高一数学必修4测试题

合集下载

(word完整版)高一数学数学必修4平面向量复习题

(word完整版)高一数学数学必修4平面向量复习题

1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。

高一下学期期末必修4测试(数学)

高一下学期期末必修4测试(数学)

高一必修4水平测试数学试卷注意:本试卷满分100分,附加题20分,考试时间100分钟.答案必须写在答题卷上,在试题卷上作答无效.6.函数是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是A .平行四边形 B.矩形 C.等腰梯形 D.菱形8.有下列四种变换方式: ①向左平移4π,再将横坐标变为原来的21(纵坐标不变);②横坐标变为原来的21(纵坐标不变),再向左平移8π; ③横坐标变为原来的21(纵坐标不变),再向左平移4π;④向左平移8π,再将横坐标变为原来的21(纵坐标不变);其中能将正弦曲线x y sin =的图像变为)42sin(π+=x y 的图像的是A. ①和③B. ①和②C.②和③D.②和④ 9.函数3sin (2)26y x π=-+的单调递减区间是A. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B. 52,2,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D. 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 10.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为 A.6π B.4π C.-3π D.2π二、填空题(本大题共5小题,每小题4分,共20分) 11.将0120化为弧度为__________.12.已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b ,则k = .13.已知tan a =4,tan β=3,,则tan(a+β)=_________. 14.函数22cos sin 2y x x =+的最小值是__________.15. 已知在平面直角坐标系中,A(-2,0),B(1,3),O 为原点,且OB OA OM βα+=,(其中α+β=1, α,β均为实数),若N(1,0) 的最小值是______________.三 、解答题(本大题共4小题,共40分,解答应写出必要的文字说明、证明过程或演算步骤)16. (10分)求值:(1))623tan(π-; (2)︒75sin17.(10分)已知tan 34πα⎛⎫+=⎪⎝⎭, 计算:(1) tan α (2) 2sin co s 3co s 25co s 23sin 2ααααα+-18.(10分)已知向量a , b 的夹角为60, 且||2a = , ||1b = , 若4c a b =- , 2d a b =+ ,求(1) a ·b;(2) ||c d + .19.(10分)已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值以及取得最大值、最小值时x 的值.附加题:(本大题共2小题,每小题10分,共20分. 省级示范性高中要把该题成绩记入总分,普通高中学生选做)1. (10分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式; (2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.2. (10分)已知x k d x c b x a )(,1(),1,3(sin ),2,2(),1,sin 2(=-=-=+=→→→→∈R ,k ∈R), (1) 若[,]22x ππ∈-,且//()a b c +,求x 的值;(2) 若]32,6(ππ-∈x ,是否存在实数k ,使)(→→+d a ⊥)(→→+c b ? 若存在,求出k 的取值范围;若不存在,请说明理由。

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。

(word完整版)高一数学必修四第一章测试题

(word完整版)高一数学必修四第一章测试题

宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。

(完整word版)高一数学必修4试题附答案详解

(完整word版)高一数学必修4试题附答案详解

高一数学必修4试题附答案详解第I 卷一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 4. 计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan 16tan 2ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④5. 函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形7. 将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( )A -2sin5B -2cos5C 2sin5D 2cos59. 函数f(x)=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )(A )6π (B )4π (C )3π(D )π125 11. 正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是 A .(→a -→b )·→c =0 B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D .-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 。

