俄歇电子能谱仪的工作原理及特点

合集下载

俄歇电子能谱

俄歇电子能谱
1896
1920
1987
2006
俄歇电子能谱(AES)
一、方法原理 二、仪器结构 三、数据分析与表征 CO N TA N T S
四、AES的应用
历史与现状
1925年,法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨
迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的
名字命名了这种物理现象。 1953年,兰德从二次电子能量分布曲线中第一次辨识出这种电子的电
2.激发源
样品原子的激发可以用不同的方式完成。作为常规分析 用的激发源都为具有一定能量的电子束,其原因是电子 束易实现聚焦和偏转,另外它不破坏真空度。 某些特殊场合也可使用光子束作为激发源。其优点是二 次电子背景可大大减少,辐射损伤小于电子束。 另外,离子轰击也可以激发俄歇电子。
(1)电子源
电子源目前有两种:热电子发射源和场发射电子源。 热电子发射源,是通过对发射体(阴极)加热,使垫子 获得足够能量以克服表面势垒(称功函数或逸出功)而 逸出,电子流密度与发射体的功函数和温度有关。 场发射电子源,其原理是发射体外施加一强电场,是发 射体的表面势垒降低,宽度变窄,从而电子得以逸出。
俄歇电子从入口位置进入两圆 筒夹层,因外筒加有偏转电压 ,最后使电子从出口进入检测 器。若连续的改变外筒上的偏 转电压,就可在检测器上依次 接收到具有不同能量的俄歇电 子。 从能量分析器输出的电子经电 子倍增器、前置放大器后进入 脉冲计数器,最后由x-y记录 仪或荧光屏显示俄歇谱。
不同能量的电子通过分析器后最大限度的被分离,以便 选出某种能量的电子(色散特性——获得高分辨率) 具有相同能量、不同发射角的电子尽可能会聚于一点( 聚焦特性——获得高灵敏度) 上述两方面要求相互矛盾,应根据具体问题,做折中选 择。

俄歇电子能谱仪(AES)

俄歇电子能谱仪(AES)

由图可知,随着原子序数Z的增加,X射线荧光产额增加, 而俄歇电子的产额下降。Z<33时,俄歇发射占优势。
2.俄歇过程的命名 2.俄歇过程的命名
每一俄歇电子的发射都涉及3个电子能级,故常以三壳层 符号并列表示俄歇跃迁和俄歇电子。若W表示最初空穴能级, X表示填充空穴的 电子能级,Y表示俄歇电子发射能级,则该 过程称为WXY俄歇跃迁。
KL1L1 L1M1M1 L2, 3VV
3.俄歇电子的能量 3.俄歇电子的能量
俄歇电子发射涉及三个电子能级WXY, 对于基态原子,俄歇电子能量为:
俄歇电子
EWXY (Z)=EW(Z)-EX(Z)-EY(Z)
事实上,原子发射俄歇电子时已处于激发态,此时需 要在公式中引入能级修正项。经验公式为: EWXY(Z)=EW(Z)-EX(Z)-EY(Z)-[EX(Z+1)-EX(Z)+EY(Z+1)-EY(Z)]/2 由于束缚能强烈依赖于原子序数,所以,用确定能量 的俄歇电子来鉴别元素是明确而不易混淆的。通过经验公式 及各元素不同能级的束缚能,可以绘制出俄歇电子能量图。
二、AES的结构
三、AES应用举例
1.AES的定性分析——元素组成 1.AES的定性分析——元素组成 的定性分析—— ★ 特定的元素具有特定的俄歇跃迁过程,其俄歇 电子的能量是特征的。 ★ 特定元素在俄歇电子能谱上的多组俄歇峰的峰 位、峰数、各峰相对强度大小由特定元素原子结构 确定。 因此可以通过AES实测的直接谱或微分谱与 “俄歇电子能量图”及“俄歇电子标准谱”进行对 比,从而识别元素。
4.AES的深度剖析——元素的深度分布 4.AES的深度剖析——元素的深度分布 的深度剖析—— 先用Ar离子把表面一定厚度的表面层溅射掉, 然后再用AES分析剥离后的表面元素含量,这样就可 以获得元素在样品中沿深度方向的分布。

