核磁共振波谱法(NMR)
核磁共振波谱(NMR)

1.1.2 磁性原子核在外加磁场中的行为特性
核的自旋取向、 核的自旋取向、自旋取向数与能级状态
β
α
外 场 无 磁
0 H 在 磁 中 外 场
自旋取向数=2I+1 自旋取向数
m=I, I-1, ……-I.
∆E=2µH0 µ
9
核在能级间的定向分布及核跃迁
0 H 在 磁 中 外 场
通常在热力学平衡条件下,自旋核在两个能级间的定向分 布数目遵从Boltzmann分配定律,即低能态核的数目比高 能态的数目稍多一些。
19
2.1化学位移 2.1化学位移
意义? 意义? • 相对差值 与外加磁场 强度 H0 无关。 相对差值δ与外加磁场 无关。 用一台60 仪器, 例:① 用一台 MHZ 的 NMR 仪器,测得某质子共振时所需 射频场的频率比 TMS(四甲基硅烷)的高 120HZ。 (四甲基硅烷) 。
② 用一台 100MHZ 的 NMR 仪器,进行上述同样测试 仪器,
27
3)化学位移的影响因素 (3)分子内(间)氢键 分子内(
a. 分子内氢键:不受溶剂影响;b. 分子间氢键:受溶剂影响(浓度,温度等) 分子内氢键:不受溶剂影响; 分子间氢键:受溶剂影响(浓度,温度等)
10.93 HO O
OH 12.40
O
OH 9.70
28
小结:影响化学位移大小的因素 小结:
30
谱学知识介绍
sp2杂化碳上的质子化学位移范围: 杂化碳上的质子化学位移范围: a. 烯 烃 结构类型 环外双键 环内双键 末端双键 开链双键 末端连烯 一般连烯 α,β-不饱和酮 化学位移范围 4.4~4.9 4.4~ 5.3~5.9 5.3~ 4.5~5.2 4.5~ 5.3~5.8 5.3~ 4.4 4.8 α-H 5.3~5.6 5.3~ 6.5~ β-H 6.5~7.0
核磁共振波谱法

核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T 时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
第14章核磁共振波谱法-2013秋

20世纪60年代,计算机技术的发展使脉冲傅立叶 变换核磁共振方法和仪器得以实现和推广,引起 该领域的革命性进步。
现代NMR技术特点
更高灵敏度和分辨率,300、400…,1000MHz 超导NMR 谱仪;
苯环的磁各向异性
δ≈7.3
H
H
H
H
H
H
H
-2.99
H
H
H
H
H
H
H
H H
9.28
H H
双键和叁键的磁各向异性
δ=5.25
δ=2.88
影响化学位移的因素
3.氢键的去屏蔽效应
氢键的形成能使羟基或其它基团上的氢 核的δ值明显增大,氢键起到了相当于去屏蔽 的作用。由于影响氢键形成的因素很多,所 以羟基和氨基上的氢核δ值都有一个较大的变 化范围。
n+1规律只适用于I=1/2,且△ν/J >10 的初级谱。 对于其它I≠1/2,该规律可改为2nI+1。
n+1规律示例—偶合常数相等
2-溴丙烷的NMR谱
n+1规律示例-偶合常数不等
δc
δb
Jac Jbc
Hb Hc
Jab Jbc
Ha
δa
CN
Jac Jab
丙稀腈三个氢的自旋分裂图
偶合常数
自旋-自旋偶合时核磁共振谱线发生分裂, 产生的裂距反映了相互偶合作用的强弱, 称为偶合常数,单位为赫兹。对简单偶合
(Δ /J>10),峰裂距 即偶合常数。高级偶 合 (Δ /J<10),n+1律不再适合,偶合常
核磁共振波谱法详细解析