高一数学必修4试题——答案详解

高一数学必修4试题——答案详解

必修四 第1卷一 选择题: (每小题5分, 共计60分)1.下列命题中正确的是... .A. 第一象限角必是锐角B. 终边相同的角相等C. 相等的角终边必相同D. 不相等的角其终边必不相同2.已知角 的终边过点 , , 则 的值是( )A. 1或-1B. 或C. 1或D. -1或3.下列命题正确的是...)A 若 · = · , 则 =B 若 , 则 · =0C 若 // , // , 则 //D 若 与 是单位向量, 则 · =14.计算下列几个式子,① ,②2(sin35(cos25(+sin55(cos65(), ③ , ④ , 结果为 的是( )A.①...B.①...C.①②...D.①②③.5.函数y =cos( -2x)的单调递增区间..... )A. [k π+ , k π+ π]B. [k π- π, k π+ ]C. [2k π+ , 2k π+ π]D. [2k π- π, 2k π+ ](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C, 若关于x 的方程 有一根为1, 则△ABC 一定是( )A.直角三角.B.等腰三角...C.锐角三角.D.钝角三角形7.将函数 的图像左移 ,再将图像上各点横坐标压缩到原来的 ,则所得到的图象的解析式为..)A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y 8.化简 + , 得到...)A -2sin5B -2cos5C 2sin5D 2cos59.函数f(x)=sin2x ·cos2x.....)A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10.若|., .且( )⊥., 则 与 的夹角..... )(A )6π (B )4π (C )3π (D )π125 11.正方形ABCD 的边长为1, 记 = , = , = , 则下列结论错误的是A. ( - )· =0B. ( + - )· =0C. (| - | -| |) =D. | + + |=12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为 ,大正方形的面积是1,小正方形的面积是 的值等于.. )A. 1B.C.D. -二、填空题(本大题共4小题, 每小题4分, 共16分)13.已知曲线y=Asin((x +()+.(A>0,(>0,|(|<π)在同一周期内的最高点的坐标为 ( , 4), 最低点的坐标为( , -2), 此曲线的函数表达式是 。

高一数学平面向量测试题 必修4 试题

高一数学平面向量测试题  必修4 试题

高一数学平面向量测试题本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

一、 选择(5分×7=35分):1、以下命题正确的个数是 【 】①0AB BA +=; ②00AB ⋅=; ③AB AC BC -=; ④00AB ⋅=A 、1B 、2C 、3D 、42、假设向量(1,1)a =,(1,1)b =-,(1,2)c =-,那么c 等于 【 】A 、1322a b -+B 、1322a b -C 、3122a b -D 、3122a b -+ 3、(1,2)a =,(2,3)b x =-且a ∥b ,那么x = 【 】A 、-3B 、34-C 、0D 、344、以下命题中: ①假设0a b ⋅=,那么0a =或者0b =; ②假设不平行的两个非零向量a ,b 满足a b =,那么()()0a b a b +⋅-=; ③假设a 与b 平行,那么a b a b ⋅=⋅ ; ④假设a ∥b ,b ∥c ,那么a ∥c ;其中真命题的个数是 【 】A 、1B 、2C 、3D 、4 5、3a =,23b =,3a b ⋅=-,那么a 与b 的夹角是 【 】A 、150︒B 、120︒C 、60︒D 、30︒6、假设)()(),1,2(),4,3(b a b x a b a -⊥+-==且,那么实数x= 【 】A 、23B 、223C 、323D 、4237、在ΔABC 中,060,43=∠==BAC ,那么=⋅AC BA 【 】A 、6B 、4C 、-6D 、-4二、填充〔5分×4=20分〕:8、===x x a 则,13,5(9、(2,4),(2,6)MA MB =-=,那么12AB = 10、假设A(-1,-2),B(4,8),C(5,x),且A 、B 、C 三点一共线,那么x =11、向量(6,2)a =与(3,)b k =-的夹角是钝角,那么k 的取值范围是三、解答〔一共45分〕:12、A 〔1,0〕,B 〔4,3〕,C 〔2,4〕,D 〔0,2〕,试证明四边形ABCD 是梯形。

