银川一中2019年第一次模拟考试理科数学试卷
2019年宁夏银川一中高三第一次模拟考试数学【理】试题及答案

高考数学精品复习资料2019.5绝密★启用前普通高等学校招生全国统一考试理 科 数 学(银川一中第一次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R ,集合{}lg(1)A x y x ==-,集合{}B yy ==,则A∩(C U B)= A .[1,2]B .[1,2)C .(1,2]D .(1,2)2.已知直线m 、n 和平面α,则m ∥n 的必要非充分条件是 A .m 、n 与α成等角 B. m ⊥α且n ⊥α C. m ∥α且n α⊂ D .m ∥α且n ∥α 3.若等比数列}{n a 的前n 项和32nn S a =⋅-,则2a =否(第5题图)A .4B .12C .24D .364.已知复数i bi a i 42))(1(+=++),(R b a ∈,函数()2sin(6f x ax b π=++图象的一个对称中心是 A. (1,6π-) B. (,018π-) C.(,36π-) D.(5,118π) 5.如图给出的是计算11124100++⋅⋅⋅+的值的程序框图,则图中 判断框内(1)处和执行框中的(2)处应填的语句是 A. i >100,n=n+1B. i >100,n=n+2C. i >50,n=n+2D. i≤50,n=n+26.设()0cos sin a x x dx π=-⎰,则二项式62a x x ⎛⎫+ ⎪⎝⎭展开式中的3x 项的系数为A. 160-B. 20C. 20-D. 160 7.给出下列四个结论:(1)如图Rt ABC ∆中, 2,90,30.AC B C =∠=︒∠=︒D 是斜边AC 上的点,|CD|=|CB|. 以B 为起点 任作一条射线BE 交AC 于E 点,则E 点落在 线段CD (2)设某大学的女生体重y (kg)与身高x (cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ^=0.85x -85.71,则若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ;(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;(4)已知随机变量ξ服从正态分布()()21,,40.79,N P σξ≤=则()20.21;P ξ≤-=其中正确结论的个数为 A. 1B. 2C. 3D. 48.一个四面体的顶点都在球面上,它们的正视图、侧视图、俯AB CDE理科数学试卷 第1页(共6页)视图都是右图.图中圆内有一个以圆心为中心边长为1的正 方形.则这个四面体的外接球的表面积是 A.πB. 3πC. 4πD. 6π9.已知y x z +=2,其中实数y x ,满足⎪⎩⎪⎨⎧≥≤+≥a x y x x y 2,且z 的最大值是最小值的4倍,则a 的值是 A.112 B. 41C. 4D. 21110.对于函数()y f x =,部分x 与y 的对应关系如下表:数列{}n x 满足:11x =,且对于任意*n N ∈,点1(,)n n x x +都在函数()y f x =的图像上,则201420134321x x x x x x ++++++ 的值为A. 7549B. 7545C. 7539D. 755311.已知F 2、F 1是双曲线22221y x a b-=(a>0,b>0)的上、下焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为 A .3 B . 3 C .2 D . 2 12.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=a x -,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第理科数学试卷 第3页(共6页)22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.等差数列{}n a 中,48126a a a ++=,则91113a a -= . 14.若(0,)απ∈,且3cos 2sin()4παα=-,则sin 2α的值为 .15.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为 .16.在直角坐标平面xoy 中,F 是抛物线C: 22x py =(p>0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M,F,O 三点的圆的圆心为Q,点Q 到抛物线C 的准线的距离为34,则抛物线C 的方程为__________________.三、解答题:解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)ABC ∆中内角,,A B C 的对边分别为,,a b c ,向量2(2sin ,3),(cos 2,2cos 1)2B m B n B =-=-2in ,3),(cos 2,2cos 1)2BB n B -=-且//m n (1)求锐角B 的大小;(2)如果2b =,求ABC ∆的面积ABC S ∆的最大值.18.(本小题满分12分)如图,AB 是半圆O 的直径,C 是半圆O 上除A 、B 外的一个动点,DC 垂直于半圆O 所在的平面, DC ∥EB ,DC EB =,4=AB ,41tan =∠EAB . ⑴证明:平面⊥ADE 平面ACD ; ⑵当三棱锥ADE C -体积最大时, 求二面角D AE B --的余弦值.19.(本题满分12分)某权威机构发布了度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,该市某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.20.(本小题满分12分)己知A 、B 、C 是椭圆m :22221x y a b +=(0a b >>)上的三点,其中点A的坐标为,BC 过椭圆的中心,且0AC BC ⋅=,||2||BC AC =。
2019届宁夏银川一中高三第一次月考数学(理)试题(解析版)

银川一中2019届高三年级第一次月考数学试卷(理)★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=A. ﹛|<-5或>-3﹜B. ﹛|-5<<5﹜C. ﹛|-3<<5﹜D. ﹛|<-3或>5﹜【答案】A【解析】【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【详解】在数轴上画出集合M={x|﹣3<x≤5},N={x|x<﹣5或x>5},则M∪N={x|x<﹣5或x>﹣3}.故选:A.【点睛】本题属于以数轴为工具,求集合的并集的基础题,也是高考常会考的题型.2.二次函数,对称轴,则值为A. B. C. D.【答案】D【解析】【分析】利用函数的对称轴求出m,然后求解函数值即可.【详解】函数f(x)=4x2﹣mx+5的图象的对称轴为x=﹣2,可得:,解得m=﹣16,则f(1)=4+16+5=25.故选:D.【点睛】本题考查二次函数的简单性质的应用,函数值的求法,考查计算能力.3.下列说法错误的是( )A. 命题“若,则”的逆否命题是:“若,则”B. “”是“”的充分不必要条件C. 若且为假命题,则、为假命题D. 命题“使得”,则“,均有”【答案】C【解析】逆否命题是对条件结论都否定,然后原条件作结论,原结论作条件,则A是正确的;x>1时,|x|>0成立,但|x|>0时,x>1不一定成立,故x>1是|x|>0的充分不必要条件,故B是正确的;p且q为假命题,则p和q至少有一个是假命题,故C不正确;特称命题的否定是全称命题,故D是正确的。
宁夏银川一中2019届高三第一次月考数学(理)试题+Word版含答案

