2014高考数学压轴题(2)
天津市2014高考数学压轴卷 理(含解析)

2014天津高考压轴卷数学理word一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2.设集合{}|24xA x =≤,集合B 为函数lg(1)y x =-的定义域,则AB =(A)()1,2 (B)[]1,2 (C)[1,2) (D) (1,2] 3.函数y=sin (2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的BC5.设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.6.设z=2x+y ,其中变量x ,y 满足条件,若z 的最小值为3,则m 的值为( )7.已知点P (x ,y )在直线x+2y=3上移动,当2x +4y取最小值时,过P 点(x ,y )引圆C :=1的切线,则此切线长等于()C D9. 设常数a∈R,若的二项展开式中x4项的系数为20,则a= .10. 已知tanα=,tanβ=﹣,且0<α<,<β<π,则2α﹣β的值.11.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.则a10= .12.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()13.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______________.14.等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为写在答题卡上的指定区域内.15. 袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(Ⅰ)求随机变量ξ的分布列及数学期望;(Ⅱ)求乙取到白球的概率.16.在△ABC中,BC=a,AC=b,a、b是方程的两个根,且A+B=120°,求△ABC 的面积及AB的长.17.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱AB上的动点.(Ⅰ)求证:DA1⊥ED1;(Ⅱ)若直线DA1与平面CED1成角为45°,求的值;(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).18.数列{a n}是递增的等差数列,且a1+a6=﹣6,a3•a4=8.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n的最小值;(3)求数列{|a n|}的前n项和T n.19. 已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.20. (13分)已知f(x)=lnx,g(x)=af(x)+f′(x),(1)求g(x)的单调区间;(2)当a=1时,①比较的大小;②是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.2014天津高考压轴卷数学理word 参考答案 1. 【答案】D.【解析】根据题意,若集合A={x|x >1},B={x|x <m},且A ∪B=R , 必有m >1,分析选项可得,D 符合; 故选D .2. 【答案】D. 【解析】{}|24{2}xA x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,所以{12}A B x x =<≤,所以选D. 3. 【答案】【解析】令y=f (x )=sin (2x+φ), 则f (x+)=sin[2(x+)+φ]=sin (2x++φ),∵f (x+)为偶函数,∴+φ=k π+,∴φ=k π+,k ∈Z ,∴当k=0时,φ=.故φ的一个可能的值为.故选B . 4. 【答案】【解析】∵f (x )=log 2(1+x ),g (x )=log 2(1﹣x ), ∴f (x )﹣g (x )的定义域为(﹣1,1) 记F (x )=f (x )﹣g (x )=log 2, 则F (﹣x )=log 2=log 2()﹣1=﹣log 2=﹣F (x )故f (x )﹣g (x )是奇函数. 故选A.5. 【答案】C.【解析】'cos y x =,即()cos g x x =,所以22()cos y x g x x x ==,为偶函数,图象关于y 轴对称,所以排除A,B.当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选C.6. 【答案】A.【解析】作出不等式组对应的平面区域, ∵若z 的最小值为3, ∴2x+y=3, 由,解得,同时(1,1)都在直线x=m 上, ∴m=1. 故选:A . 7. 【答案】D.【解析】∵x+2y=3,2x+4y=2x+22y≥2x+2y=23=8,当且仅当 x=2y=时,等号成立,∴当2x+4y取最小值8时,P 点的坐标为(,),点P 到圆心C 的距离为CP==,大于圆的半径1,故切线长为==2,故选:D . 8. 【答案】A.【解析】根据复合函数的单调性可知,f (x )=ln (e x﹣1)(x >0)为增函数, ∵函数的定义域为(0,+∞). ∴a >0,b >0,设g (x )=f (x )+2x , ∵f (x )是增函数,∴当x >0时,g (x )=f (x )+2x 为递增函数, ∵f (a )+2a=f (b )+3b ,∴f (a )+2a=f (b )+3b >f (b )+2b , 即g (a )>g (b ),∵g (x )=f (x )+2x 为递增函数, ∴a >b , 故选:A . 9. 【答案】【解析】∵的二项展开式的通项公式为 T r+1=•a r•x10﹣3r,令10﹣3r=4,求得 r=2,故二项展开式中x4项的系数为•a2=20,解得a=±,故答案为:±.10. 【答案】【解析】∵0<α<,tanα=<1=tan,y=tanx在(0,)上单调递增,∴0<α<,又<β<π,∴﹣π<2α﹣β<﹣,∵tan2α===,tanβ=﹣,∴tan(2α﹣β)===1,∴2α﹣β=﹣.11. 【答案】【解析】等差数列{a n}的前n项和为S n,∵a2+a4=6,S4=10,设公差为d,∴,解得a1=1,d=1,∴a10=1+9=10.故答案为:10.12. 【答案】【解析】由三视图知:余下的几何体如图示:∵E、F都是侧棱的中点,∴上、下两部分的体积相等,∴几何体的体积V=×23=4.13. 【答案】【解析】圆的方程为x2+y2﹣6x﹣8y=0化为(x﹣3)2+(y﹣4)2=25.圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.S ABCD=故答案为:14. 【答案】【解析】根据题意,得∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,因此,三棱锥C﹣HAM的体积V=S△CMH×AM=S△CMH由此可得,当S△CMH达到最大值时,三棱锥C ﹣HAM的体积最大设∠BCD=θ,则Rt△BCD中,BC=AB=可得CD=,BD=Rt△ACD中,根据等积转换得CH==Rt△ABD∽Rt△AHM,得,所以HM==因此,S△CMH=CH•HM==∵4+2tan2θ≥4tanθ,∴S△CMH=≤=,当且仅当tanθ=时,S△CMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.∵tanθ=>0,可得sinθ=cosθ>0∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)由此可得CD==,即当三棱锥C﹣HAM的体积最大时,CD的长为故选:C15. 【解析】(Ⅰ)设袋中原有n个黑球,由题意知…(1分)=,解得n=4或n=﹣3(舍去)…(3分)∴黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5…(4分),,,…(7分)(错一个扣一分,最多扣3分)所以数学期望为:…(9分)(Ⅱ)∵乙后取,∴乙只有可能在第二次,第四次取球,记乙取到白球为事件A,则,…(11分)答:乙取到白球的概率为.…(12分)16. 【解析】∵A+B=120°,∴C=60°.∵a、b是方程的两个根,∴a+b=,ab=2,∴S△ABC==,AB=c====.17. 【解析】以D为坐标原点,建立如图所示的坐标系,则D(0,0,0),A(1,0,0),B (1,1,0),C(0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:=(1,0,1),=(﹣1,﹣m,1)∴•=0∴DA1⊥ED1;(4分)(Ⅱ)解:设平面CED1的一个法向量为=(x,y,z),则∵=(0,﹣1,1),=(1,m﹣1,0)∴.取z=1,得y=1,x=1﹣m,得=(1﹣m,1,1).∵直线DA1与平面CED1成角为45°,∴sin45°=|cos<,>|=,∴=,解得m=.﹣﹣﹣﹣﹣(11分)(Ⅲ)解:点E到直线D1C距离的最大值为,此时点E在A点处.﹣﹣﹣﹣﹣﹣(14分)18. 【解析】(1)由得:,∴a3、a4是方程x2+6x+8=0的二个根,∴x1=﹣2,x2=﹣4;∵等差数列{a n}是递增数列,∴a3=﹣4,a4=﹣2,∴公差d=2,a1=﹣8.∴a n=2n﹣10;(2)∵S n==n2﹣9n=﹣,∴(S n)min=S4=S5=﹣20;(3)由a n≥0得2n﹣10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.当1≤n≤5且n∈N*时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣n2+9n;当n≥6且n∈N*时,T n=|a1|+|a2|+…+|a5|+|a6|+…+|a n|=﹣(a1+a2+…+a5)+(a6+…+a n)=S n﹣2S5=n2﹣9n﹣2(25﹣45)=n2﹣9n+40.∴T n=.19. 【解析】(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q (,0),使得恒成立.20. 【解析】,g(x)的定义域为(0,+∞).①当a≤0时,g'(x)<0,(0,+∞)是g(x)的单调区间;②当a>0时,由g'(x)>0,得;由g'(x)<0,得,即增区间是,减区间是.(2),∴①当x=1时,μ(x)=0,此时②当0<x<1时,μ'(x)<0,∴μ(x)>μ(1)=0.∴③当x>1时,μ'(x)<0,∴μ(x)<μ(1)=0.∴.(3)⇔⇔∵lnx∈(0,+∞),∴g(x0)>lnx不能恒成立.故x0不存在.- 11 -。
2014高中数学考试精选试题复习

设
∴
∴
c R 使 得 方 程
t 1 c t 3 有 两 不 等 正 根
lg t c
t 1 2 (c 1) t 3 t 3
设 h(t ) lg(t ) ,
(t ) (c 1)
2 t 3 lg t (c 1) 2 t 3 仅有唯一正根∴ 不存在点 A、B 符合题意。
M a
取得最小值-3. 2 复合函数
1.已知函数
f x
满足
f log a x
a x x 1 2 a 1 ,其中 a 0 ,且 a 1 。
3
(1)对于函数 (2)当
f x
,当
x 1,1
时,
f 1 m f 1 m2 0
高考数学压轴题常考题型 20 组 类 型 1 二次函数 2 复合函数 3 创新性函数 4 抽象函数 5 导函数(极值,单调区间)--不等式 6 函数在实际中的应用 7 函数与数列综合 8 数列的概念和性质 9Sn 与 an 的关系 10 创新型数列 11 数列与不等式 12 数列与解析几何 13 椭圆 14 双曲线 15 抛物线 16 解析几何中的参数范围问题 17 解析几何中的最值问题 18 解析几何中的定值问题 19 解析几何与向量 20 探究性问题
a 2 x1 x2 0 4 ,
∵ x1 x2 ,∴ a 0 .∴实数 a 的取值范围为
2 2
0,
.