人教A版高一数学必修4试题及答案

人教A版高一数学必修4试题及答案

高一数学必修4模块测试题(人教A 版)时刻:120分钟 总分值:150分班级: 姓名: 学号:第I 卷(选择题, 共50分)一 、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 1.0sin 390=( ) A .21 B .21- C .23 D .23-2.以下区间中,使函数sin y x =为增函数的是 A .[0,]π B .3[,]22ππC .[,]22ππ-D .[,2]ππ3.以下函数中,最小正周期为2π的是( ) A .sin y x = B .sin cos y x x = C .tan2xy = D .cos 4y x = 4.已知(,3)a x =, (3,1)b =, 且a b ⊥, 那么x 等于 ( )A .-1B .-9C .9D .1 5.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89- 6.要取得2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( )A .向左平移23π个单位B .向右平移23π个单位C .向左平移3π个单位D .向右平移3π个单位7.已知a ,b 知足:||3a =,||2b =,||4a b +=,那么||a b -=( )A B C .3 D .108.已知1(2,1)P -, 2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =, 那么点P 的坐标为 ( ) A .(2,7)-B .4(,3)3C .2(,3)3D .(2,11)-9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为 ( ) A .16 B .2213 C .322 D .131810.函数)sin(ϕω+=x y 的部份图象如右图,那么ϕ、ω能够取的一组值是( )A. ,24ππωϕ==B. ,36ππωϕ==C. ,44ππωϕ==D. 5,44ππωϕ==第II 卷(非选择题, 共60分)二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上) 11.已知扇形的圆心角为0120,半径为3,那么扇形的面积是 12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),那么D点坐标为 13.函数y =的概念域是 .14. 给出以下五个命题: ①函数2sin(2)3y x π=-的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数 ④若12sin(2)sin(2)44x x ππ-=-,那么12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)三、解答题(本大题共6小题,共80分,解许诺写出文字说明,证明进程或演算步骤) 15(本小题总分值12分) (1)已知4cos5,且为第三象限角,求sin 的值 (2)已知3tan =α,计算 ααααsin 3cos 5cos 2sin 4+- 的值16(此题总分值12分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----.(1)化简()fα(2)假设31cos()25πα-=,求()f α的值17(本小题总分值14分)已知向量a , b 的夹角为60, 且||2a =, ||1b =, (1) 求 a b ; (2) 求 ||a b +.18(本小题总分值14分)已知(1,2)a =,)2,3(-=,当k 为何值时, (1) ka b +与3a b -垂直?(2) ka b +与3a b -平行?平行时它们是同向仍是反向?19(本小题总分值14分)某口岸的水深y (米)是时刻t (024t ≤≤,单位:小时)的函数,下面是天天时刻与水经太长期观测, ()y f t =可近似的看成是函数sin y A t b ω=+(1)依照以上数据,求出()y f t =的解析式(2)假设船舶航行时,水深至少要11.5米才是平安的,那么船舶在一天中的哪几段时刻能够平安的进出该港?20(本小题总分值14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b = (1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求现在函数()f x 的最大值, 并求出相应的x 的值.参考答案:一、ACDAD DDDCC二、11.3π 12.(0,9) 13. [2,2]k k πππ+k Z ∈ 14. ①④ 三、15.解:(1)∵22cos sin 1αα+=,α为第三象限角∴ 3sin 5α===- (2)显然cos 0α≠∴ 4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337cos αααααααααααα---⨯-====++++⨯16.解:(1)()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (cos )(sin )(tan )(tan )sin cos αααααα--=-=- (2)∵31cos()25πα-= ∴ 1sin 5α-= 从而1sin 5α=-又α为第三象限角∴cos α== 即()f α的值为5-17.解: (1) 1||||cos602112a b a b ==⨯⨯= (2) 22||()a b a b +=+22242113a ab b=-+=-⨯+=因此||3a b +=18.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 现在1041(,)(10,4)333ka b +=-=--,因此方向相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修4测试题
第I 卷
一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )
A .第一象限角必是锐角
B .终边相同的角相等
C .相等的角终边必相同
D .不相等的角其终边必不相同 2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( )
A .1或-1
B .
52或52- C .1或52- D .-1或5
2
3. 下列命题正确的是( )
A 若→
a ·→
b =→
a ·→
c ,则→
b =→
c B 若|||b -=+,则→
a ·→
b =0 C 若→
a //→
b ,→
b //→
c ,则→
a //→
c D 若→
a 与→
b 是单位向量,则→
a ·→
b =1 4. 计算下列几个式子,① 35tan 25tan 335tan 25tan ++,
②2(sin35︒cos25︒+sin55︒cos65︒), ③
15tan 115tan 1-+ , ④ 6
tan 16tan 2
ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④
5. 函数y =cos(