银川一中2019届高三年级第一次月考数 学 试 卷(理)命题人:第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}53|≤<-=x x M ,{}5,5|>-<=x x x N 或,则N M = A .﹛x |x <-5或x >-3﹜ B .﹛x |-5<x <5﹜ C .﹛x |-3<x <5﹜D .﹛x |x <-3或x >5﹜2.二次函数54)(2+-=mx x x f ,对称轴2-=x ,则)1(f 值为 A .7-B .17C .1D .253.下列说法错误..的是 A .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” B .“1x >”是“||1x >”的充分不必要条件 C .若q p ∧为假命题,则p 、q 均为假命题.D .若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥” 4.当a >1时,函数y =log a x 和y =(1-a )x 的图象只能是5.下列函数中,既是偶函数又在()0,+∞上单调递增的是 A .3y x =B .cos y x =C .21y x=D .ln y x = 6.已知函数⎩⎨⎧≥-<=)4()1(),4(2)(x x f x x f x ,那么(5)f 的值为A .32B .16C .8D .647.函数y=f (x )与xx g )21()(=的图像关于直线y =x 对称,则2(4)f x x -的单调递增 区间为A .(,2)-∞B .(0,2)C .(2,4)D .(2,+∞)8.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞9.函数562---=x x y 的值域为A .[]4,0B .(]4,∞-C .[)+∞,0D .[]2,010.如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点)2,2(),21,21(),2,1(),1,1(4321P P P P 中,"好点"有( )个A .1B .2C .3D .411.设f (x ),g(x )分别是定义在R 上的奇函数和偶函数,)('),('x g x f 为导函数,当0x <时,()()()()0f x g x f x g x ''⋅+⋅>且(3)0g -=,则不等式()()0f x g x ⋅<的解集是A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,-3)∪(3,+∞) (D)(-∞,-3)∪(0,3)12.已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点)(,2121x x x x <,则A .121()0,()2f x f x >>- B .121()0,()2f x f x <<- C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.函数y =)2(log 121x -的定义域是 .14.在同一平面直角坐标系中,函数)(x f y =的图象与x e y =的图象关于直线x y =对称.而函数)(x f y =的图象与)(x g y =的图象关于y 轴对称,若1)(-=m g ,则m 的值是 .15.设有两个命题:(1)不等式|x |+|x -1|>m 的解集为R ;(2)函数f (x )=(7-3m )x 在R 上是增函数;如果这两个命题中有且只有一个是真命题,则m 的取值范围是 .16.已知函数⎪⎩⎪⎨⎧>+-≤-=)0(,3)0( ,2)(2x a ax x x a x f x ,有三个不同的零点,则实数a 的取值范围是_____.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分) 设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个实根为2,121=-=x x .(1)求)(x f y =的解析式;(2)证明:曲线)(x f y =的图像是一个中心对称图形,并求其对称中心.19.(本小题满分12分) 设x x x f -=3)((1)求曲线在点(1,0)处的切线方程; (2)设]1,1[-∈x ,求)(x f 最大值.20.(本小题满分12分)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b -1)(a ≠0).(1)当a =1,b =-2时,求函数f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围;21.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当1a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,直线l 的参数方程是⎪⎩⎪⎨⎧==t y tx 3(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为-+θρθρ2222sin cos 03sin 2=-θρ.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,求||AB . 23.(本小题满分l0分)选修4—5:不等式选讲已知函数|1||2|)(+--=x x x f . (1)求证:3)(3≤≤-x f ; (2)解不等式x x x f 2)(2-≥.银川一中2019届高三第一次月考数学(理科)参考答案一、选择题:(每小题5分,共60分)二、填空题:(每小题5分,共20分) 13.(1,2) 14. e1- 15. 12m <≤ 16. 491a <≤三、解答题:17.解:由|x -a |<2,得a -2<x <a +2,所以A ={x |a -2<x <a +2}.由212+-x x <1,得23+-x x <0,即-2<x <3,所以B ={x |-2<x <3}.因为A ⊆B ,所以⎩⎨⎧≤+-≥-3222a a ,于是0≤a ≤1.18.解:(Ⅰ)由⎪⎩⎪⎨⎧=++-=+-+-3212,2311b a b a 解得11a b =⎧⎨=-⎩,, 故1()1f x x x =+-. (II )证明:已知函数1y x =,21y x=都是奇函数. 所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形. 而1()111f x x x =-++-. 可知,函数()g x 的图像沿x 轴方向向右平移1个单位,再沿y 轴方向向上平移1个单位,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. 19.解:(1)13)('2-=x x f ,切线斜率2)1('=f ∴切线方程)1(2-=x y 即022=--y x (2)令013)('2=-=x x f ,33±=x 列表:39max 20.解:(1)f (x )=x 2-x -3,因为x 0为不动点,因此有f (x 0)=x 02-x 0-3=x 0所以x 0=-1或x 0=3,所以3和-1为f (x )的不动点.(2)因为f (x )恒有两个不动点,f (x )=ax 2+(b +1)x +(b -1)=x ,ax 2+bx +(b -1)=0(※),由题设b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(4a )2-4(4a )<0⇒a 2-a <0,所以0<a <1.21.(I )因为2()ln ,f x x ax bx =++所以1()2f x ax b x'=++ … 因为函数2()ln f x x ax bx =++在1x =处取得极值(1)120f a b '=++=当1a =时,3b =-,2231()x x f x x-+'=,'(),()f x f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(0,)2,1+∞(,) 单调递减区间为1(,1)2……(II)因为222(1)1(21)(1)()ax a x ax x f x x x-++--'==令()0f x '=,1211,2x x a==… … 因为()f x 在 1x =处取得极值,所以21112x x a=≠= 当102a<时,()f x 在(0,1)上单调递增,在(1,e]上单调递减 所以()f x 在区间(]0,e 上的最大值为(1)f ,令(1)1f =,解得2a =-……当0a >,2102x a=> 当112a <时,()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,e)上单调递增 所以最大值1可能在12x a=或e x =处取得 而2111111()ln ()(21)ln 10222224f a a a a a a a a=+-+=--< 所以2(e)lne+e (21)e 1f a a =-+=,解得1e 2a =- ……………… 当11e 2a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,e)2a上单调递增所以最大值1可能在1x =或e x =处取得 而(1)ln1(21)0f a a =+-+< 所以2(e)lne+e (21)e 1f a a =-+=, 解得1e 2a =-,与211e 2x a <=<矛盾 当21e 2x a=≥时,()f x 在区间(0,1)上单调递增,在(1,e)单调递减, 所以最大值1可能在1x =处取得,而(1)ln1(21)0f a a =+-+<,矛盾 综上所述,12a e =-或 2a =-. …………… 22.