2 4 2 f x ax 4 x 2 a x 2 x 0 f 0 2 a a ,显然 a (Ⅱ)∵ ,对称轴 。
,求实数 m 的取值范围;
x ,2
2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷

2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 .100 80 90 110 120 底部周长/cm(第6题)(第3题)9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 .10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .(第16题)PDCEFBA(第12题)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .22.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 23.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l的参数方程1,2)(;x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数,直线l 与抛物线24y x =相交于A 、B 两点,求线段AB 的长.24.[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥. 25. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ). 26. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N,等式1πππ()()444n n nf f -+=都成立.(第21—A 题)参考答案一、选择题 1.【答案】{1,3}- 解析:由题意得{1,3}AB =-【考点】交集、并集、补集 (B). 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
2014浙江省高考压轴卷 理科数学 Word版含答案

2014浙江省高考压轴卷理科数学一、选择题:本大题共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U=R ,集合M=}032|{2≤--x x x ,N=}13|{2+=x y y ,则=)(N C M u ( )A .}11|{<≤-x xB .}11|{≤≤-x xC .}31|{≤≤x xD .}31|{≤<x x 2. 已知i 为虚数单位,则复数iiz 325+-=在复平面内表示的点位于( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限3. 已知函数⎪⎩⎪⎨⎧<-≥=0,0,2)(x x x x f x ,则“4)(=a f ”是“2=a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知21,e e 为互相垂直的单位向量,若向量21e e +λ与21e e λ+的夹角等于30,则实数λ等于( )A .32±B .3±C .33±D .333或 5. 执行如图所示的程序框图,若输出的值S=16,则输入自然数n 的最小值应等于( )A .7B .8C .9D .106. 若y x ,满足约束条件y kx y x y y x +=⎪⎩⎪⎨⎧≤-≥≥-+z 22201,且取得最小值时的点有无数个,则k=( )A .-1B .2C .-1或2D .1或 -27. 已知函数,,,⎪⎩⎪⎨⎧>+-≤<=10621100|lg |)(x x x x x f 若函数92)(2)(2-+-=b x bf x f y 有6个零点,则b 的取值范围是( ) A .⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛31,9297,32 B .⎪⎭⎫ ⎝⎛∞-⎪⎭⎫ ⎝⎛+∞31,,32 C .⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1,3231,0 D .⎪⎭⎫⎝⎛97,92 8. 设m ,n 是两条不同的直线,βα,是两个不同的平面,则下列命题不正确的是( )B .αα⊥⇒⊥n n m m //,C .βαβα⊥⇒⊂⊂⊥m n n m ,,D .n m n m m ////⇒=⊂βααβ ,,9. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F ,F ,如图,过2F 于双曲线一条渐近线平行的直线交另一条渐近线于点P ,若21PF F ∠为钝角,则该双曲线离心率的取值范围是( ) A .()∞+,2 B .()∞+,3 C .()21, D .()21,10. 设数字1,2,3,4,5,6的一个排列为654321,,,,,a a a a a a ,若对任意的)6,5,4,3,2(=i a i 总有)5,4,3,2,1(=<k i k a k ,满足,1||=-k i a a 则这样的排列共有( )A .36B .32C .28D .20 二、填空题:本大题共7小题,每小题4分,共28分 11. 若_____________2sin ),4sin(2cos 3),,2(=-=∈θθπθππθ则且.12. 一个几何体的三视图如右图所示,则该几何体的体积为_______________. 13. 若444332210)12()12()12()12(x x a x a x a x a a =-+-+-+-+,则=2a _______________. 14. 若正数的最小值,则满足y x xy y x y x +=+53,为_________________. 15. 已知数列{}n a 满足:)(11*11N n n a a a a n n n n ∈=+--+++,且284=a ,,则{}n a 的通项公式为n a =_____________. 16. 圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
2014年全国高考数学文科(压轴题)解析汇编

【全国新课标I ·第20题】已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP|=|OM|时,求l 的方程及△POM 的面积 解:(1)设M (x ,y ),由P (2,2)得:PM JJJ G=(x -2,y -2)由x 2+y 2-8y =0得:222(4)4x y +−= ∴圆心C (0,4)连接CM ,则CM JJJ J G=(x ,y -4)∵M 是AB 的中点 ∴CM ⊥AB∴PM CM ⋅JJJ G JJJ J G=0∴(2)(4)(2)0x x y y −+−−= 整理得22(1)(3)2x y −+−=∴M 的轨迹方程为22(1)(3)2x y −+−= (2)易得OP=M (x ,y )由|OP|=|OM|得:228x y += 联立M 的轨迹方程,解得:22x y =⎧⎨=⎩ 或 25145x y ⎧=−⎪⎪⎨⎪=⎪⎩因为当M (2,2)时,点P 与点M 重合,不能构成△POM ,故舍去∴M (25−,145) ∴直线l 的斜率为14215325k −==−+∴直线l 的方程为12(2)3y x −=−−即380x y +−=设点O 到直线l 的距离为d ,则5d∵=∴△POM 的面积为:11|MP |22d ⋅⋅=【全国新课标I ·第21题】设函数21()ln 2a f x a x x bx −=+−(a ≠1),曲线()y f x =在点(1,(1)f )处的斜率为0 (1)求b ;(2)若存在x 0≥1,使得0()1a f x a <−,求a 的取值范围。
解:(1)函数()f x 的定义域为(0,+∞)'()(1)af x a x b x=+−− 由题意得:'(1)(1)10f a a b b =+−−=−= ∴b =1(2)由(1)得:21()ln 2a f x a x x x −=+−则'()(1)1a f x a x x=+−−(1)[(1)]x a x a x−−−=令'()0f x =,由a ≠0得:x =1或1a x a =−① 当a >1时,011a a<<−,则当x >1时,'()0f x <,()f x 单调递减 ∴1()(1)2a f x f −−<=∵212(1)0212(1)a a a a a −−−+−=<−−∴121a a a −−<−∴()1a f x a <−,满足条件② 当11a a>−,即112a <<时,则当11a x a <<−时,'()0f x <,()f x 单调递减当1a x a>−时,'()0f x >,()f x 单调递增∴2min 2()()ln 112(1)a a a a f x f a a a a −==+−−−令22()ln 12(1)1a a a a g a a a a a −=+−−−−[ln12(1)a aa a a =+−− 设1a m a =−>1,令()ln 2m h m m =+∵11'()02h m m =+>∴()h m 在m >1时单调递增 ∴1()(1)02h m h >=>∴22()ln 012(1)1a a a a g a a a a a −=+−>−−−∴22ln 12(1)1a a a a a a a a −+>−−− 即min ()1a f x a >−故,不存在满足条件的x 0③ 当11a a ≤−,即12a ≤时,则当x >1时,'()0f x >,()f x 单调递增 ∴min 1()(1)21a a f x f a −−==<−整理得:2210a a +−<解得:11a −<−综上所述,a 的取值范围为:(11−−∪(1,+∞)1=(a >b >0)的左,右焦点,M 是C 上一点且MF 2与(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .解:(1)易得,点F 1(-c ,0),点F 2(c ,0) 其中c ,则F 1F 2=2c∵直线MN 的斜率为34∴点M 在第一象限∵MF 2⊥x 轴 ∴点M 坐标为(c ,2b a)∴MF 2=2b a∴2212123tan 24MF b MF F F F ac ∠=== 即22232b ac a c ==− 解得12a c =−(负值舍去)或2a c =∴C 的离心率为12c e a ==(2)∵点O 是F 1F 2的中点,OB ∥MF 2,OB=2∴MF 2=2b a=2OB=4,即24b a = ……①过点N 作NA ⊥x 轴于A ,由|MN|=5|F 1N|得1112121114F A F N F N NA MF F F F M MN F N ====−∵MF 2=4,F 1F 2=2c∴NA=1,F 1A=2c ∴OA=OF 1+F 1A=32c∴点N (32c −,-1)或(32c−,1)代入C 方程得:2229114c a b+=将222c a b =−代入上式得:22291544b a b −= ……②由①②解得:7a b =⎧⎪⎨=⎪⎩【全国新课标II ·第21题】已知函数32()32f x x x ax =−++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线()y f x =与直线y =kx -2只有一个交点解:(1)∵2'()36f x x x a =−+ ∴'(0)f a =∴曲线()y f x =在点(0,2)处的切线方程为:2y ax −= ∵当y =0时,2x a =−∴22x a =−=−∴a =1(2)由(1)得:32()32f x x x x =−++令32()32(2)g x x x x kx =−++−− 323(1)4x x k x =−+−+∵k <1∴1-k >0① 当x ≤0时,2'()3610g x x x k =−+−> 则()g x 在(-∞,0]上单调递增 ∵max ()(0)40g x g ==> ∴()g x 在(-∞,0]上只有一个零点∴曲线()y f x =与直线y =kx -2在(-∞,0]上有一个交点② 当x >0时,令32()34h x x x =−+ 则()()(1)()g