-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8
π
]
C .[2k π+8π,2k π+85π]
D .[2k π-83π,2k π+8
π
](以上k ∈Z )
6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22
cos cos cos 02
C
x x A B --=有一根为1,则△ABC 一定是( )
A. 直角三角形
B. 等腰三角形
C. 锐角三角形
D. 钝角三角形
7. 将函数)3
2sin()(π
-
=x x f 的图像左移
3
π
,再将图像上各点横坐标压缩到原来的21,则所
得到的图象的解析式为( )
A x y sin =
B )34sin(π+=x y
C )324sin(π
-=x y D )3sin(π+=x y
8. 化简10sin 1++10sin 1-,得到( )
A -2sin5
B -2cos5
C 2sin5
D 2cos5
9. 函数f(x)=sin2x ·cos2x 是 ( )
A 周期为π的偶函数
B 周期为π的奇函数
C 周期为
2π的偶函数 D 周期为2
π
的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )
(A )
6π (B )4π (C )3π
(D )π12
5 11. 正方形ABCD 的边长为1,记→
-AB =→
a ,→-BC =→
b ,→-AC =→
c ,则下列结论错误..
的是 A .(→a -→b )·
→c =0 B .(→a +→b -→c )·→
a =0 C .(|→a -→c | -|→
b |)→a =→0 D .|→a +→b +→
c |=2
12. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三
角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是
θθ22cos sin ,25
1
-则的值等于( )
A .1
B .2524-
C .257
D .-25
7
二、填空题(本大题共4小题,每小题4分,共16分)
13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为
(
8π, 4),最低点的坐标为(8
5π, -2),此曲线的函数表达式是 。

14. 设sin α-sin β=3
1
,cos α+cos β=21, 则cos(α+β)= 。

15. 关于x 的方程a x x =+cos 3sin (0≤x ≤2
π
)有两相异根,则实数a 的取值范围是_____________
16. 关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4
(
2cos x y -=π是偶函
数; ③函数)32sin(4π-=x y 的一个对称中心是(6
π
,0);④函数)4sin(π+=x y 在闭区
间]2
,2[π
π-上是增函数; 写出所有正确的命题的题号: 。

第II 卷
一、选择题:(每小题5分共计60分)
二、填空题:(每小题4分,共计16分)
13、______________14、_______________15、____________________ 16、_______________ 三、解答题:
17.(本小题12分) (1) 化简
)
2
4(cos 22sin cos sin 12x
x x
x
-∙+π
(2) cos40︒cos80︒cos160︒
18. (本小题12分)已知4
34π
<α<π,40π<β<,
53)4cos(-=+απ,135)43sin(=β+π,求()βα+sin 的值.
19. (本小题12分)已知向量)23s i n
23(c o s x x ,=a ,)2
sin 2(cos x x -=,b ,)13(-=,c ,其中R ∈x .
(Ⅰ)当b a ⊥时,求x 值的集合; (Ⅱ)求||c a -的最大值.
20. (本小题12分)已知函数y= 4cos 2x+43sinxcosx -2,(x ∈R )。

(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x 值; (3)写出函数的单调增区间;(4)写出函数的对称轴。

21. (本小题12分)设函数()()sin 0,2
2f x x π
πωϕωϕ⎛⎫
=+>-<<
⎪⎝

,给出下列三个论断:
①()f x 的图象关于直线6
x π
=-
对称;②()f x 的周期为π; ③()f x 的图象关于点
,012π⎛⎫
⎪⎝⎭
对称. 以其中的两个论断为条件,余下的一个论断作为结论,写出你认为正确的一个命题,
并对该命题加以证明.
22. (本小题14分)设、是两个不共线的非零向量(R t ∈) (1)记),(3
1
,,t +=
==那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且b a b a ==,那么实数x 为何值时||b x a -的值最小?
高一数学必修4测试题参考答案
一、选择题:(每小题5分共计60分)
二、填空题:(每小题4分,共计16分) 13、1)4
2sin(3++=π
x y 14、72
59
-
15、)2,3[∈a 16、③ 三、解答题:
17. (1)2sinx (2) 81- 18.-6563 19.(1)⎭⎬⎫⎩⎨⎧∈+Z k k x ,24|ππ (2) 3
20.(1)T=π (2)4),(6
max =∈+=y Z k k y ππ
(3))(],6
,
3
[Z k k k ∈++-
ππ
ππ
(4)对称轴2
6
π
π
k x +
=
,()Z k ∈ 21.由①②⇒③或由②③⇒①
22. (1)t=21 (2)当2
1
-=x 时,||x -的值最小。

相关文档
最新文档