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数得直线l 的直角坐标方程:x y 3=---------2分由⎩⎨⎧==θρθρsin cos y x 代入得 θρθρcos 3sin =)(3R ∈=⇒ρπθ.( 也可以是:3πθ=或)0(34≥=ρπθ)---------------------5分 (Ⅱ)⎪⎩⎪⎨⎧==--+303sin 2sin cos 2222πθθρθρθρ 得 0332=--ρρ-----------------------------7分设)3,(1πρA ,)3,(2πρB ,则154)(||||2122121=--=-=ρρρρρρAB .---------10分 (若学生化成直角坐标方程求解,按步骤对应给分) 23.(本小题满分l0分)选修4—5:不等式选讲解:(1)⎪⎩⎪⎨⎧>-<<-+--≤=)2(3)21(12)1(3)(x x x x x f ,------------------3分 又当21<<-x 时,3123<+-<-x ,∴3)(3≤≤-x f -----------------------------------------------5分 (2)当1-≤x 时,121322=⇒≤≤-⇒≤-x x x x ;当21<<-x 时,11111222≤<-⇒≤≤-⇒+-≤-x x x x x ; 当2≥x 时,φ∈⇒-≤-x x x 322;-------------------------8分 综合上述,不等式的解集为:[]1,1-.-------------------10分。
宁夏银川一中届高中高三第一次模拟考试数学理.docx

绝密★启用前2019 年普通高等学校招生全国统一考试理科数学试题卷( 银川一中第一次模拟考试 )注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A0,2,4,6,8,10 , B x 2x 3 4 ,则 A BA. 4, 8B.0,2,6C.0,2D.2,4, 62.复数z12i ,则z23 z1A.2i B. -2C.2i D. 23.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了 n 座城市作实验基地,这 n 座城市共享单车的使用量(单位:人次 / 天)分别为x1,x2,,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是A.x1,x2,,x n的平均数B. x1, x2,, x n的标准差C.x1,x2,,x n的最大值D. x1, x2,, x n的中位数4.已知等比数列{ a n}中,有a3a114a7,数列 { b n} 是等差数列,其前n 项和为 S n,且 b7 a7,则 S13A. 26B. 52C. 78D. 1045.如图,在ABC 中, AN 2NC ,P是 BN 上3一点,若 AP t AB 1AC ,则实数t的值为3A.2B .2C .1D .3(5 题图 ) 35646.学校就如程序中的循 体,送走一届,又会招来一 。
老目送着大家 去, 行 ⋯⋯. 行如 所示的程序框 ,若 入 x64, 出的 果A . 2B . 3C .4D . 5:x 2 2和直xy.双曲y 1( a0, b 0)1 ,若 C 的左焦b 253a 2点和点( 0, -b )的直 与 l平行, 双曲 C 的离心率A .5B.5C.4D. 54338.已知函数 f (x)sin 2x3, g (x) sin x ,要得到函数 yg ( x) 的 象,只需将函数y f (x) 的象上的所有点A .横坐 短 原来的1,再向右平移个 位得到26 B .横坐 短 原来的1,再向右平移个 位得到23C .横坐 伸 原来的2 倍,再向右平移 个 位得到6D .横坐 伸 原来的2 倍,再向右平移个 位得到39.一个四棱 的三 如右 所示,其正 和全等的等腰直角三角形,俯 是2 的正方形, 几何体的所有 点都在同一个球面上,球的表面 A .B . 2C . 4D . 610.已知函数 f ( x)x 2 (m 1) e x2(m R) 有两个极 点, 数m 的取 范2A . [1,0]B . ( 11 , 1)ee1C. (, )D. (0, )11.如 ,在正方体ABCD A 1B 1C 1D 1 中,点 P 在 段 BC 1 上运 , 下列判断中正确的是①平面 PB 1 D 平面 ACD ;② A 1P // 平面 ACD 1 ;③异面直线 A1P 与 AD1所成角的取值范围是(0,] ;3④三棱锥 D1APC 的体积不变.A.①②B.①②④C.③④D.①④e x112.已知函数f (x)x, x 0,若函数 g( x) f ( f ( x)) 2 恰有5个零点,且最小的零点小于ax3,x0-4 ,则a的取值范围是A.(, 1)B. (0,) C.(0,1)D. (1, )二、填空题:本大题共 4 小题,每小题 5 分,共20 分。
宁夏回族自治区银川一中2019届高三第一次月考数学(理)试卷(含答案)

的值为
A.32
B.16
C.8
D.64
7.函数
y=f(x)与
g(x)
(1)x 2
的图像关于直线
y=x
对称,则
f
(4x
x2 )
的单调递增
区间为
A. (, 2)
B.(0,2)
C.(2,4) D.(2,+∞)
8.已知函数 f (x) 3x3 ax 2 x 5 在区间[1,2]上单调递增,则 a 的取值范围是
A.命题“若 x2 3x 2 0 ,则 x 1 ”的逆否命题为:“若 x 1 ,则 x2 3x 2 0 ”
B.“ x 1 ”是“ | x | 1”的充分不必要条件
C.若 p q 为假命题,则 p 、 q 均为假命题.
D.若命题 p :“ x R ,使得 x2 x 1 0 ”,则 p :“ x R ,均有 x2 x 1 0 ”
上单调递增,在 (1, e] 上单调递减
所以 f (x) 在区间 0,e上的最大值为 f (1) ,令 f (1) 1,解得 a 2 ……
当a
0,
x2
1 2a
0
当
1 2a
1
时,
f
(x) 在 (0,
1) 2a
(1 上单调递增, 2a
,1) 上单调递减, (1,e)
上单调递增
x 1 所以最大值 1 可能在 2a 或 x e 处取得
A. (,5]
B. (,5)
(, 37]
C.
4
D. (,3]
9.函数 y x 2 6x 5 的值域为
银川市高考数学一模试卷(理科)C卷(考试)

银川市高考数学一模试卷(理科)C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高三上·宁德期中) 设集合,则A .B .C .D .2. (2分) (2016高二上·淮南期中) 已知复数z满足方程 =i(i为虚数单位),则 =()A . + iB . ﹣ iC . ﹣ + iD . ﹣﹣ i3. (2分) (2017高三上·珠海期末) 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”,翻译成今天的话是:一只大鼠和一只小鼠分别从的墙两侧面对面打洞,已知第一天两鼠都打了一尺长的洞,以后大鼠每天打的洞长是前一天的2倍,小鼠每天打的洞长是前一天的一半,已知墙厚五尺,问两鼠几天后相见?相见时各打了几尺长的洞?设两鼠x 天后相遇(假设两鼠每天的速度是匀速的),则x=()A .C .D .4. (2分)(2017·大连模拟) 若双曲线 =1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为()A . 2B .C .D .5. (2分)已知向量=(2,2),=(cosα,﹣sinα),则向量的模的最小值是()A . 3B . 3C .D . 26. (2分) (2017高一下·乾安期末) 在区间上随机取一个数,则事件“ ”发生的概率为()A .B .D .7. (2分)已知函数(a、b为常数,,)在处取得最小值,则函数是()A . 偶函数且它的图象关于点对称B . 偶函数且它的图象关于点对称C . 奇函数且它的图象关于点对称D . 奇函数且它的图象关于点对称8. (2分)下面的程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的是()A . c >xB . x >cC . c >D . b >c9. (2分)(2017·镇海模拟) 已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为()A . ﹣200B . ﹣100C . 