x h x k x h x =+−> ∵2'()363(2)h x x x x x =−=−∴当x ∈(0,2)时,'()0h x <,()h x 单调递减 当x ∈(2,+∞)时,'()0h x >,()h x 单调递增 ∴min ()(2)0h x h == ∴()0g x >∴()g x 在(0,+∞)上没有零点∴曲线()y f x =与直线y =kx -2在(0,+∞)上没有交点综上,当k <1时,曲线()y f x =与直线y =kx -2只有一个交点【全国大纲版·第21题】函数32()33f x ax x x =++(a ≠0). (1)讨论()f x 的单调性;(2)若()f x 在区间(1,2)是增函数,求a 的取值范围解:(1)2'()363f x ax x =++令'()0f x =,则2210ax x ++= ∴Δ=4(1)a −① 当a >1时,即Δ<0,则'()0f x > ∴()f x 在R 上单调递增 ② 当a =1时,即Δ=0,则'()0f x ≥ ∴()f x 在R 上单调递增③ 当a <1时,即Δ>0,则2'()210f x ax x =++=有两个不相等的实数根解得:11x a −=或21x a −=当0<a <1时,12x x <则当x ∈(-∞,1x )∪(2x ,+∞)时,'()f x >0,()f x 单调递增;当x ∈(1x ,2x )时,'()f x <0,()f x 单调递减当a <0时,12x x >则当x ∈(-∞,2x )∪(1x ,+∞)时,'()f x <0,()f x 单调递减;当x ∈(2x ,1x )时,'()f x >0,()f x 单调递增(2)由(1)的结论知:① 当a ≥1时,()f x 在区间(1,2)是增函数 ② 当0<a <1时,要使()f x 在区间(1,2)是增函<2,即2450a a +>,显然成立③ 当a <0时,要使()f x 在区间(1,2)是增函数,则应有121a ⎧−≥⎪⎪≤,解得504a −≤< 综上所述,a 的取值范围为[54−,0)∪(0,+∞)【全国大纲版·第22题】已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|. (1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 解:(1)设点Q 坐标为(m ,4)则|QF|=2pm +,|PQ|=m∵|QF|=54|PQ| ∴524p m m +=,得m =2p 将点Q (2p ,4)代入C 得: 2164p =,解得p =2或-2(舍去) ∴C 的方程为24y x = (2)由(1)得,点F (1,0)设l 的方程为1x ky =+代入C 方程,得2440y ky −−= 则4A B y y k +=,4A B y y =−∴242A B x x k +=+,1A B x x =∴线段AB 的中点D 为(221k +,2k ) 则l ’的方程为2121(2)x k y k k−−=−−∴2123x y k k=−++ 代入C 方程得:2248120y y k k+−−= 则4M N y y k +=−,2812M N y y k =−−∴22446M N x x k k+=++ ,22(23)M N x x k =+ ∴线段MN 的中点E 为(22223k k ++,2k−) ∵A 、M 、B 、N 四点在同一圆上 且MN 垂直平分AB∴MN 是圆的直径,点E 为圆心∴AD 2+DE 2=AE 2,即14AB 2+DE 2=14MN 2 ∵AB 2=22()()A B A B x x y y −+−22()4()4A B A B A B A B x x x x y y y y =+−++− 222(42)41616k k =+−++ 2216(1)k =+同理可得MN 2=222416(1)(21)m m k++ DE 2=22222(2)(2)k k k+++∴224(1)k ++22222(2)(2)k k k+++ =22244(1)(21)m m k ++化简整理得21k =,解得1k =± ∴l 的方程为1x y =+或1x y =−+【北京市·第19题】已知椭圆C :x 2+2y 2=4。
高考数学压轴题讲练:专题02 曲线的切线问题探究【解析版】

第一章 函数与导数专题02 曲线的切线问题探究【压轴综述】纵观近几年的高考命题,对曲线的切线问题的考查,主要与导数相结合,涉及切线的斜率、倾斜角、切线方程等问题,题目的难度有难有易.利用导数的几何意义解题,主要题目类型有求切线方程、求切点坐标、求参数值(范围)等.与导数几何意义有关问题的常见类型及解题策略有: 1.已知斜率求切点.已知斜率k ,求切点()()11,x f x ,即解方程()f x k '=.2.求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线.即注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(1)已知切点求切线方程:①求出函数()y f x =在点0x x =处的导数,即曲线()y f x =在点()()00,x f x 处切线的斜率;②由点斜式求得切线方程为()()000y y f x x x '-=-. (2)求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f(x 1));第二步,写出过P ′(x 1,f(x 1))的切线方程为y-f(x 1)=f ′(x 1)(x-x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y-f(x 1)=f ′(x 1)(x-x 1)可得过点P(x 0,y 0)的切线方程.3.求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.4.根据导数的几何意义求参数的值(范围)时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.5.已知两条曲线有公切线,求参数值(范围).6.导数几何意义相关的综合问题.【压轴典例】例1.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 【答案】(e, 1). 【解析】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .例2.(2019·全国高考真题(理)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)证明见解析. 【解析】(1)函数()f x 的定义域为(0,1)(1,)⋃+∞,2211()ln ()1(1)x x f x x f x x x x ++'=-⇒=--,因为函数()f x 的定义域为(0,1)(1,)⋃+∞,所以()0f x '>,因此函数()f x 在(0,1)和(1,)+∞上是单调增函数;当(0,1)x ∈,时,0,x y →→-∞,而11112()ln 0111e f e e e e+=-=>--,显然当(0,1)x ∈,函数()f x 有零点,而函数()f x 在(0,1)x ∈上单调递增,故当(0,1)x ∈时,函数()f x 有唯一的零点;当(1,)x ∈+∞时,2222221213()ln 0,()ln 01111e e ef e e f e e e e e e +-+-=-=<=-=>----,因为2()()0f e f e ⋅<,所以函数()f x 在2(,)e e 必有一零点,而函数()f x 在(1,)+∞上是单调递增,故当(1,)x ∈+∞时,函数()f x 有唯一的零点综上所述,函数()f x 的定义域(0,1)(1,)⋃+∞内有2个零点; (2)因为0x 是()f x 的一个零点,所以000000011()ln 0ln 11x x f x x x x x ++=-=⇒=-- 1ln y x y x'=⇒=,所以曲线ln y x =在00A(,ln )x x 处的切线l 的斜率01k x =,故曲线ln y x =在00A(,ln )x x 处的切线l 的方程为:0001ln ()y x x x x -=-而0001ln 1x x x +=-,所以l 的方程为0021x y x x =+-,它在纵轴的截距为021x -.设曲线x y e =的切点为11(,)x B x e ,过切点为11(,)x B x e 切线'l ,x xy e y e '=⇒=,所以在11(,)x B x e 处的切线'l 的斜率为1x e ,因此切线'l 的方程为111(1)x xy e x e x =+-,当切线'l 的斜率11xk e =等于直线l 的斜率01k x =时,即11001(ln )x e x x x =⇒=-, 切线'l 在纵轴的截距为01ln 110001(1)(1ln )(1ln )x xb e x ex x x -=-=+=+,而0001ln 1x x x +=-,所以01000112(1)11x b x x x +=+=--,直线',l l 的斜率相等,在纵轴上的截距也相等,因此直线',l l 重合,故曲线ln y x =在00A(,ln )x x 处的切线也是曲线x y e =的切线.例3. (2019·湖北高考模拟(理))已知函数2()1f x x ax =-+,()ln ()g x x a a R =+∈. (1)讨论函数()()()h x f x g x =+的单调性;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围.【答案】(1)见解析;(2)(],1-∞ 【解析】(1)函数()h x 的定义域为()0,∞+,()()()2h x f x g x x ax lnx a 1(x 0)=+=-+++>,所以()212x ax 1x 2x a x xh -+=-+='所以当2Δa 80=-≤即a -≤≤()'x 0h >,()h x 在()0,∞+上单调递增;当2Δa 80=->即a a ><-当a <-()'x 0h >,()h x 在()0,∞+上单调递增;当a >时,令()'x 0h =得x =综上:当a ≤时,()h x 在()0,∞+上单调递增;当a >时()h x 在⎛ ⎝⎭,∞⎫+⎪⎪⎝⎭单调递增,在⎝⎭单调递减.(2)设函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同,()()111x 2,x f x a g x''=-=,则()()()()121212f x g x x x x x f g -==-'',由1212x a x -=,得121a x 2x 2=+,再由()2112212x ax 1lnx a 1x x x -+-+=- 得2121122x x x ax 1lnx a x -=-+--,把121a x 2x 2=+代入上式得()222221a a lnx a 20*4x 2x 4++++-= 设()221a a F x lnx a 24x 2x 4=++++-(∵x 2>0,∴x ∈(0,+∞)), 则()23231a 12x ax 1x 2x 2x x 2xF --=--+=' 不妨设20002x ax 10(x 0)--=>. 当00x x <<时,()x 0F '<,当0x x >时,()x 0F '>所以()F x 在区间()00,x 上单调递减,在区间()0x ,∞+上单调递增, 把001a=2x x -代入可得:()()20000min1F x F x x 2x lnx 2x ==+-+- 设()21G x x 2x lnx 2x =+-+-,则()211x 2x 20x xG =+++>'对x 0>恒成立, 所以()G x 在区间()0,∞+上单调递增,又()G 1=0所以当0x 1<≤时()G x 0≤,即当00x 1<≤时()0F x 0≤,又当2ax e -=时,()22a 42a 2a 1a a F x lne a 24e 2e 4---=-+++- 22a 11a 04e -⎛⎫=+≥ ⎪⎝⎭因此当00x 1<≤时,函数()F x 必有零点;即当00x 1<≤时,必存在2x 使得()*成立; 即存在12x ,x 使得函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同. 