10
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0ppm (δ)
(低场)
ν0 固定
(高场)
左端为低场高频,右端为高场低频
二、化学位移
1. 定义:由于屏蔽效应的存在,不同化学环境 H 核共振频率不同
2. 表示方法 样 标 H样 H标 6 6 10 10 , = 10 6 标 标 H标 采用相对值的原因: • 绝对值不易测得; • 对于同一核,H0不同时,ν不同,不便于比较,采 用相对值δ与H0无关。
④易溶于有机溶剂,沸点低 4. H谱常用溶剂:D2O, CDCl3
三、化学位移的影响因素
内部因素(分子结构因素):局部屏蔽效 应、磁各向异性效应和杂化效应等 外部因素:分子间氢键和溶剂效应等。
三、化学位移的影响因素
1. 局部屏蔽效应:氢核核外成键电子云产生的抗磁 屏蔽效应(相邻基团的电负性影响)。 • 电负性↑,吸电子能力↑ ,H核电子云密度↓,↓ (去磁屏蔽效应),δ↑
(一)核自旋能级分裂
不同取向的核具有不同的能级, I = 1/2: m =1/2 的μz 顺磁场,能量低;
m =-1/2的 µ 逆磁场,能量高。 z
h E Z H 0 m 1 1 H 0 h h E E2 h H0 H E 2 ( 2)) ) (1 E2 ( 2 2 22H 0 0 m=-1/2 2 2 H0=0 1 1h h E1 1 h H 0 H E1 2 2 H 0 E1 2 2 2 0 m=1/2 2 hh E E2 1E h H 0H 0 H0 E E 2 E 1 2 H 0 E E E1 2 0 2 2 hh 在外加磁场中,自旋核发能级分裂,能级差和H0成正比 E m h HH E m 2 H0 0 E m
NMR(核磁共振)

驰豫过程可分为两种:自旋—晶格驰豫和自旋— 自旋驰豫
(1)自旋—晶格驰豫(spin-lattice relaxation):自旋—晶格 驰豫也称为纵向驰豫,是处于高能态的核自旋体系与其周围的 环境之间的能量交换过程。当一些核由高能态回到低能态时, 其能量转移到周围的粒子中去,对固体样品,则传给晶格,如 果是液体样品,则传给周围的分子或溶剂。自旋—晶格驰豫的 结果使高能态的核数减少,低能态的核数增加,全体核的总能 量下降。
(2)自旋—自旋驰豫(spin-spin relaxation):自旋— 自旋驰豫亦称横向驰豫,一些高能态的自旋核把能量转
移给同类的低能态核,同时一些低能态的核获得能量跃
迁到高能态,因而各种取向的核的总数并没有改变,全 体核的总能量也不改变。自旋—自旋驰豫时间用T2来表 示,对于固体样品或粘稠液体,核之间的相对位置较固 定,利于核间能量传递转移,T2约10−3s。而非粘稠液 体样品,T2约1s。
(2)v不变,改变B0 方法是将样品用固定电磁辐射进行照射,并缓缓改变外 加磁场的强度,达到引起共振为止。这种方法叫扫场 (field sweep)。
通常,在实验条件下实现NMR多用2法。
核磁共振波谱仪主要由磁铁、射频振荡器、射频接收器等 组成
(1)磁铁
可以是永久磁铁,也可以是电磁铁,前者稳定性好。磁场 要求在足够大的范围内十分均匀。当磁场强度为1.409T时,其 不均匀性应小于六千万分之一。这个要求很高,即使细心加工 也极难达到。因此在磁铁上备有特殊的绕组,以抵消磁场的不 均匀性。磁铁上还备有扫描线圈,可以连续改变磁场强度的百 万分之十几。可在射频振荡器的频率固定时,改变磁场强度, 进行扫描。
核磁共振波谱法(NMR)

1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHz 磁场强度 0.9400 特斯拉
60
1.4092
100
2.3500
200
4.7000
300
7.1000
500
11.7500
核磁共振仪
分类: 按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--, 800 MHz(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
奇数 奇数或偶数 1/ 2
自旋球体
有
1H, 13C, 15N, 19F, 31P
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体
有
11B,17O,33S,35Cl,79Br,127I
偶数 奇数
1, 2, 3, --- 自旋惰球体
有
2H, 10B, 14N
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
CD3COCD3 CDCl3 CD2Cl2 CD3CN C6D6 D2O (CD3CD2)2O (CD3)2O (CD3)2NCDO CD3SOCD3 CD3CD2OD CD3OD C4D8O C6D5CD3 C5D5N C6H12
核磁共振波谱主要参数
用于结构分析的主要参数有化学位移, 自旋偶合常数,信号强度(峰面积)。
0441核磁共振波谱法1