俄歇电子能谱原理、仪器及应用

俄歇电子能谱原理、仪器及应用

这是AES的心脏,其作用 是收集并分开不同的动能 的电子。 由于俄歇电子 能量极低,必须采用特殊 的装置才能达到仪器所需 的灵敏度。目前几乎所有 的俄歇谱仪都使用筒镜分 析器。
三:俄歇电子能谱法特点
X射线光电子能谱: 灵敏度不高,无法测定轻元素。 光电子能谱 紫外光电子能谱: 由于价电子的谱峰很宽,实验 上难以测定共振吸收峰位移。
(1)发射X光射线式传递给另一个电子(俄歇电子),并使之发射
一:俄歇电子能谱法原理
KLⅠLⅡ俄歇电子表示最 初逐出K能级电子,然 后由LⅠ能级上电子填 入K能级的空穴,多余 能量传给LⅡ能级上的 一个电子并使之发射出 来
一:俄歇电子能谱法原理
俄歇电子能谱:1、分析层薄
2、可分析元素范围广,可分析除氢和氦 以外的所有元素 3、能对元素的化学态进行分析 4、定量分析精度低
四:俄歇电子能谱法应用
俄歇电子能谱分析在机械工业中主要用于金属材料的氧化、 腐蚀、摩擦、磨损和润滑特性等的研究和合金元素及杂质元 素的扩散或偏析、表面处理工艺及复合材料的粘结性等问题 的研究。
用具有一定能量的电子束(或X射线)激发试样,以测量二次 电子中的那些与入射电子能量无关,而本身具有确定能量的俄 歇电子峰为基础的分析方法,俄歇电子峰的能量具有元素特征 性且俄歇电流近似地正比于被激发的原子数目,所以既可以用 于定性分析又可用于定量分析
二:俄歇电子能谱仪器
俄歇能谱仪包括电子光学系统、电子能量分析器、样品安放系统、 离子枪、超高真空系统。
俄歇电子能谱原理、仪器及 应用
17级应用化学马向东
目录:
一:俄歇电子能谱法原理 二:俄歇电子能谱仪器 三:俄歇电子能谱法特点 四:俄歇电子能谱法应用
一:俄歇电子能谱法原理

俄歇电子能谱

俄歇电子能谱

通过俄歇电子能谱的深度剖析,可以研究离子注入元素 沿深度方向的分布,还可以研究注入元素的化学状态。
注入Sb元素后,Sn元素 MNN俄歇动能发生变化, 介于Sn和SnO2之间。说 明Sn外层获得部分电子。
由于俄歇电子能 谱具有很高的表 面灵敏度,采样 深度为1-3nm, 因此非常适用于 研究固体表面的 化学吸附和化学 反应。
二、基础知识
1 . 俄歇效应 (1925年, 法国人 Pierre Auger) 用某种方法使原子内层电子(如K层)电离出去,内
层出现空位。电离原子去激发可采用如下两种形式:
Δ 辐射跃迁:
一外层电子填充空位后,发射出特征X射线
(例L3上电子填充K能级上空位,发出X射线Kα 1)
Δ 无辐射过程(即Auger过程): 一外层电子填充空位,使 另一个电子脱离原子发
俄歇电子能量与激发源的种类和数量无关,与元素的存在量有关,还与原子的电 离截面、俄歇电子产率以及逃逸深度有关。
特点: Δ一种原子可能产生几组不同
能级组合的俄歇跃迁,因而 可以有若干不同特征能量的 俄歇电子。 Δ可能出现的俄歇跃迁数随原 子序数增大(壳层数增多)而 迅速增加。 Δ 俄歇电子的能量大多在502000eV (不随入射电子能量改变) Δ主峰
在低氧分压的情况下,只有部分Zn被 氧化为ZnO,而其他的Zn只与氧形成 吸附状态。
俄歇电子能谱在研究固体化学反应上也有着重要的作用。
金刚石耐磨颗粒通 常在表面进行预金 属化,以提高与基 底金属的结合强度。 图中看出界面层有 两层。结合其他方 法分析得出,分别 为CrC和Cr3C4。
• 4 表面元素的化学价态分析
射 出去 (例L1上电子填充K能级空位,同时L3上的电 子发射出去, 称KL1L3俄歇跃迁)。 标记: WXY来标记