又由()1y 2x 0,1x=-在单调递增得,因此(]0001a=2x ,x 0,1x -∈所以实数a 的取值范围是(],1-∞. 【总结提升】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程;(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. 例4.(2019·山东高考模拟(文))已知函数ln 1()x f x x+=. (Ⅰ)证明:2()f x e x e ≤-; (Ⅱ)若直线(0)yax b a =+>为函数()f x 的切线,求b a的最小值.【答案】(1)见解析.(2) 1e-.【解析】(Ⅰ)证明:整理2()f x e x e ≤-得22ln 10(0)x e x ex x -++≤>令22()ln 1g x x e x ex =-++,2221(1)(21)()e x ex ex ex g x x x-++-+'==-当10,x e ⎛⎫∈ ⎪⎝⎭,()0g x '>,所以()g x 在1(0,)e上单调递增;当1,x e ⎛⎫∈+∞ ⎪⎝⎭,()0g x '<,所以()g x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,所以1()0g x g e ⎛⎫≤= ⎪⎝⎭,不等式得证.(Ⅱ)221(ln 1)ln ()x xf x x x-+-'==,设切点为()()00,x f x , 则02ln x a x -=,函数()f x 在()()00,x f x 点处的切线方程为()()()000y f x f x x x '-=- ()000200ln 1ln x x y x x x x +-=--,令0x =,解得002ln 1x b x +=, 所以()0002ln 1ln x x ba x +=-,令()()00002ln 1ln x x h x x +=-, 因为0a >,02ln 0x x ->,所以100<<x , ()()()()20000000022202ln 3ln 2ln 12ln 1ln 12ln ln 1ln ln ln x x x x x x x h x x x x +---++-'=-=-=-,当010,x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在10,e ⎛⎫⎪⎝⎭上单调递减;当1,1x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在1,1e ⎛⎫⎪⎝⎭上单调递增,因为100<<x ,()011h x h e e⎛⎫≥=- ⎪⎝⎭. 【思路点拨】(1)由2()f x e x e ≤-即为22ln 10(0)x e x ex x -++≤>,令22()ln 1g x x e x ex =-++,利用导数求得函数()g x 的单调性与最值,即可得到结论; (2)求得函数()f x 的导数,设出切点,可得020ln x a x -=的值和切线方程,令0x =,求得002ln 1x b x +=,令()()00002ln 1ln x x h x x +=-,利用导数求得函数()0h x 的单调性与最小值.对于恒成立问题,往往要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题. 例5.(2014·北京高考真题(文))已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】 【解析】(1)由3()23f x x x =-得2'()63f x x =-,令'()0f x =,得x =或x =, 因为(2)10f -=-,(2f -=()2f -=(1)1f =-, 所以()f x 在区间[2,1]-上的最大值为(f =(2)设过点P (1,t )的直线与曲线()y f x =相切于点00(,)x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为2000(63)()y y x x x -=--,因此2000(63)(1)t y x x -=--,整理得:32004630x x t -++=,设()g x =32463x x t -++,则“过点(1,)P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”,()g x '=21212x x -=12(1)x x -,()g x 与()g x '的情况如下:x(,0)-∞0 (0,1)1 (1,)+∞()g x '+0 -+()g xt+3所以,31t -<<-是()g x 的极大值,31t -<<-是()g x 的极小值, 当,即1t ≥-时,此时()g x 在区间(,0)-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当,(1,)P t 时,此时()g x 在区间(,0)-∞和(,0)-∞上分别至多有1个零点,所以()g x 至多有2个零点.当且(3,1)--,即时,因为,,所以()g x 分别为区间和()g x 上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是.(3)过点A (-1,2)存在3条直线与曲线()y f x =相切; 过点B (2,10)存在2条直线与曲线()y f x =相切; 过点C (0,2)存在1条直线与曲线()y f x =相切.例6. (2018·天津高考真题(理))已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 【答案】(Ⅰ)单调递减区间(),0-∞,单调递增区间为()0,+∞;(Ⅱ)证明见解析;(Ⅲ)证明见解析. 【解析】(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()x f x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1ea e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220xxlnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1xa xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t <因此,当1e a e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 例7.(2015·广东高考真题(理))(14分)(2015•广东)设a >1,函数f (x )=(1+x 2)e x﹣a . (1)求f (x )的单调区间;(2)证明f (x )在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行,(O 是坐标原点),证明:m≤﹣1.【答案】(1)f (x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)见解析 (3)见解析 【解析】(1)f'(x )=e x(x 2+2x+1)=e x(x+1)2∴f′(x )≥0,∴f(x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f (0)=1﹣a , ∵a>1.∴1﹣a <0∴f(0)<0.当x→+∞时,f (x )>0成立. ∴f(x )在(﹣∞,+∞)上有且只有一个零点 (3)证明:f'(x )=e x(x+1)2,设点P (x 0,y 0)则)f'(x )=e x0(x 0+1)2,∵y=f(x )在点P 处的切线与x 轴平行,∴f'(x 0)=0,即:e x0(x 0+1)2=0, ∴x 0=﹣1将x 0=﹣1代入y=f (x )得y 0=.∴,∴…10分令;g (m )=e m﹣(m+1)g (m )=e m﹣(m+1), 则g'(m )=e m﹣1,由g'(m )=0得m=0. 当m∈(0,+∞)时,g'(m )>0 当m∈(﹣∞,0)时,g'(m )<0 ∴g(m )的最小值为g (0)=0…12分 ∴g(m )=e m ﹣(m+1)≥0 ∴e m≥m+1∴e m(m+1)2≥(m+1)3即: ∴m≤…14分例8.(2019·四川棠湖中学高考模拟(文))已知抛物线2:4C x y = ,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB ,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程; (2)证明:以AB 为直径的圆恒过点M. 【答案】(1)22(1)4x y +-=(2)见证明 【解析】(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=. (1) 令2(4)440k ∆=-⨯=,解得1k =±. 代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =. 故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,)4x A x ,222(,)4x B x ,所以12MA x k =,22MB xk =, 切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-. ① 又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-. ②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+,2220(,1)4x MB x x =-+,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦. 将1202,x x x +=124x x =-代入,得0MA MB ⋅=. 所以以AB 为直径的圆恒过点M .【压轴训练】1.(2019·湖南高考模拟(理))过抛物线()220x py p =>上两点,A B 分别作抛物线的切线,若两切线垂直且交于点()12P -,,则直线AB 的方程为( ) A .122y x =+ B .134y x =+ C .132y x =+ D .124y x =+ 【答案】D 【解析】由22x py =,得22x y p=,∴'x y p =.设()()1122,,,A x y B x y ,则1212','x x x x x x y y p p====,抛物线在点A 处的切线方程为2112x x y x p p=-, 点B 处的切线方程为2222x x y x p p=-, 由21122222x x y x p px x y x p p⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y p +⎧=⎪⎪⎨⎪=⎪⎩, 又两切线交于点()1,2P -,∴12121222x x x x p+⎧=⎪⎪⎨⎪=-⎪⎩,故得12122,4x x x x p +==- (*). ∵过,A B 两点的切线垂直,∴121x x p p⋅=-, 故212x x p =-,∴4p =,故得抛物线的方程为28x y =.由题意得直线AB 的斜率存在,可设直线方程为y kx b =+, 由28y kx bx y=+⎧⎨=⎩消去y 整理得2880x kx b --=, ∴12128,8x x k x x b +==- (**),由(*)和(**)可得14k =且2b =, ∴直线AB 的方程为124y x =+.故选:D .2.(2019·山东高考模拟(文))设函数的图象上任意一点处的切线为,若函数的图象上总存在一点,使得在该点处的切线满足,则的取值范围是__________.【答案】【解析】,即又,即本题正确结果:3.(2019·山东高考模拟(理))已知函数()2f x x 2ax =+,()2g x 4a lnx b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()a 0,∞∈+时,实数b 的最大值是______.