0D . ﹣5010. (2分)(2018·郑州模拟) 刍薨(),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A . 24B .C . 64D .11. (2分) (2017高二下·西安期末) 过抛物线y2=4x的焦点作直线交抛物线于A(x1 , y1)B(x2 , y2)两点,如果x1+x2=6,那么|AB|=()A . 6B . 8C . 9D . 1012. (2分)已知函数,若存在,使得,则的取值范围为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高三上·沈阳期中) 已知f(x)是定义在R上的奇函数,且满足f(x+2)=﹣,当1≤x≤2时,f(x)=x,则f(﹣)=________.14. (1分) (2017高二下·资阳期末) (x2﹣)6的展开式中x3的系数为________.15. (1分) (2016高二上·晋江期中) 已知实数x,y满足,则目标函数z=x2+(y﹣3)2的最小值为________.16. (1分)(2017·蚌埠模拟) 已知数列{an}满足a1= ,若bn=log2an﹣2,则b1•b2•…•bn 的最大值为________.三、解答题:解答应写出文字说明.证明过程或演算步骤. (共7题;共65分)17. (5分)(2017·湖南模拟) 已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acos A=ccos B+bcos C.(Ⅰ)求A;(Ⅱ)若b2+c2=7,求△ABC的面积.18. (10分)(2016·孝义模拟) 某学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的60%,对教师管理水平给出好评的学生人数为总数的75%,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的2×2列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评对教师教学水平不满意合计问:是否可以在犯错误概率不超过0.1%的前提下,认为教师教学水平好评与教师管理水平好评有关、(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量X;①求对教师教学水平和教师管理水平全好评的人数X的分布列(概率用组合数算式表示);②求X的数学期望和方差.P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828(K2= ,其中n=a+b+c+d)19. (10分) (2019高二下·深圳月考) 如图,在三棱柱中,,,,平面 .(1)证明:平面;(2)求二面角的大小.20. (10分)(2017·临川模拟) 平面直角坐标系xoy中,椭圆C1: + =1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)求椭圆的方程;(2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.21. (10分)(2017·南通模拟) 已知函数f(x)=ax3﹣bx2+cx+b﹣a(a>0).(1)设c=0.①若a=b,曲线y=f(x)在x=x0处的切线过点(1,0),求x0的值;②若a>b,求f(x)在区间[0,1]上的最大值.(2)设f(x)在x=x1,x=x2两处取得极值,求证:f(x1)=x1,f(x2)=x2不同时成立.22. (10分)在直角坐标系xOy中,曲线C1的参数方程是 (t为参数,0≤α<π),以原点O 为极点,以x轴正半轴为极轴,已知曲线C2的极坐标方程为ρ=4cosθ,射线与曲线C2相交,交点分别为A,B,C(A,B,C均不与O重合).(1)求证:;(2)当时,B,C两点在曲线C1上,求m与α的值.23. (10分) (2018·长沙模拟) 已知函数.(1)证明:;(2)若,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题:解答应写出文字说明.证明过程或演算步骤. (共7题;共65分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、答案:略23-2、。
2019年宁夏银川市高考数学一模试卷和答案(理科)

2019年宁夏银川市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z在复平面内对应的点为(0,1),则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={1,2,3},集合B={z|z=x﹣y,x∈A,y∈A},则集合B中元素的个数为()A.4B.5C.6D.73.(5分)已知f(x)是定义在R上奇函数,当x≥0时,f(x)=log2(x+1),则f(﹣3)=()A.﹣2B.﹣1C.2D.14.(5分)双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣2y+1=0平行,则双曲线的离心率为()A.B.C.D.5.(5分)已知平面α⊥平面β,α∩β=l,a⊂α,b⊂β,则“a⊥l”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)执行如图的程序框图,若输出的S=48,则输入k的值可以为()A.4B.6C.8D.107.(5分)已知等比数列{a n}的公比为q,a3=4,a2+a4=﹣10,且|q|>1,则其前4项的和为()A.5B.10C.﹣5D.﹣108.(5分)已知△ABC是边长为2的等边三角形,D为BC的中点,且,则=()A.B.1C.D.39.(5分)根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A.B.C.D.10.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0B.2C.5D.611.(5分)将函数f(x)=sin2x+cos2x的图象向左平移个单位得到g(x)的图象,则g (x)在下列那个区间上单调递减()A.B.C.D.12.(5分)已知f(x)为定义在R上的偶函数,g(x)=f(x)+x2,且当x∈(﹣∞,0]时,g(x)单调递增,则不等式f(x+1)﹣f(x+2)>2x+3的解集为()A.B.C.(﹣∞,﹣3)D.(﹣∞,3)二、填空题:本大题共4小题,每小题5分.13.(5分)函数f(x)=e x﹣1在(1,1)处切线方程是.14.(5分)已知P是抛物线y2=4x上一动点,定点,过点P作PQ⊥y轴于点Q,则|P A|+|PQ|的最小值是.15.(5分)设S n是数列{a n}的前n项和,点(n,a n)(n∈N*)在直线y=2x上,则数列的前n项和为.16.(5分)已知球O的内接圆锥体积为,其底面半径为1,则球O的表面积为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在平面四边形ABCD中,已知,AB⊥AD,AB=1.(1)若,求△ABC的面积;(2)若,AD=4,求CD的长.18.(12分)在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:K2=参考数据:19.(12分)已知点P(0,2),点A,B分别为椭圆C:+=1(a>b>0的左右顶点,直线BP交C于点Q,△ABP是等腰直角三角形,且=.(1)求C的方程;(2)设过点P的动直线l与C相交于M,N两点,O为坐标原点.当∠MON为直角时,求直线l的斜率.20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=1,AA1=2,点D是侧棱AA1的上一点.(1)证明:当点D是AA1的中点时,DC1⊥平面BCD;(2)若二面角D﹣BC1﹣C的余弦值为,求AD的长.21.(12分)已知函数f(x)=xlnx+ax在x=x0处取得极小值﹣1.(1)求实数a的值;(2)设g(x)=xf(x)+b(b>0),讨论函数g(x)的零点个数.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,点A为曲线C1上的动点,点B 在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(1)求C1,C2的极坐标方程;(2)设点C的极坐标为(2,),求△ABC面积的最小值.[选修4-5:不等式选讲].23.已知函数f(x)=2|x﹣1|﹣|x+1|的最小值为t.