俄歇电子能谱AES解读ppt课件

俄歇电子能谱AES解读ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
4. 俄歇过程中的能量关系: KLL俄歇过程所产生的俄歇电子能量可以用下面
的方程表示:
EKLL (Z)= EK(Z) - EL1(Z) - EL2(Z+) - s
俄歇电子强度不仅与原子多少有关,还与俄歇电子 的逃逸深度、样品的表面光洁度、元素存在的化 学状态有关。因此,AES 技术一般不能给出所分 析元素的绝对含量,仅能提供元素的相对含量
三、俄歇电子谱分析技术 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三、俄歇电子谱分析技术
2、俄歇谱分析技术
AES具有五个有用的特征量: 特征能量; 强度; 峰位移; 谱线宽;和线型由AES的这五方面特征可获如下表面 特征、化学组成、覆盖度、键中的电荷转移、电子 态密度和表面键中的电子能级
5. 俄歇电子谱的化学效应:
俄歇能谱中出现的化学效应有如下三种:
化学位移 峰形状的变化 峰的低能侧的形状变化
AES中可观察到化学位移,但涉及到的三个电子中 的每一个都可能与多重终态或弛豫效应有关AES数 据非常复杂,比XPS更难于解释,所以AES并不象 XPS那样多地用于化学环境信息而是大量用于定量 组分分析
三、俄歇电子谱分析技术 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用

俄歇电子能谱分析实验报告2

俄歇电子能谱分析实验报告2

材料分析与表征作业俄歇电子能谱实验报告B组2010/12/16清华大学材料系目录俄歇电子能谱分析实验报告 (2)1. 实验目的 (2)2.实验原理 (2)2.1 AES简介 (2)2.2 俄歇效应 (2)2.3 俄歇电子能量 (4)2.4 俄歇电流的计算 (5)2.5 俄歇电子能谱仪 (6)2.6俄歇电子能谱在材料分析中的应用 (7)3.实验仪器及样品的制备 (8)4.实验内容 (8)5.数据分析 (9)参考文献 (10)俄歇电子能谱分析实验报告1. 实验目的本次实验的目的是了解AES 电子能谱的基本原理;完整记录实验曲线;了解AES 电子能谱的基本实验技术及其主要特点,分析待测样品的成分、化学价态。

2.实验原理2.1 AES简介俄歇电子能谱,英文全称为Auger Electron Spectroscopy,简称为AES,是材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析的一种有效的手段。

俄歇电子能谱仪具有很高表面灵敏度,通过正确测定和解释AES 的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等信息。

当原子的内层电子被激发形成空穴后,原子处于较高能量的激发态。

这一状态是不稳定的,它将自发跃迁到能量较低的状态——退激发过程,存在两种退激发过程:一种是以特征X射线形式向外辐射能量——辐射退激发;另一种通过原子内部的转换过程把能量交给较外层的另一电子,使它克服结合能而向外发射——非辐射退激发过程(Auger过程)。

向外辐射的电子称为俄歇电子。

其能量仅由相关能级决定,与原子激发状态的形成原因无关,因而它具有“指纹”特征,可用来鉴定元素种类。

2.2 俄歇效应处于基态的原子若用光子或电子冲击激发使内层电子电离后,就在原子的芯能级上产生一个空穴。

这一芯空穴导致外壳层收缩。

这种情形从能量上看是不稳定的,并发生弛豫,K空穴被高能态L1的一个电子填充,剩余的能量(E K-E L1)用于释放一个电子,即俄歇电子。

俄歇电子能谱分析原理及方法

俄歇电子能谱分析原理及方法

俄歇电子能谱分析原理及方法XXX【摘要】近年来,俄歇电子能谱(AES)分析方法发展迅速,它具有很多的优点,比如分析速度快、精度高、需要样品少等等,也因此在很多研究领域的表面分析中都得到了广泛的应用。

可以不夸张的说,这个技术为表面物理和化学定量分析奠定了基础。

本文主要是介绍俄歇电子能谱分析的主要原理及其在科学研究中的主要应用,旨在让读者对俄歇电子能谱有一个初步的了解。

关键词:俄歇电子能谱;表面物理;化学分析。

前言近些年来,俄歇电子能谱分析发展如火如荼,在各个领域都有很抢眼的表现。

目前有很多的人在研究,将俄歇电子分析技术应用到电子碰撞以及微纳尺度加工等高技术领域,俄歇电子能谱分析方法表现出强大的生命力,同目前已为很人熟悉和赞赏的强有力的分析仪器电子探针相比俄歇电子能仪可能有几个独到之处:( 1 )能分析固体表面薄到只有几分之一原子层内的化学元素组成,这里说的“表面”指的不只是固体的自然表面,也指固体内颗粒的分界面,(2)俄歇电子谱的精细结构中包含有许多化学信自,借此可以推断原子的价态;( 3 )除氢和氦外所有元素都可以分析,特别是分析轻元素最为有利;(4)利用低能电子衍射装置和俄歇能谱分析器相结合的仪器(“LEED一Au-ger”装置),有可能从得到的数据资料中分晶体表面的结构,推断原子在晶胞中的位置。

