k1<E k2,W1<W2
D.E k1>E k2,W1<W2
[随堂练2] (多选)质量为1 kg的物体在水平粗糙的地面上受到一水平外力F作用运动,如图甲所示,外力F和物体克服摩擦力f做的功W 与物体位移x的关系如图乙所示,重力加速度g为10 m/s2。

下列分析正确的是( )
A.物体与地面之间的动摩擦因数为0.2
B.物体运动位移为13 m
C.前3 m运动过程中物体的加速度为3 m/s2
D.x=9 m时,物体速度为32 m/s
考点2 动能定理解决变力做功问题
[例2] 如图所示,一质量为m的质点在半径为R的半球形容器中(容器固定)由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力为F N。

重力加速度为g,则质点自A滑到B的过程中,摩擦力对其所做的功为( )
A.1
2R(F N-3mg) B.1
2
R(2mg-F N)
C.1
2R(F N-mg) D.1
2
R(F N-2mg)
(1)所求的变力的功不一定为总功,故所求的变力的功不一定等于Δ
E k。

(2)若有多个力做功时,必须明确各力做功的正负,待求的变力的功若为负功,可以设克服该力做功为W,则表达式中应用-W;也可以设变力的功为W,则字母W本身含有负号。

[随堂练3] 质量为m的小球被系在轻绳一端,在竖直平面内做半径为r的圆周运动,如图所示,运动过程中小球受到空气阻力的作用。

设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,在此后小球继
续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )
A.1
4mgr B.1
3
mgr
C.1
2
mgr D.mgr
[随堂练4] 2016年6月,在连续三次决赛(2014年世界杯、2015年美洲杯、2016年美洲杯)失利后,梅西正式宣布将退出阿根廷国家队。

作为曾经最伟大的足球运动员,梅西为热爱他的球迷贡献了一次次精彩的进球。

假设足球的质量为0.5 kg,某次梅西踢球瞬间对球的平均作用力为100 N,使球由静止开始以20 m/s的速度飞出,球在水平方向运动了20米后入网,则梅西对球所做的功为( )
A.25 J
B.50 J
C.100 J
D.2 000 J
考点3 动能定理解决单体多过程问题
[例3] 如图所示,小球以初速度v0从A点沿不光滑的轨道运动到高为h的B点后自动返回,其返回途中仍经过A点,小球经过轨道连接处无机械能损失,则小球经过A点时的速度大小为( )
A.2
04
v gh
-B.20
4gh v
-
C.20
v -2gh D.
2
2gh v
应用动能定理的注意事项
(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。

(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。

(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。

(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。

[随堂练5] 静止在粗糙水平面上的物块在水平向右的拉力作用下做直线运动,t=4 s 时停下,其v-t 图象如图所示,已知物块与水平面间的动摩擦因数处处相同,则下列判断正确的是( )
A.整个过程中拉力做的功等于物块克服摩擦力做的功
B.整个过程中拉力做的功等于零
C.t=2 s 时刻拉力的瞬时功率在整个过程中最大
D.t=1 s 到t=3 s 这段时间内拉力不做功
[随堂练6] (2019∙台州中学高一期中)“滑滑梯”是小朋友喜爱的游戏活动。

可以将小朋友在室内“滑滑梯”的运动简化成小物块从静止出发,先沿斜板下滑,再进入室内水平木板的过程,如图所示。

假设斜板长度一定,斜板与水平木板的倾角θ可调,且房间高度足够,斜板最高点在地板的垂点到房间右侧墙面的长度为斜板长度的2倍。

某次游戏中,一位小朋友(可视为质点)从斜板顶端静止出发后在到达房间右侧墙面时刚好停下。

已知小朋友与斜板及水平木板间的动摩擦因数均为μ,不计小朋友从斜板进入水平木板时的能量损失,则θ与μ间应满足( )
A.sin θ=μ
B.sin θ=2μ
C.sin θ=3μ
D.sin θ=4μ。

相关文档
最新文档