(1)求实数t的值;(2)若g(x)=f(x)+|x+1|,设m>0,n>0且满足+t=0,求证:g(m+2)+g (2n)≥4.2019年宁夏银川市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z在复平面内对应的点为(0,1),则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:复数z在复平面内对应的点为(0,1),则===1﹣i.故选:B.2.(5分)已知集合A={1,2,3},集合B={z|z=x﹣y,x∈A,y∈A},则集合B中元素的个数为()A.4B.5C.6D.7【解答】解:∵A={1,2,3},B={z|z=x﹣y,x∈A,y∈A},∴x=1,2,3,y=1,2,3.当x=1时,x﹣y=0,﹣1,﹣2;当x=2时,x﹣y=1,0,﹣1;当x=3时,x﹣y=2,1,0.即x﹣y=﹣2,﹣1,0,1,2.即B={﹣2,﹣1,0,1,2}共有5个元素.故选:B.3.(5分)已知f(x)是定义在R上奇函数,当x≥0时,f(x)=log2(x+1),则f(﹣3)=()A.﹣2B.﹣1C.2D.1【解答】解:根据题意,当x≥0时,f(x)=log2(x+1),则f(3)=log24=2,又由函数f(x)为奇函数,则f(﹣3)=﹣f(3)=﹣2;故选:A.4.(5分)双曲线﹣=1(a>0,b>0)的一条渐近线与直线x﹣2y+1=0平行,则双曲线的离心率为()A.B.C.D.【解答】解:由双曲线的渐近线与直线x﹣2y+1=0平行知,双曲线的渐近线方程为x﹣2y=0,即y=x,∵双曲线的渐近线为y=±,即=,离心率e======,故选:B.5.(5分)已知平面α⊥平面β,α∩β=l,a⊂α,b⊂β,则“a⊥l”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由面面垂直的性质得当a⊥l,则a⊥β,则a⊥b成立,即充分性成立,反之当b⊥l时,满足a⊥b,但此时a⊥l不一定成立,即必要性不成立,即“a⊥l”是“a⊥b”的充分不必要条件,故选:A.6.(5分)执行如图的程序框图,若输出的S=48,则输入k的值可以为()A.4B.6C.8D.10【解答】解:模拟执行程序框图,可得n=1,S=1不满足条件n>k,n=4,S=6不满足条件n>k,n=7,S=19不满足条件n>k,n=10,S=48由题意,此时应该满足条件n=10>k,退出循环,输出S的值为48,故应有:7<k<10故选:C.7.(5分)已知等比数列{a n}的公比为q,a3=4,a2+a4=﹣10,且|q|>1,则其前4项的和为()A.5B.10C.﹣5D.﹣10【解答】解:∵等比数列{a n}的公比为q,a3=4,a2+a4=﹣10,∴+4q=﹣10,解得q=﹣(舍去),或q=﹣2,∴a1==1,∴S4==﹣5,故选:C.8.(5分)已知△ABC是边长为2的等边三角形,D为BC的中点,且,则=()A.B.1C.D.3【解答】解:由,可得点P为线段BC的三等分点且靠近点C,设,的夹角为θ,由||cosθ的几何意义为在方向上的投影,则有:=||||cosθ=||2=()2=3,故选:D.9.(5分)根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A.B.C.D.【解答】解:我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,基本事件总数n==36,甲,乙两位专家派遣至同一县区包含的基本事件个数m==6,∴甲,乙两位专家派遣至同一县区的概率为p==.故选:A.10.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0B.2C.5D.6【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.11.(5分)将函数f(x)=sin2x+cos2x的图象向左平移个单位得到g(x)的图象,则g(x)在下列那个区间上单调递减()A.B.C.D.【解答】解:将函数f(x)=sin2x+cos2x=sin(2x+)的图象向左平移个单位得到g(x)=sin(2x+)=cos2x的图象,在区间[0,]上,则2x∈[0,π],g(x)单调递减,故C满足条件,在区间[﹣,0]上,则2x∈[﹣π,0],g(x)单调递增,故A不满足条件;在区间[,]上,则2x∈[,],g(x)没有单调性,故B不满足条件;在区间[0,]上,则2x∈[0,π],g(x)单调递减,故C满足条件;在区间[,π]上,则2x∈[π,2π],g(x)没有单调性,故D不满足条件,故选:C.12.(5分)已知f(x)为定义在R上的偶函数,g(x)=f(x)+x2,且当x∈(﹣∞,0]时,g(x)单调递增,则不等式f(x+1)﹣f(x+2)>2x+3的解集为()A.B.C.(﹣∞,﹣3)D.(﹣∞,3)【解答】解:根据题意,g(x)=f(x)+x2,则f(x+1)﹣f(x+2)>2x+3⇒f(x+1)+(x+1)2>f(x+2)+(x+2)2⇒g(x+1)>g (x+2),若f(x)为偶函数,则g(﹣x)=f(﹣x)+(﹣x)2=f(x)+x2=g(x),即可得函数g (x)为偶函数,又由当x∈(﹣∞,0]时,g(x)单调递增,则g(x+1)>g(x+2)⇒|x+1|>|x+2|⇒(x+1)2>(x+2)2,解可得x>﹣,即不等式的解集为(﹣,+∞);故选:B.二、填空题:本大题共4小题,每小题5分.13.(5分)函数f(x)=e x﹣1在(1,1)处切线方程是y=x.【解答】解:函数f(x)=e x﹣1的导数为f′(x)=e x﹣1,∴切线的斜率k=f′(1)=1,切点坐标为(1,1),∴切线方程为y﹣1=x,即y=x.故答案为:y=x.14.(5分)已知P是抛物线y2=4x上一动点,定点,过点P作PQ⊥y轴于点Q,则|P A|+|PQ|的最小值是2.【解答】解:抛物线y2=4x的焦点坐标(1,0),P是抛物线y2=4x上一动点,定点,过点P作PQ⊥y轴于点Q,则|P A|+|PQ|的最小值,就是PF的距离减去y轴与准线方程的距离,可得最小值为:﹣1=3﹣1=2.故答案为:2.15.(5分)设S n是数列{a n}的前n项和,点(n,a n)(n∈N*)在直线y=2x上,则数列的前n项和为.【解答】解:点(n,a n)(n∈N*)在直线y=2x上,∴a n=2n.∴S n==n(n+1).∴==﹣.则数列的前n项和=1﹣+……+﹣=1﹣=.故答案为:.16.(5分)已知球O的内接圆锥体积为,其底面半径为1,则球O的表面积为.【解答】解:由圆锥体积为,其底面半径为1,可求得圆锥的高为2,设球半径为R,可得方程:R2﹣(R﹣2)2=1,解得R=,∴=,故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在平面四边形ABCD中,已知,AB⊥AD,AB=1.(1)若,求△ABC的面积;(2)若,AD=4,求CD的长.【解答】解:(1)在△ABC中,AC2=AB2+BC2﹣2AB•BC•COS∠ABC,,解得,∴.(2)∵,∴,∴==在△ABC中,,∴,∴CD2=AC2+AD2﹣2AC•AD•cos∠CAD=,∴.18.(12分)在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:K2=参考数据:【解答】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取100×=40(人),从非示范性高中抽取100×=60(人);(2)由频率分布直方图估算样本平均数为:(60×0.005+80×0.018+100×0.02+120×0.005+140×0.002)×20=92.4,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有100×0.002×20=4(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算K2==42.982>6.635,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.(12分)已知点P(0,2),点A,B分别为椭圆C:+=1(a>b>0的左右顶点,直线BP交C于点Q,△ABP是等腰直角三角形,且=.(1)求C的方程;(2)设过点P的动直线l与C相交于M,N两点,O为坐标原点.当∠MON为直角时,求直线l的斜率.【解答】解:(1)由题意△ABP是等腰直角三角形,则a=2,B(2,0),设点Q(x0,y0),由=,则x0=,y0=,代入椭圆方程解得b2=1,∴椭圆方程为+y2=1.