【答案】e 【解析】 设()00,P x y ,()'22f x x a =+,()24'a g x x=.由题意知,()()00f x g x =,()()00''f x g x =,即2200024x ax a lnx b +=+,①200422a x a x +=,②解②得0x a =或02(x a =-舍),代入①得:2234b a a lna =-,()0,a ∞∈+,()'684214b a alna a a lna =--=-,当140,a e ⎛⎫∈ ⎪⎝⎭时,'0b >,当14,a e ∞⎛⎫∈+ ⎪⎝⎭时,'0b <.∴实数b 的最大值是1144342b e e elne e ⎛⎫=-= ⎪⎝⎭. 故答案为:2e .4.(2013·北京高考真题(理))设l 为曲线C :在点(1,0)处的切线.(I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 【答案】(I)(II)见解析【解析】 (1)设f(x)=,则f′(x)=所以f′(1)=1,所以L 的方程为y =x -1.(2)证明:令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于g(x)>0(∀x>0,x≠1). g(x)满足g(1)=0,且g′(x)=1-f′(x)=.当0<x <1时,x 2-1<0,ln x <0,所以g′(x)<0,故g(x)单调递减; 当x>1时,x 2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增. 所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C 在直线L 的下方.5.(2015·天津高考真题(文))已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.【答案】(Ⅰ)的单调递增区间是,单调递减区间是;(Ⅱ)见试题解析;(Ⅲ)见试题解析.【解析】(Ⅰ)由,可得的单调递增区间是,单调递减区间是;(Ⅱ),,证明在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有;(Ⅲ)设方程的根为,可得,由在单调递减,得,所以.设曲线在原点处的切线为方程的根为,可得,由在在单调递增,且,可得所以.试题解析:(Ⅰ)由,可得,当,即时,函数单调递增;当,即时,函数单调递减.所以函数的单调递增区间是,单调递减区间是.(Ⅱ)设,则,曲线在点P处的切线方程为,即,令即则.由于在单调递减,故在单调递减,又因为,所以当时,,所以当时,,所以在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有.(Ⅲ)由(Ⅱ)知,设方程的根为,可得,因为在单调递减,又由(Ⅱ)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.6.(2013·福建高考真题(文))已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(1)由,得.又曲线在点处的切线平行于轴,得,即,解得.(2),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值当,在处取得极小值,无极大值.(3)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(1)(2)同解法一.(3)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解, 解得的取值范围是.综上,得的最大值为.7.(2013·北京高考真题(文))已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【答案】(Ⅰ)求两个参数,需要建立两个方程.切点在切线上建立一个,利用导数的几何意义建立另一个,联立求解.(Ⅱ)利用导数分析曲线的走势,数形结合求解.【解析】由f(x)=x2+xsin x+cos x,得f′(x)=2x+sin x+x(sin x)′-sin x=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1. (5分)(2)设g(x)=f(x)-b=x2+xsin x+cos x-b.令g′(x)=f′(x)-0=x(2+cos x)=0,得x=0.当x变化时,g′(x),g(x)的变化情况如下表:所以函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,且g(x)的最小值为g(0)=1-b.①当1-b≥0时,即b≤1时,g(x)=0至多有一个实根,曲线y=f(x)与y=b最多有一个交点,不合题意.②当1-b<0时,即b>1时,有g(0)=1-b<0,g(2b)=4b2+2bsin 2b+cos 2b-b>4b-2b-1-b>0.∴y=g(x)在(0,2b)内存在零点,又y =g(x)在R 上是偶函数,且g(x)在(0,+∞)上单调递增, ∴y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯一零点. 故当b>1时,y =g(x)在R 上有两个零点, 则曲线y =f(x)与直线y =b 有两个不同交点.综上可知,如果曲线y =f(x)与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).(12分)8.(2019·北京高考模拟(文))已知函数32()f x x ax =-.(Ⅰ)当3a =时,求函数()f x 在区间]2,0[上的最小值;(Ⅱ)当3a >时,求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切. 【答案】(I )4-.(Ⅱ)见解析. 【解析】(Ⅰ)当a =3时,f (x )=x 3﹣3x 2,f '(x )=3x 2﹣6x =3x (x ﹣2). 当x ∈[0,2]时,f '(x )≤0, 所以f (x )在区间[0,2]上单调递减.所以f (x )在区间[0,2]上的最小值为f (2)=﹣4.(Ⅱ)设过点P (1,f (1))的曲线y =f (x )的切线切点为(x 0,y 0),f '(x )=3x 2﹣2ax ,f (1)=1﹣a ,所以()()()32000200001321y x ax y a x ax x ⎧=-⎪⎨--=--⎪⎩,.所以()3200023210x a x ax a -+++-=.令g (x )=2x 3﹣(a +3)x 2+2ax +1﹣a ,则g '(x )=6x 2﹣2(a +3)x +2a =(x ﹣1)(6x ﹣2a ), 令g '(x )=0得x =1或3ax =, 因为a >3,所以1a >.∴g (x )的极大值为g (1)=0,g (x )的极小值为()103a g g ⎛⎫=⎪⎝⎭<, 所以g (x )在3a ,⎛⎫-∞ ⎪⎝⎭上有且只有一个零点x =1.因为g (a )=2a 3﹣(a +3)a 2+2a 2+1﹣a =(a ﹣1)2(a +1)>0,所以g (x )在3a ⎛⎫+∞ ⎪⎝⎭,上有且只有一个零点. 所以g (x )在R 上有且只有两个零点.即方程()3200023210x a x ax a -+++-=有且只有两个不相等实根,所以过点P (1,f (1))恰有2条直线与曲线y =f (x )相切. 9.(2019·四川高考模拟(理))已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.【答案】(1)见解析;(2).【解析】 (1)由题意,可得,,令,得. ①当时,在上单调递减,∴.②当时,在上单调递减,在上单调递增,∴.综上,当时,,当时,.(2)设函数在点处与函数在点处有相同的切线,则,∴,∴,代入得.∴问题转化为:关于的方程有解,设,则函数有零点,∵,当时,,∴. ∴问题转化为:的最小值小于或等于0.,设,则当时,,当时,.∴在上单调递减,在上单调递增,∴的最小值为.由知,故.设,则,故在上单调递增,∵,∴当时,,∴的最小值等价于.又∵函数在上单调递增,∴.10.(2019·湖南高考模拟(理))设函数()()()22,42x f x e ax g x x x =+=++.(Ⅰ)讨论()y f x =的极值;(Ⅱ)若曲线()y f x =和曲线()y g x =在点()0,2P 处有相同的切线,且当2x ≥-时,()()mf x g x ≥,求m 的取值范围 .【答案】(Ⅰ)见解析;(Ⅱ)21,e ⎡⎤⎣⎦.【解析】 (Ⅰ)∵()()2xf x e ax =+,∴()()2xf x eax a '=++.①当0a =时,()20xf x e '=>恒成立,所以()f x 在R 上单调递增,无极值.②当0a >时,由()0f x '=得2a x a+=-, 且当2a x a +<-时,()0,()f x f x '<单调递减;当2a x a+>-时,()0,()f x f x '>单调递增. 所以当2a x a+=-时,()f x 有极小值,且()2=a a f x ae +--极小值,无极大值. ③当0a <时,由()0f x '=得2a x a+=-,且当2a x a +<-时,()0,()f x f x '>单调递增;当2a x a+>-时,()0,()f x f x '<单调递减.所以当2a x a+=-时,()f x 有极大值,且()2=a a f x ae +--极大值,无极小值. 综上所述,当0a =时,()f x 无极值; 当0a >时,()2=a af x ae +--极小值,无极大值; 当0a <时, ()2=a af x ae +--极大值,无极小值.(Ⅱ)由题意得()2+4g x x '=,∵()y f x =和()y g x =在点()0,2P 处有相同的切线, ∴(0)(0)f g ='',即24a +=,解得2a =, ∴()()22xf x ex =+.令()()()()222(42)xF x mf x g x me x x x =-=+-++,则()()()124xF x me x '=-+,由题意可得()0220F m =-≥,解得1m ≥. 由()0F x '=得12ln ,2x m x =-=-.①当ln 2m ->-,即21m e ≤<时,则120x -<≤,∴当()12,x x ∈-时,()0,()F x F x '<单调递减;当()1,x x ∈+∞时,()0,()F x F x '>单调递增, ∴()()2,F x -+∞在上的最小值为()()2112111224220F x x x x x x =+---=-+≥,∴()()mf x g x ≥恒成立.②当ln 2m -=-,即2m e =时,则()()2()124x F x ex +'=-+,∴当2x ≥-时,()0,()F x F x '≥在()2,-+∞上单调递增, 又(2)0F -=,∴当2x ≥-时,()0F x ≥,即()()mf x g x ≥恒成立. ③当ln 2m -<-,即2m e >时, 则有()222(2)2220F me em e --=-=--+<-,从而当2x ≥-时,()()g x mf x ≤不可能恒成立.综上所述m 的取值范围为21,e ⎡⎤⎣⎦.11.(2019·天津高考模拟(理))已知函数()()()()21ln f x x x x a a R =---∈.(1)若()f x 在()0,∞+上单调递减,求a 的取值范围;(2)若()f x 在1x =处取得极值,判断当(]0,2x ∈时,存在几条切线与直线2y x =-平行,请说明理由; (3)若()f x 有两个极值点12,x x ,求证:1254x x +>. 【答案】(Ⅰ)(],1-∞;(Ⅱ)答案见解析;(Ⅲ)证明见解析. 【解析】(Ⅰ)由已知,()()11ln 2ln 2120x f x x x a x x a x x-=+--=--++≤'恒成立 令()1ln 212g x x x a x=--++,则()()()222221111212(0)x x x x g x x x x x x-+--++='=+-=>, ()210x -+<,令()'0g x >,解得:01x <<,令()'0g x <,解得:1x >,故()g x 在()0,1递增,在()1,+∞递减,()()max 122g x g a ∴==-,由()'0f x ≤恒成立可得1a ≤.