因此,俄歇电子能谱仪作为固体材料分析的一个重要工具,近年来发展很快,研究成果不断出现于最新的文献中。

本文主要是想要综合论述俄歇电子能谱的分析方法,以及概述它在各方面的应用。

[1][1]《俄歇电子能谱仪及其应用》许自图正文一、俄歇电子能谱分析的原理1.1俄歇电子能谱发现的历史1925年法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的名字命名了这种物理现象。

到了1953年,兰德才从二次电子能量分布曲线中第一次辨识出这种电子的电子谱线,但是由于俄歇电子谱线强度较低,所以当时检测还比较困难。

俄歇电子能谱仪(AES)分析方法介绍

俄歇电子能谱仪(AES)分析方法介绍

俄歇电子能谱仪(AES)分析方法介绍1.俄歇电子能谱仪(AES)俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的表面分析方法而显露头角,通过检测俄歇电子信号进行分析样品表面,是一种极表面(0-3nm)分析设备。

这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高,很高的空间分辨率,最小可达到6nm;能探测周期表上He以后的所有元素及元素分布;通过成分变化测量超薄膜厚。

它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。

2.俄歇电子能谱仪(AES)工作原理(1)原子内某一内层电子被激发电离从而形成空位,(2)一个较高能级的电子跃迁到该空位上,(3)再接着另一个电子被激发发射,形成无辐射跃迁过程,这一过程被称为Auger效应,被发射的电子称为Auger电子。

(4)俄歇电子能谱仪通过分析Auger电子的能量和数量,信号转化为元素种类和元素含量。

3.俄歇电子能谱仪(AES)可获取的参数(1)定性分析:定性除H和He以外的所有元素及化合态。

(2)元素分布:元素表面分布和深度分布,能获极小区域(表面最小6nm,深度最小0.5nm)的元素分布图。

(3)半定量分析:定量除H和He以外的所有元素,浓度极限为10-3。

(4)超薄膜厚:通过成分变化能测量最薄0.5nm薄膜的膜厚。

4.案例分析案例背景:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。

失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点,黑点直径3μm左右,考虑分析区域大小后选择分析区域最小AES进行分析,能准确分析污染物位置。

俄歇电子能谱仪(AES)分析:对被污染的Pad表面进行分析,结果如下图,位置1为污染位置,位置2为未污染位置。

结论:通过未污染位置和污染位置对比分析可知,发现污染位置主要为含K(20.6%)和S(13.6%)类物质,在未污染位置S含量为3.7%未发现K元素,推断污染位置存在K离子污染,并与S共同作用形成黑色污染物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

俄歇电子能谱仪的工作原理及特点
俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种广泛使用的分析方法而显露头角。

这种方法的优点是:在
靠近表面5—20埃范围内化学分析的灵敏度高;数据分析速度快;
能探测周期表上He以后的全部元素。

虽然初俄歇电子能谱单纯作为
一种讨论手段,但现在它已成为常规分析手段了。

它可以用于很多
领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。

俄歇效应虽然是在1925年时发觉的,但真正使俄歇能谱仪获得应用
却是在1968年以后。

工作原理:
当一个具有充足能量的入射电子使原子内层电离时,该空
穴立刻就被另一电子通过L1→K跃迁所填充。

这个跃迁多余的能量EK—EL1如使L2能级上的电子产生跃迁,这个电子就从该原子发射
出去称为俄歇电子。

这个俄歇电子的能量约等于EK—EL1—EL2、这
种发射过程称为KL1L2跃迁。

另外仿佛的还会有KL1L1、LM1M2、
MN1N1等等。

从上述过程可以看出,至少有两个能级和三个电子参
加俄歇过程,所以氢原子和氦原子不能产生俄歇电子。

同样孤立的
锂原子由于外层只有一个电子,也不能产生俄歇电子。

但是在固体
中价电子是共用的,所以在各种含锂化合物中也可以看到从锂发生
的俄歇电子。

产品特点:
1、俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。

右图是一些重要的俄歇电子能量。

可见对于Z=3—14的元素,突出的俄歇效应是由KLL跃迁形成的,对Z=14—40的元素是LMM跃迁,对Z=40—79的元素是MNN跃迁。

大多数元素和一些化合物的俄歇电子能量可以从手册中查到。

2、俄歇电子只能从20埃以内的表层深度中逃逸出来,因而带有表层物质的信息,即对表面成份特别敏感。

正因如此,俄歇电子特别适用于作表面化学成份分析。

标签:能谱仪。

相关文档
最新文档