(2)由题意可知,直线l的斜率存在,令l的方程为y=kx+2,则M(x1,y1),N(x2,y2),则,整理可得(1+4k2)x+16kx+12=0,∴△=(16k)2﹣48×(1+4k2)>0,解得k2>,∴x1+x2=﹣,x1x2=,当∠MON为直角时,k OM•k ON=﹣1,∴x1x2+y1y2=0,则x1x2+y1y2=x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4=(1+k2)•+2k(﹣)+4=0,解得k2=4,即k=±2,故存在直线l的斜率为±2,使得∠MON为直角.20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=1,AA1=2,点D是侧棱AA1的上一点.(1)证明:当点D是AA1的中点时,DC1⊥平面BCD;(2)若二面角D﹣BC1﹣C的余弦值为,求AD的长.【解答】解:(1)证明:由题意:BC⊥AC且BC⊥CC1,AC∩CC1=C,∴BC⊥平面ACC1A1,则BC⊥DC1.又∵D是AA1的中点,AC=AD,且∠CDA=90°,∴∠ADC=45°,同理∠A1DC1=45°.∴∠C1DC=90°,则DC1⊥DC,∴DC1⊥平面BCD;(2)以C为坐标原点,分别以CA,CB,CC1为x轴,y轴,z轴建立空间直角坐标系.设AD=h,则D(1,0,h),B(0,1,0),C1(0,0,2).由条件易知CA⊥平面BC1C,故取=(1,0,0)为平面BC1C的法向量.设平面DBC1的法向量为=(x,y,z),则且,∵,,∴,取z=1,得.由|cos<>|==,解得h=,即AD=.21.(12分)已知函数f(x)=xlnx+ax在x=x0处取得极小值﹣1.(1)求实数a的值;(2)设g(x)=xf(x)+b(b>0),讨论函数g(x)的零点个数.【解答】解:(1)函数f(x)的定义域为(0,+∞),f'(x)=lnx+1+a,∵函数f(x)=xlnx+ax在x=x0}处取得极小值﹣1,∴,得当a=﹣1时,f'(x)=lnx,则x∈(0,1)时,f'(x)<0,当x∈(1,+∞)时,f'(x)>0∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴x=1时,函数f(x)取得极小值﹣1,∴a=﹣1(2)由(1)知,函数g(x)=xf(x)+b=x2lnx﹣x2+b(b>0),定义域为(0,+∞),g'(x)=2x(lnx﹣),令g'(x)<0,得0<x<,令g'(x)>0,得x>,g(x)在(0,)上单调递减,在(,+∞)上单调递增,当x=时,函数g(x)取得最小值b﹣,当b﹣>0,即b>时,函数g(x)没有零点;当b﹣=0,即b=时,函数g(x)有一个零点;当b﹣<0,即0<b<时,g(e)=b>0,∴g()g(e)<0存在x1∈(,e),使g(x1)=0,∴g(x)在(,e)上有一个零点x1设h(x)=lnx+﹣1,则h'(x)=﹣=,当x∈(0,1)时,h'(x)<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1)=0,即当x∈(0,1)时,lnx>1﹣,当x∈(0,1)时,g(x)=x2lnx﹣x2+b>x2(1﹣)﹣x2}+b=b﹣x,取x m=min{b,1},则g(x m)>0,∴g()g(x m)<0,∴存在x2∈(x m,),使得g(x2)=0,∴g(x)在(x m,)上有一个零点x2,∴g(x)在(0,+∞)上有两个零点x1,x2,综上可得,当b>时,函数g(x)没有零点;当b=时,函数g(x)有一个零点;当0<b<时时,函数g(x)有两个零点.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,点A为曲线C1上的动点,点B 在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(1)求C1,C2的极坐标方程;(2)设点C的极坐标为(2,),求△ABC面积的最小值.【解答】解:(1)∵曲线C1的参数方程为(α为参数),∴曲线C1的普通方程为x2+y2﹣2x=0,∴曲线C1的极坐标方程为ρ=2cosθ.设B的极坐标为(ρ,θ),点A的极坐标为(ρ0,θ0),则|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,∵|OA||OB|=8,∴ρ•ρ0=8,∴=2cosθ,ρcosθ=4,∴C2的极坐标方程为ρcosθ=4(2)由题意知|OC|=2,S△ABC=S△OBC﹣S△OAC=|OC||ρB cosθ|=|4﹣2cos2θ|,当θ=0时,S△ABC取得最小值为2.[选修4-5:不等式选讲].23.已知函数f(x)=2|x﹣1|﹣|x+1|的最小值为t.(1)求实数t的值;(2)若g(x)=f(x)+|x+1|,设m>0,n>0且满足+t=0,求证:g(m+2)+g (2n)≥4.【解答】解:(1)f(x)=2|x﹣1|﹣|x+1|=,显然,f(x)在(﹣∞,1]上单调递减,在(1,+∞)上单调递增,∴f(x)min=f(1)=﹣2,∴t=﹣2,证明(2)g(x)=2|x﹣1|﹣|x+1|+|x+1|=2|x﹣1|,∴g(m+2)+g(2n)=2(|m+1|+|2n﹣1|)≥2|m+2n|,由于m>0,n>0,且=2,∴2|m+2n|=2(m+2n)=(m+2n)()=2++≥4,当且仅当=,即当n=,m=1时取“=”,故g(m+2)+g(2n)≥4。
宁夏银川市2019年高考数学一模试卷(理科)D卷

宁夏银川市2019年高考数学一模试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2020高二下·吉林期中) 已知集合,,则()A .B .C .D .2. (2分)(2019·惠州模拟) 若复数满足,则在复平面内,所对应的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2018高一下·龙岩期中) 在直角坐标系中,函数的图像可能是()A .B .C .D .4. (2分)已知命题p:,命题q:“a=﹣1”是“直线x﹣y+5=0与直线(a﹣1)x+(a+3)y﹣2=0平行”的充要条件,则下列命题正确的是()A . p∧qB . p∨(¬q)C . (¬p)∧qD . (¬p)∧(¬q)5. (2分) (2019高二上·邵阳期中) 已知数列满足,且,那么()A . 8B . 9C . 10D . 116. (2分)(2017·崇明模拟) 下列函数在其定义域内既是奇函数又是增函数的是()A . y=tanxB . y=3xC .D . y=lg|x|7. (2分) (2017高二下·黄冈期末) 某程序框图如图所示,该程序运行后输出的k的值是()A . 5B . 6C . 7D . 88. (2分)某空间几何体的三视图如右图所示,则该几何体的表面积为()A . 180B . 240C . 276D . 3009. (2分)从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有()A . 300种B . 240种C . 144种D . 96种10. (2分)在正三棱柱中,若AB=2,则点A到平面的距离为()A .B .C .D .11. (2分) (2015高三上·江西期末) 双曲线C: =1的左、右焦点分别为F1、F2 ,点P在右支上,且PF1与圆x2+y2=a2相切,切点为PF1的中点,F2到一条渐近线的距离为3,则△F1PF2的面积为()A . 9B . 3C .D . 112. (2分) (2019高三上·柳州月考) 已知函数若函数有个零点,则实数的取值范围是()A .B .C .D .二、填空题: (共4题;共4分)13. (1分) (2016高一下·南市期中) 如图在某路段检测点,对200辆汽车的车速进行检测,检测结果表示为如下频率分布直方图,则车速不小于90km/h的汽车约有________辆.14. (1分)(2016·新课标Ⅱ卷理) 的展开式中,x3的系数是________.(用数字填写答案)15. (1分) (2016高二上·莆田期中) 若x,y满足约束条件由约束条件围成的图形的面积________.16. (1分) (2015高三上·河北期末) 对于数列{an},定义Hn= 为{an}的“优值”,现在已知某数列{an}的“优值”Hn=2n+1 ,记数列{an﹣kn}的前n项和为Sn ,若Sn≤S5对任意的n(n∈N*)恒成立,则实数k的取值范围为________ .三、解答题: (共7题;共50分)17. (10分)的内角的对边分别为,已知 .