即当()f x 在()0,+∞上单调递减时,a 的取值范围是(],1-∞. (Ⅱ)()f x 在1x =处取得极值,则()’10f =,可得1a =. 令()1ln 232f x x x x -'=-+=-,即 1ln 250x x x--+=. 设()1ln 25h x x x x =--+,则()()()222221111212x x x x h x x x x x-+--++='=+-=. 故()h x 在()0,1上单调递增,在()1,2上单调递减, 注意到()55520h eee --=--<,()()112,2ln202h h ==+>, 则方程1ln 250x x x--+=在(]0,2内只有一个实数根, 即当(]0,2x ∈时,只有一条斜率为2-且与函数()f x 图像相切的直线. 但事实上,若1a =,则()1'ln 23f x x x x=--+, ()()()2121''x x f x x--+=,故函数()'f x 在区间()0,1上单调递增,在区间()1,2上单调递减, 且()'101230f =--+=,故函数()'0f x ≤在区间(]0,2上恒成立, 函数()f x 在区间(]0,2上单调递减,即函数不存在极值点, 即不存在满足题意的实数a ,也不存在满足题意的切线. (Ⅲ)若函数有两个极值点12,x x ,不妨设120x x <<, 由(Ⅰ)可知1a >,且:()11111ln 212f x x x a x -+'=-+①, ()22221ln 212f x x x a x -+'=-+②, 由①-②得:()()112112122121221211ln20,2ln 0,2x x x x x x x x x x x x x x x x ⎛⎫-+--=∴--=->∴< ⎪⎝⎭, 即12112x x e>> , 由①+②得:()()12121212ln 2240x x x x x x a x x ++--++=, ()121212ln 24124512242x x a x x x x ++-++∴+=>=++. 12.(2019·辽宁高考模拟(理))已知a R ∈,函数()()2ln ,0,6.f x a x x x =+∈()I 讨论()f x 的单调性;()II 若2x -是()f x 的极值点,且曲线()y f x =在两点()()()()1122,,,P x f x Q x f x 12x x 处的切线相互平行,这两条切线在y 轴上的截距分别为12,b b ,求12b b -的取值范围 【答案】()I 当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增;()II 2ln 2,03⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)()2222a ax f x x x x-'=-+=.()0,6x ∈∴ ①当0a ≤时,()0f x '<在()0,6x ∈上恒成立. ∴ ()f x 在()0,6上单调递减,无单调递增区间;②当0a >,且26a≥,即103≤a <时,()0f x '<在()0,6x ∈上恒成立.∴ ()f x 在()0,6上单调递减,无单调递增区间;③当0a >,且26a <,即13a >时,在20,x a ⎛⎫∈ ⎪⎝⎭上,()0f x '<,在2,6x a ⎛⎫∈ ⎪⎝⎭上,()0f x '>,∴ ()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增.综上,当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫⎪⎝⎭上单调递增. (Ⅱ)2x =是()f x 的极值点,∴由()1可知22,1a a=∴= 设在()()11.P x f x 处的切线方程为()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭在()()22,Q x f x 处的切线方程为()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭ ∴若这两条切线互相平行,则2211222121x x x x -+=-+,121112x x ∴+= 令0x =,则1114ln 1b x x =+-,同理,2224ln 1b x x =+- 【解法一】211112x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ 111211114ln ln 22x x x ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭设()182ln ln 2g x x x x ⎛⎫=--+-⎪⎝⎭,11,43x ⎛⎫∈ ⎪⎝⎭()2211168180122x x g x x x x x-+'∴=--=<--,()g x ∴在区间11,43⎛⎫ ⎪⎝⎭上单调递减,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭即12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法二】12122x x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭1182ln 12x x ⎛⎫-+- ⎪⎝⎭令()1182ln 12x g x x ⎛⎫=-+- ⎪⎝⎭,其中()3,4x ∈ ()()2228181622x x g x x x x x -+'∴=-+=-- ()()22402x x x -=>-∴函数()g x 在区间()3,4上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭.∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法三】()12122x x x x =+121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ ()2111224ln ·x x x x x x -+ ()2112122ln x x x x x x -=++ 12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭=++设()()21ln 1x g x x x-=++,则()()()()22214111x g x x x x x --'=+=++ 11211,122x x x ⎛⎫=-∈ ⎪⎝⎭,()0g x ∴'>,∴函数()g x 在区间1,12⎛⎫ ⎪⎝⎭上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭ ∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭.13.(2019·安徽高考模拟(文))已知函数()ln x f x x =+,直线l :21y kx =-.(Ⅰ)设(,)P x y 是()y f x =图象上一点,O 为原点,直线OP 的斜率()k g x =,若()g x 在(,1)x m m ∈+(0)m 上存在极值,求m 的取值范围;(Ⅱ)是否存在实数k ,使得直线l 是曲线()y f x =的切线?若存在,求出k 的值;若不存在,说明理由; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由. 【答案】11e m e k -<<=Ⅰ,(Ⅱ),(Ⅲ)见解析 【解析】 (Ⅰ)∵()ln (0)y x x g x x x x +==>,∴()1ln 0xg x x='-=,解得x e =. 由题意得: 01m e m <<<+,解得1e m e -<<.(Ⅱ)假设存在实数k ,使得直线是曲线()y f x =的切线,令切点()00,P x y , ∴切线的斜率0121k x =+. ∴切线的方程为()()00001ln 1y x x x x x ⎛⎫-+=+- ⎪⎝⎭,又∵切线过(0,-1)点,∴()()000011ln 10x x x x ⎛⎫--+=+- ⎪⎝⎭.解得01x =,∴22k =, ∴1k =.(Ⅲ)由题意,令ln 21x x kx +=-, 得 ln 12x x k x++=.令()ln 1(0)2x x h x x x ++=>, ∴()2ln 2xh x x-=',由()0h x '=,解得1x =. ∴()h x 在(0,1)上单调递增,在()1,+∞上单调递减,∴()()max 11h x h ==,又0x →时,()h x →-∞;x →+∞时,()1ln 11222x h x x +=+→, {}1,12k ⎛⎤∴∈-∞⋃ ⎥⎝⎦时,只有一个交点;1,12k ⎛⎫∈ ⎪⎝⎭时,有两个交点;()1,k ∈+∞时,没有交点.14. (2019·河北高考模拟(理))已知函数()xf x e =,()g x alnx(a 0)=>. ()1当x 0>时,()g x x ≤,求实数a 的取值范围;()2当a 1=时,曲线()y f x =和曲线()y g x =是否存在公共切线?并说明理由.【答案】(1)(]0,e ;(2)存在公共切线,理由详见解析.【解析】()1令()()ln m x g x x a x x =-=-,则()1a a x m x x x-=-='. 若0x a <<,则()0m x '>,若x a >,则()0m x '<.所以()m x 在()0,a 上是增函数,在(),a +∞上是减函数.所以x a =是()m x 的极大值点,也是()m x 的最大值点,即()max ln m x a a a =-.若()g x x ≤恒成立,则只需()max ln 0m x a a a =-≤,解得0a e <≤.所以实数a 的取值范围是(]0,e . ()2假设存在这样的直线l 且与曲线()y f x =和曲线()y g x =分别相切与点()()1122,,,ln x A x e B x x . 由()x f x e =,得()xf x e '=. 曲线()y f x =在点A 处的切线方程为()111x x y e e x x -=-,即()1111x xy e x x e =+-. 同理可得,曲线()y g x =在点B 处的切线方程为()2121ln y x x x x -=-,即221ln 1y x x x =+-. 所以()11212111x x e x x e lnx ⎧=⎪⎨⎪-=-⎩则()1111lne 1x x x e --=-,即()111110x x e x -++= 构造函数()()x11,h x x e x =-++ x R ∈ 存在直线l 与曲线()y f x =和曲线()y g x =相切,等价于函数()()x11h x x e x =-++在R 上有零点对于()1xh x xe ='-. 当0x ≤时,()0h x '>,()h x 在上单调递增.当0x >时,因为()()()'10x h x x e +'=-<,所以()h x '在()0,+∞上是减函数.又()()010,110h h e ''=>=-<,,所以存在()00,1x ∈,使得()00010x h x x e'=-=,即001x e x =. 且当()000,x x ∈,()0h x '>时,当()00,x x ∈+∞时,()0h x '<.综上,()h x 在()00,x 上是增函数,在()0,x +∞上是减函数.所以()0h x 是()h x 的极大值,也是最大值,且()()()()0000000max 0011111?10x h x h x x e x x x x x x ==-++=-++=+>. 又()22310h e --=-<,()2230h e =-+<,所以()h x 在()02,x -内和()0,2x 内各有一个零点. 故假设成立,即曲线()y f x =和曲线()y g x =存在公共切线.15.(2019·广西高考模拟(理))已知函数1()ln f x x mx x =--在区间(0,1)上为增函数,m R ∈.(1)求实数m 的取值范围; (2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求+a b 的最小值.【答案】(1)2m ≤;(2)+a b 的最小值为-1.【解析】(1)∵()1ln f x x mx x =--, ∴()211f x m x x=+-'. 又函数()f x 在区间()0,1上为增函数,∴()2110f x m x x =-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭, 则当1x =时,()t x 取得最小值,且()2min t x =,∴2m ≤,∴实数m 的取值范围为(],2∞-.(2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭, 则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()11min h x h ==-,∴a b +的最小值为1-.16.(2019·四川高考模拟(理))已知函数()ln x a f x x e +=-.(1)若曲线()f x 在点()()1,1f 处的切线与x 轴正半轴有公共点,求a 的取值范围;(2)求证:11a e>-时,()1f x e <--.【答案】(1)1a <-;(2)证明见解析.【解析】(1)函数f (x )=lnx ﹣e x +a 的导数为f ′(x )=1x﹣e x +a .曲线f (x )在点(1,f (1))处的切线斜率为1﹣e 1+a ,切点为(1,﹣e 1+a ),可得切线方程为y +e 1+a =(1﹣e 1+a )(x ﹣1),可令y =0可得x =111a e +-,由题意可得111a e+->0, 可得e 1+a <1,解得a <﹣1; (2)证明:f ′(x )=1x ﹣e x +a .设g (x )=f ′(x )=1x ﹣e x +a . 可得g ′(x )=﹣(21x +e x +a ),当x >0时,g ′(x )<0,g (x )递减; 由a >1﹣1e ,e x +a >e x .若e x >1x ,g (x )<1x﹣e x <0, 当0<x <1时,e x +a <e 1+a .若e 1+a <1x,即x <e ﹣1﹣a , 故当0<x <e ﹣1﹣a 时,g (x )>0,即g (x )=f ′(x )有零点x 0,当0<x <x 0时,f ′(x )>0,f (x )递增;当x >x 0时,f ′(x )<0,f (x )递减,可得f (x )≤f (x 0),又f (x 0)=lnx 0﹣e x 0+a ,又e x 0+a =01x , 可得f (x 0)=lnx 0﹣01x ,在x 0>0递增, 又a =ln 01x ﹣x 0=﹣(lnx 0+x 0), a >1﹣1e ⇔﹣(lnx 0+x 0)>1﹣1e =﹣(ln 1e +1e), 所以lnx 0+x 0<ln 1e +1e,由于lnx 0+x 0递增, 可得0<x 0<1e ,故f (x )≤f (x 0)<f (1e )=﹣1﹣e .。
山东省2014高考压轴卷数学(文)(附答案)(2) (5)
2014山东省高考压轴卷文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A∩B 中元素的个数为( )2. 复数21z ()i=-,则复数1z +在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分也非必要条件4. 设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,Sk+2﹣S k =36,则k 的值为()5.如图是某一几何体的三视图,则这个几何体的体积为( )6.一个算法的程序框图如图所示,如果输入的x 的值为2014,则输出的i 的结果为( )7.函数f (x )=2sin (ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其 中A ,B 两点之间的距离为5,则f (x )的递增区间是( )A.[6K-1,6K+2](K ∈Z)B. [6k-4,6k-1] (K ∈Z)C.[3k-1,3k+2] (K ∈Z)D.[3k-4,3k-1] (K ∈Z)8.在约束条件121y xy x x y ≤⎧⎪⎪≥⎨⎪+≤⎪⎩下,目标函数12z x y =+的最大值为( )(A) 14 (B)34(C) 56 (D) 539. 直线l 经过抛物线y 2=4x 的焦点,且与抛物线交于A ,B 两点,若AB 的中点横坐标为3,则线段AB 的长为( )10. 已知函数f(x)=ln(e x﹣1)(x>0)()11. 某校从参加高二年级学业水平测试的学生中抽出100名学生,其数学成绩的频率分布直方图如图所示.其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90) ,[90,100].则成绩在[80 ,100]上的人数为__________.12.设函数f(x)=,若函数y=f(x)﹣k存在两个零点,则实数k的取值范围是________________..13. 设数列是公差为1的等差数列,且a1=2,则数列{lga n}的前9项和为_______________.14. 设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是________________.15.若正数x,y满足3x+y=5xy,则4x+3y的最小值是__________________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.在△ABC 中,已知A=4π,5cos B =. (I)求cosC 的值;(Ⅱ)若D 为AB 的中点,求CD 的长.17.如图,在四棱台ABCD ﹣A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2. (1)求证:B 1B ∥平面D 1AC ;(2)求证:平面D 1AC ⊥平面B 1BDD 1.18.某校举行环保知识竞赛,为了了解本次竞赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题: (Ⅰ)求a b 、的值;(Ⅱ)若从成绩较好的第3、4、5 组中按分层抽样的方法抽取6人参加社区志愿者活动,并从中选出2人做负责人,求2人中至少有1人是第四组的概率.19. 设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T .20. 给定椭圆C :,称圆心在坐标原点O ,半径为的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是.(1)若椭圆C 上一动点M 1满足||+||=4,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点P (0,t )(t <0)作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为2,求P 点的坐标.21. 已知函数f (x )=alnx+1(a >0)(Ⅰ)若a=2,求函数f (x )在(e ,f (e ))处的切线方程; (Ⅱ)当x >0时,求证:f (x )﹣1≥a.2014山东省高考压轴卷 文科数学参考答案1. C.由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A∩B={0,1,2}∩{0,2,4}={0,2}. 所以A∩B 中元素的个数为2. 故选C . 2. D.因为22211()1(1)22i i z ii i i -====----,所以1112z i +=-,所以复数1z +在复平面上对应的点位于第四象限. 3. A.当//αβ时,由l ⊥平面α得,l β⊥,又直线m ∥平面β,所以l m ⊥。
衡水中学2014年高考压轴卷二(理数)详解
河北衡水中学2014年高考压轴卷(理数详解)1、解析:A2110211ln(21)050505x x x x x x -><-<⎧⎧-<⇒⎨⎨-<->-⎩⎩或解得(1,5)A =,B 集合元素相当于如图所示区域中的点与原点连线斜率的倒数,根据所示区域可知(2,12)B =,(1,12)A B ⋃=,第一小题就综合考察了解不等式,对数的性质与简单的线性规划问题2、解析:C 22(1)11(1)(1)i z i i i i +===----+,1z i =-+(注意分母有理化的本质,不一定乘共轭复数)3、解析:D 注意命题的否定(只否定结论,具体到全称命题与特称命题的否定是将全称量词或者存在量词先否定,再对结论加以否定,A 命题的否定22,320x x x ∃≥-+<)与否命题的区别(条件结论同时否定,B 命题的否命题是21,1x x ≠≠),系统抽样是等距的,根据题意知间距为11,且分5组,因此最多为59人,抽取时剔除部分),D 选项根据正态分布关于X=1对称,因此(02)2(01)0.8P x P x ≤≤=≤≤=4、解析:C 注意循环条件的判断,将运算结果写出第一次2,1,S x ==-第二次1,4S x ==-第三次3,7S x =-=-第四次3,7,10,10S x S x =-=-=-=-第五次20,S =-(此时满足条件,退出循环)5、解析:A 考察等差数列基本运算110181544,294(0),722d a a a d d a a d ++=+=>=+=> 6、解析:A 根据三视图判断直三棱锥的底面是一个等腰直角形,因此球心为O 点,根据球心到球上各点距离相等,可知O 为三棱锥高所在三角形的重心(根据重心到顶点距离与对应重点距离之比2:1),得半径26443S R ππ==7、解析:C 主要考察对数性质及分类讨论10,ln e x x <<则0<lgx<1<,因此有先分两类(同底数比较)ln(ln )ln(lg ),lg(ln )lg(lg )x x x x >>,同时结合图像可知,ln ,lg y x y x ==当x>1时,有ln(ln )lg(ln )x x >同时当x<1时有,lg(lg )ln(lg )x x >,综合得:ln(ln )lg(ln )lg(lg )ln(lg ),x x x x >>>即有a d b c >>>8、解析:D ()(),sin()sin(2),sin sin ,sin 02f f πππϕπϕϕϕϕ<+<+-<>,又()()6f x f π≤则有()sin()1,,63326f k k πππππϕϕπϕπ=+=±+=+=+当k 为偶数时,sin 0ϕ>满足条件,因此(21,)6k k n n N πϕπ=+=+∈,()f x 非奇非偶,且11()sin 2012f ππ==,同有722()sin(),()sin()01056556f f πππππππ=++=+>则 22sin()sin()5656ππππ-+<+9、解析:C 设1(0,)F c -,渐近线方程ay x b=,则2F 及对称点所在直线方程为0bx ay ac +-=因此有1F,2cc a== 10、解析:C 由于两端不排,因此剩下7个柜台,三个展品相当于在四个柜台插空35A ,其中相隔超过两个柜台的插空有33212A =则满足条件的排法有3353248A A -=11、解析:D注意数形结合设动点(,0)(0,),B a C b BC ==因此动圆方程外围轨迹(BC为直径)为222x y +=结合图像知,当动点P 到O 点距离最短时,切线也最短,对应的四边形面积也最小,min 4,OP PM ====8S PM OM ==12、解析:A 通过观察两个式子,有22222211()()()m m mm m mf m m f m m e f m m e e e e --+----==因此构造函数()()x g x e f x =,'()()'()(()'())0x x x g x e f x e f x e f x f x =+=+<即函数()g x 单调递减,又有21m m -<(根据二次函数性质2()1f m m m =--恒小于0成立),因此有222221()()(1)()(1)(1)m m m m f m m g m m g ef m m ef f e--+-->->⇒>即13、解析:考察三角形面积公式sin ,24sin 3S a b a b π=<>=⨯⨯=14、解析:考察的等差数列的相关公式及分类讨论155285155()552,32a a S a a a a a +=+⇒=⋅=,1532a a a +=,352a a =因此532aq a ==即24b =或者3251,12a qb a === 15、解析:主要结合抛物线性质(2,0),4,2,4F AF A -=-则(),A 关于准线2x =的对称点为'(6,4)A 因此'PA PO OA +==解析:考察分类讨论及余弦函数的运算及数列求和,1(21)(1,2...)(41)cos 1(2)n n k a k k k n k π=-⎧==⎨-+=⎩当当424(83)cos 1(87)cos016k k a a k k π-+=+++++=因此60135924685860...()()..()301615120S a a a a a a a a a =++++++++++=⨯+⨯=。