(1)求;(2)若,的面积为,求的周长.18. (5分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程);(Ⅱ)求数学期望Eξ;(Ⅲ)求概率P(ξ≥Eξ).19. (5分)(2017·东城模拟) 如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求的值;若不存在,说明理由.20. (5分) (2019高二下·上海月考) 讨论方程所表示的曲线(若有焦点,请指明焦点所在的坐标轴).21. (10分)(2018·吕梁模拟) 已知函数,若曲线在点处的切线方程为 .(1)求实数、的值;(2)证明: .22. (10分) (2018高二下·邱县期末) 在直角坐标系中,直线的参数方程为为参数),若以原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使 .(1)求点轨迹的直角坐标方程;(2)若直线与点轨迹相交于两点,点的直角坐标为,求的值.23. (5分) (2019高一下·安徽月考) 若对定义域内任意,都有(为正常数),则称函数为“ 距”增函数.(Ⅰ)若,是“ 距”增函数,求的取值范围;(Ⅱ)若,,其中,且为“2距”增函数,求的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共50分) 17-1、17-2、18-1、20-1、21-1、21-2、22-1、22-2、23-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正侧俯视第9题2019年普通高等学校招生全国统一考试一、选择题:本大题共12小题,每小题5分,共60分. 1.设集合}{10,8,6,4,2,0=A ,}{432<-=x x B ,则=B AA.}{8,4 B. }{6,2,0 C. }{2,0 D. }{6,4,22.复数12z i =-,则231z z +=- A .2i B .-2 C .2i - D .23.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作实验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为1x ,2x ,,n x ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是 A .1x ,2x ,,n x 的平均数 B .1x ,2x ,,n x 的标准差 C .1x ,2x ,,n x 的最大值 D .1x ,2x ,,n x 的中位数4.已知等比数列{}n a 中,有31174a a a =,数列{}n b 是等差数列,其前n 项和为n S ,且77b a =,则13S =A .26B .52C .78D .104 5.如图,在ABC ∆中,23AN NC =,P 是BN 上 一点,若13AP t AB AC =+,则实数t 的值为A .23B .25C .16 D .346.学校就如程序中的循环体,送走一届,又会招来一级。
老师们目送着大家远去,渐行渐远…….执行如图所示的程序框图, 若输入64x =,则输出的结果为 A .2B .3C .4D .57.双曲线C :)0,0(12222>>=-b a b y a x 和直线135=+y x ,若过C 的左焦点和点(0,-b )的直线与l 平行,则双曲线C 的离心率为 A .45 B .35 C .34D .58.已知函数()sin 23f x x π⎛⎫=+⎪⎝⎭,()sin g x x =,要得到函数()y g x =的图象,只需将函数()y f x =的图象上的所有点A .横坐标缩短为原来的12,再向右平移6π个单位得到 B .横坐标缩短为原来的12,再向右平移3π个单位得到C .横坐标伸长为原来的2倍,再向右平移6π个单位得到D .横坐标伸长为原来的2倍,再向右平移3π个单位得到9.一个四棱锥的三视图如右图所示,其正视图和侧视图 为全等的等腰直角三角形,俯视图是边长为2的正 方形,该几何体的所有顶点都在同一个球面上,则该 球的表面积为 A .π B .π2 C .π4 D .π6 10.已知函数)(2)1(2)(2R m e m x x f x∈+++=有两个极值点,则实数m 的取值范围为A .]0,1[e - B .)1,11(---eC .1,(e --∞D .),0(+∞ 11.如图,在正方体1111D C B A ABCD -中,点P 在线段1BC 上运动,则下列判断中正确的是 ①平面⊥D PB 1平面ACD ;②//1P A 平面1ACD ;③异面直线P A 1与1AD 所成角的取值范围是]3,0(π;④三棱锥APC D -1的体积不变.A .①②B .①②④C .③④D .①④12.已知函数1,0()3,0x e x f x x ax x -⎧>⎪=⎨⎪+≤⎩,若函数()(())2g x f f x =-恰有5个零点,且最小的零点小于-4,则a 的取值范围是A .(,1)-∞-B .(0,)+∞ C. (0,1) D .(1,)+∞二、填空题:本大题共4小题,每小题5分,共20分。
13.10(1)x -的展开式中,3x 的系数等于 .14.已知实数,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,若目标函数2z x ay =+仅在点(3,4)取得最小值,则a 的取值范围是 .15.已知抛物线28y x =的焦点为F ,直线l 过F 且依次交抛物线及圆22(2)1x y -+=于点A ,B ,C ,D 四点,则||4||AB CD +的最小值为 . 16.已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,满足12a =,3()n n S n m a =+,(m R ∈),且12n n a b =.若对任意*n N ∈,n T λ>恒成立,则实数λ的最小值为 . 三、解答题: 17在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知6a =,1cos 8A =. (1)若5b =,求sin C 的值; (2)ABC ∆b c +的值.18. 2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.附:临界值表参考公式:K 2=(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .19.如图所示,ABCD 是边长为2的正方形,AE ⊥平面BCE ,且1AE =.(1)求证:平面ABCD ⊥平面ABE ;(2)线段AD 上是否存在一点F ,使二面角A BF E --所成角的余弦值为4?若存在,请找出点F 的位置;若不存在, 请说明理由.20.已知点(1,A 在椭圆2222:1(0)x y C a b a b+=>>上,O 为坐标原点,直线2:1x l a =的斜率与直线OA的斜率乘积为14-. (1)求椭圆C 的方程;(2)不经过点A的直线:2l y x t =+(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.21.已知函数()()212ln ,x f x a x x a x-=-+∈R. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.(二)选考题:共10分。
请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分。
22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2sin 2cos 0a a ρθθ=+>;直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22222(t 为参数).直线l 与曲线C 分别交于,M N 两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若点P 的极坐标为()2,π,PMPN +=,求a 的值.23.[选修4-5:不等式选讲]已知函数()2f x x =-.(1)求不等式()1f x x x <++的解集;(2)若函数()()()2log 32f x f x f x a =++-⎡⎤⎣⎦的定义域为R ,求实数a 的取值范围.13.-120 14.(,2)-∞- 15. 13 16. 12三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分)17.解:(Ⅰ)由1cos 8A =,则02A π<<,且 sin A = 由正弦定理sin sin b B A a ==, 因为b a <,所以02B A π<<<,所以9cos 16B =,sin sin()C A B =+sin cos cos sin A B A B =+=(Ⅱ)11sin 22ABC S bc A bc ∆===20bc =,2222cos a b c bc A =+-221220368b c =+-⨯⨯=,∴2241b c +=,222()2b c b c bc +=++414081=+=, ∴9b c +=.