14年高考数学压轴题系列训练含答案及解析详解
14年高考数学压轴题系列训练含答案及解析详解1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P 作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.解:(1)设切点A、B坐标分别为,∴切线AP的方程为:切线BP的方程为:解得P点的坐标为:所以△APB的重心G的坐标为,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则∴同理有∴∠AFP=∠PFB.方法2:①当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得∠AFP=∠PFB.②当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,∴②且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范围是(12,+∞).于是,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,∴又由N(1,3)在椭圆内,∴∴的取值范围是(12,+∞).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,∴于是由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦于是,由④、⑥、⑦式和勾股定理可得故当>12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN|·|DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边∴⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD垂直平分AB,∴直线CD方程为,代入椭圆方程,整理得③将直线AB的方程x+y-4=0,代入椭圆方程,整理得⑤解③和⑤式可得不妨设∴计算可得,∴A在以CD为直径的圆上.又B为A关于CD的对称点,∴A、B、C、D四点共圆.(注:也可用勾股定理证明AC⊥AD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即于是有所有不等式两边相加可得由已知不等式知,当n≥3时有,∵证法2:设,首先利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k≥3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且(Ⅲ)∵则有故取N=1024,可使当n>N时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则(Ⅱ)5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范围.本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(Ⅱ)由当时,,此时不等式无解.当时,,解得.因此,原不等式的解集为.(Ⅲ)①②ⅰ)ⅱ)6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是D f、D g的函数y=f(x) 、y=g(x),(1) 若函数f(x)=,g(x)=x2,x∈R,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x∈(-∞,1)∪(1,+∞)1 x=1(2) 当x≠1时, h(x)= =x-1++2,若x>1时, 则h(x)≥4,其中等号当x=2时成立若x<1时, 则h(x)≤ 0,其中等号当x=0时成立∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)(3)令f(x)=sin2x+cos2x,α=则g(x)=f(x+α)= sin2(x+)+cos2(x+)=cos2x-sin2x,于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, α=,g(x)=f(x+α)= 1+sin2(x+π)=1-sin2x,于是h(x)= f(x)·f(x+α)= (1+sin2x)( 1-sin2x)=cos4x.7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,P n(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, A N为A N-1关于点P N的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),A1为P2关于点的对称点A2的坐标为(2+x,4+y),∴={2,4}.(2) ∵={2,4},∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).∴当x∈(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得=2()=2({1,2}+{1,23}+┄+{1,2n-1})=2{,}={n,}。
2014辽宁省高考压轴卷 数学理试题 Word版含解析
辽宁省高考压轴卷 数学试卷(理)第I 卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =( )A {13}x x -≤<B {13}x x -<<C {1}x x <-D {3}x x >2.已知复数20141i z i=+,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.“4a <-”是“函数()3f x ax =+在区间[-1,1]上存在零点”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.某大学生在22门考试中,所得分数如下茎叶图所示,则此学生考试分数的极差与中位数之和为A .117B .118C .118.5D .119.55.在ABC ∆中,90C =,且3CA CB ==,点M 满足2,BM MA CM CB =⋅则等于( )A .2B .3C .4D .66. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 ( ) A .2π-=x B .4π-=x C .8π=x D .4π=x7. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假命题是 A .若a ∥b ,则α∥β B .若αβ⊥,则a b ⊥ C .若,a b 相交,则,αβ相交 D .若,αβ相交,则,a b 相交 8.阅读右边的程序框图,输出的结果s 的值为A .0 BCD.-9.实数y x ,满足条件2,4,20,x x y x y c ≥⎧⎪+≤⎨⎪-++≥⎩目标函数3z x y =+的最小值为5,则该目标函数y x z +=3的最大值为( )A. 10B. 12C. 14D. 15410. 如图,直角坐标系xOy 所在的平面为α,在锐二面角βα--y 的β面上的曲线1C 在α上的正射影为曲线2C .2C 在xOy 系下的方程为:()10122≤≤=+x y x ,平面α上的直线1:-=x y l 与平面β所成角的正弦值为46,曲线1C 的离心率为e ,则 A .1=e B .1>e C .23=e D .21=e11.设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .712.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .74,63ππ⎛⎫⎪⎝⎭B .43,32ππ⎛⎫⎪⎝⎭C .74,63ππ⎡⎤⎢⎥⎣⎦ D .43,32ππ⎡⎤⎢⎥⎣⎦ 第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014数学 压轴题(2)
1.已知函数84)(2--=kx x x f 在区间)20,5(上既没有最大值也没有最小值,则实数k 的取值范围是 .
.A ),160[∞+ .B ]40,(-∞
.C ),160[]40,(∞+-∞ .D ),80[]20,(+∞-∞
12.已知24()2(0)f x x x x x
=++>,那么()f x 的最小值是 .
7.A 10.B .C .D 36
4 13.已知1()426+=-+x x f x ,那么()f x 的最小值是 .
5.A 7.B 8.C
6.D .14下列说法中:
①若函数2
()(2)2([21,4])=+++∈-+f x ax a b x x a a 是偶函数,则实数2=b ;
②()f x 表示 22x -+与2242x x -++中的较小者,则函数()f x 的最大值为1; ③已知函数()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f xy xf y yf x =+,则()f x 是奇函数;
④设lg 2,lg3a b ==那么可以得到5log 6;1a b a
+=- ⑤函数22()log (3+2)f x x x =-的值域是().2,0
其中正确..
说法的序号是__________(注:把你认为是正确的序号都填上). .15定义运算“*”如下:2,*,,a a b a b b a b
≥⎧=⎨<⎩则函数()(1*)(2*)(f x x x x x =⋅-∈[2,2])-的最大值等于________
8.A 6.B 4.C 1.D
16. 给出下列四个命题:
①函数||x y =与函数2)(x y =表示同一个函数;
②奇函数的图像一定通过直角坐标系的原点;
③函数2)1(3-=x y 的图像可由2
3x y =的图像向右平移1个单位得到;
④若函数)(x f 的定义域为]2,0[,则函数)2(x f 的定义域为]4,0[;
⑤设函数()x f 是在区间[]b a ,上图像连续的函数,且()()0<⋅b f a f ,则方程()0=x f 在区间[]b a ,上至少有一实根.
其中正确命题的序号是 .(填上所有正确命题的序号)
17.
定义两种运算a b ⊕
a b ⊗=2()(2)2
x f x x ⊕=⊗-为 .A 奇函数 .B 偶函数 .C 奇函数且为偶函数 .D 非奇函数且非偶函数
18.已知)(x f 在R 上是奇函数,且满足)()4(x f x f =+,当()2,0∈x 时,22)(x x f =,则=)7(f
2.-A 2.B 98.-C 98.D
19.设奇函数)(x f 在()+∞,0上为增函数,且0)1(=f ,则不等式0)()( x
x f x f --的解集为
.A ()),1(0,1+∞⋃- .B ()()1,01,⋃-∞-
.C ()),1(1,+∞⋃-∞- ()()1,00,1.⋃-D
20.已知函数 |lg | (010)()1 6 ( 10)2
x x f x x x <≤⎧⎪=⎨-+>⎪⎩,若,,a b c 互不相等,且()()()f a f b f c ==, 则abc 的取值范围是
()()()().1,10 .5,6 .10,12 .20,24A B C D。