所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关.(2)设李师傅、张师傅到小区的时间分别为x ,y ,则(x ,y )可以看成平面中的点.试验的全部结果所构成的区域为Ω={(x ,y )|7≤x ≤8,7.5≤y ≤8.5},则S Ω=1,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为A ={(x ,y )|y ≥x ,7≤x ≤8,7.5≤y ≤8.5},即图中的阴影部分面积为S A =1-12×12×12=78, 所以P (A )=S A S Ω=78,连续3天内,李师傅比张师傅早到小区的天数记为ξ,则)87,3(~B ξ 821)(=ξE 19. 解:(Ⅰ)∵AE ⊥平面BCE ,BE ⊂平面BCE ,BC ⊂平面BCE ,∴AE BE ⊥,AE BC ⊥,又∵BC AB ⊥,∴AE AB A =,∴BC ⊥平面ABE , 又BC ⊂平面ABCD ,∴平面ABCD ⊥平面ABE . (Ⅱ)如图所示,建立空间直角坐标系A xyz -, ∵1AE =,2AB =,AE BE ⊥,∴BE =假设线段AD 上存在一点F 满足题意,1,0)2E ,(0,2,0)B ,(0,0,)F h ,(0)h >, 易知:平面ABF 的一个法向量为(1,0,0)m =, ∵33(,0)22BE =-,(0,2,)BF h =-, ∴设平面BEF 的一个法向量为(,,)n x y z =,由00n BE n BF ⎧⋅=⎪⎨⋅=⎪⎩,得30220x y y hz -=⎪-+=⎩,取1y =,得2(3,1,)n h =,6cos ,4||||m n m n m n ⋅===⋅,∴1h =.点F 为线段AD 的中点时,二面角A BF E --20. 解:(Ⅰ)由题意,2212124OA b k k a ⋅==-=-, 即224a b =① 又221314a b+=②联立①①解得21a b =⎧⎨=⎩所以,椭圆C 的方程为:2214x y +=. (Ⅱ)设11(,)P x y ,22(,)Q x y ,11(,)R x y --,由2214y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得2210x t +-=,所以240t∆=->,即22t -<<,又因为0t ≠,所以,(2,0)(0,2)t ∈-,12x x +=,2121x x t ⋅=-,解法一:要证明AM AN =,可转化为证明直线AQ ,AR的斜率互为相反数,只需证明0AM AN k k +=,即证明0AQ AR k k +=.12122211AQ AR y y k k x x +=++-122112(1)(1)22(1)(1)y xy x x x -+++=+-∴1221121)1)2222(1)(1)x t x x t x x x +-++++=+-12=120==∴0AM AN k k +=,∴AM AN =.21.解:(1) ()f x 的定义域为()0,+∞,()233(2)122()1x ax x f x a x x x ---⎛⎫'=-+= ⎪⎝⎭. (1)分(i)当0a ≤时,210ax -<恒成立,()0,2x ∈时,'()0f x >,()f x 在()0,2上单调递增; ()2,x ∈+∞时,'()0f x <,()f x 在()2,+∞上单调递减; ………………2分(ii) 当0a >时,由()0f x '=得,1232,x x x ===去),①当12x x =,即14a =时,()0f x '≥恒成立,()f x 在(0,)+∞上单调递增;…3分②当12x x >,即14a >时,x ⎛∈ ⎝或()2,x ∈+∞时,()0f x '>恒成立,()f x在⎛ ⎝,()2,+∞单调递增;x ⎫∈⎪⎭时,()0f x '<恒成立,()f x在⎫⎪⎭上单调递减;…………4分③当12x x <即104a <<时,x ⎫∈+∞⎪⎭或()0,2x ∈时,()0f x '>恒成立,()f x在(0,2),⎫+∞⎪⎭单调递增;x ⎛∈ ⎝时,()0f x '<恒成立,()f x在⎛ ⎝上单调递减;……………5分综上,当0a ≤时,()f x 单调递增区间为()0,2,单调递减区间为()2,+∞;当14a =时,()f x 单调递增区间为()0,+∞,无单调递减区间; 当14a >时,()f x单调递增区间为⎛ ⎝,()2,+∞,单调递减区间为⎫⎪⎭; 当104a <<时,()f x单调递增区间为(0,2),⎫+∞⎪⎭,单调递减区间为⎛⎝. …………………………………………………6分(2)由(1)知,当0a <时,()f x 单调递增区间为(0,2),单调递减区间为(2,)+∞,又因为()10f a =<, (7)分取01max{,5}x a=-,令1()2ln f x x x =-,21()f x x =,则12'()10f x x=-> 在(2,)+∞成立,故1()2ln f x x x =-单调递增,10()52ln 512(2ln 5)1f x ≥-=+->,0002220000011111()(2ln )0f x a x x a x x x x x =-+-≤+-≤-<,(注:此处若写“当x →+∞时,()f x →-∞”也给分)所以()f x 有两个零点等价于1(2)(22ln 2)04f a =-+>,得188ln 2a >--,所以1088ln 2a >>--.……………………………………………………………8分当0a =时,21()x f x x-=,只有一个零点,不符合题意;当14a =时,()f x 在(0,)+∞单调递增,至多只有一个零点,不符合题意;……9分当0a >且14a ≠时,()f x 有两个极值,1(2)(22ln 2)04f a =-+>,ln f a a a =-,记()ln g x x x x =-, ……………………………10分'()(1ln )1ln g x x x =++-=,令()ln h x x =+,则()3221122h x x x x '=-+=. 当14x >时,()0h x '>,'()g x 在1,4⎛⎫+∞ ⎪⎝⎭单调递增; 当104x <<时,()0h x '<,'()g x 在10,4⎛⎫⎪⎝⎭单调递减.故1()22ln 204g x g ⎛⎫''>=-> ⎪⎝⎭,()g x 在(0,)+∞单调递增.x →时,()0g x →,故ln 0f a a a =->.……………………11分 又1(2)(22ln 2)04f a =-+>,由(1)知,()f x 至多只有一个零点,不符合题意.综上,实数a的取值范围为1,088ln 2⎛⎫- ⎪-⎝⎭. ………………………………12分 22.解:(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+.由直线l 的参数方程得直线l 的普通方程为2y x =+.(2)将直线l的参数方程222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+,化简并整理,得()2440t t a -++=.因为直线l 与曲线C 分别交于,M N 两点,所以()()24440a ∆=-+>,解得1a ≠、由一元二次方程根与系数的关系,得12t t +=,1244t t a =+. 又因为0a >,所以120t t >.因为点P 的直角坐标为()2,0-,且在直线l 上,所以12PM PN t t +=+==,解得2a =,此时满足0a >,且1a ≠, 故2a =. 23.解:(1)由已知不等式()1f x x x <++,得21x x x -<++, 当2x >时,绝对值不等式可化为21x x x -<++,解得3x >-,所以2x >;当12x -≤≤时,绝对值不等式可化为21x x x -<++,解得13x >,所以123x <≤; 当1x <-时,由21x x x -<--得3x >,此时无解.综上可得所求不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(2)要使函数()()()2log 32f x f x f x a =++-⎡⎤⎣⎦的定义域为R ,只要()()()32g x f x f x a =++-的最小值大于0即可.又()12232g x x x a a =++--≥-,当且仅当[]1,2x ∈-时取等号.所以只需320a ->,即32a <. 所以实数a 的取值范围是3,2⎛⎫-∞ ⎪⎝⎭.。