δ
=(ν
s-ν νo
) r+
δ
r
式中 νs 为样品中磁核的共振频率; νr 为参照物中磁核的共振频率; νo 为仪器的输出频率,MHz; δr 为参照物的化学位移值。
因此也可用氘代溶剂中残留的质子信号作为化学位移参考值。
常用的化学位移参照物是四甲基硅烷(TMS),其优点是化学惰性;单峰;信号处在高
场,与绝大部分样品信号之间不会互相重叠干扰;沸点很低(27℃),容易去除,有利于样 品回收。而对于水溶性样品,常用 3-三甲基硅基丙酸钠-d4(TSP)或 2,2-二甲基-2-硅戊 基-5-磺酸钠(DSS),其化学位移值也非常接近于零。DSS 的缺点是其三个亚甲基质子有时 会干扰被测样品信号,适于用作外参考。
核磁共振信号的另一个特征是它的强度。在合适的实验条件下(见“测定方法”),谱峰 面积或强度正比于引起此信号的质子数,因此可用于测定同一样品中不同质子或其他核的相 对比例,以及在加入内标后进行核磁共振定量分析。
测定方法 在熟悉核磁共振理论的基础上,应多了解样品的性质,并严格遵守操作规程,正确操作 仪器。不正确的样品制备、谱仪调整及参数设置会导致谱图数据的分辨率和灵敏度降低,甚 至给出假峰和错误数据。 通常应用最多的是 1H(质子)核磁共振波谱,其他还包括 19F、31P、13C 核磁共振波谱 以及各种二维谱等。测定前,一般须先将供试品制成合适的溶液。 溶剂选择 合适的溶剂除了对样品有较好的溶解度外,其残留的信号峰应不干扰所分析 样品的信号峰。氘代溶剂同时提供异核锁信号。应尽可能使用高氘代度、高纯度的溶剂,并 注意氘原子会对其他原子信号产生裂分。常用的核磁共振波谱测定用氘代溶剂及其残留质子 信号的化学位移见下表。
实验中按照仪器操作规程设置谱仪参数,如脉冲倾倒角和与之对应的脉冲强度、脉冲间 隔时间、数据采样点(分辨率)、采样时间等。采集足够的 FIDs,由计算机进行数据转换, 调整相位使尽可能得到纯的吸收峰,用参照物校正化学位移值,用输出设备输出谱图。
核磁共振波谱法

核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等 I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振实验时,所用的磁强强度越高,发生核磁共振所
需的射频频率也越高。
讨论:
(1)磁场固定时( B0一定),不同的核具有不同的共振频率, 共振频率取决于核本身,大的核,发生共振所需的照射频率也大; 反之,则小。 (2)同样的核(一定),外加磁场B0越大,共振频率越大。 (3)若共振频率一定, 越大, B0越小。 例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 和13C的共振 频率为
样品,溶剂CDCl3, CD2Cl2, THF, etc.
当B = B0 +δB,使ν恰好等于照射样品的固定无线电波
频率ν0,样品中的氢原子核发生自旋能级跃迁。 B0 为核磁共振仪电磁铁的磁场强度,δB为扫描线圈产
生的磁场增量,5-10mG· min-1。
要满足核磁共振条件,可通过二种方法来实现
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
2. I=1 或 I>0的原子核: I=1 : 2H,14N, I=3/2: 11B,35Cl,79Br,81Br I=5/2: 17O,127I
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H 13C 19F 31P
60.000 15.086 56.444 24.288
MHZ MHZ MHZ MHZ
磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500
在有机化合物中,经常研究的是1H和13C的共振
吸收谱,重点介绍1H核共振的原理及应用。
•1H-NMR
o How many types of hydrogen ? o How many of each type ? o What types of hydrogen ?
o How are they connected ?
1. 核磁共振的基本原理
原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振
原子核的自旋、磁矩
原子核的自旋:具有自旋角动量。 原子核的自旋角动量和微观世界的能量一样,也是量子 化的,核自旋量子数用 I 表示。
12
6C
16
, ,
8O
I=0 I=1 I=3
1 1
H
35 17
13
,
核磁共振波谱法 Nuclear Magnetic Resonance NMR
前言
过去50年,波谱学已全然改变了化学家、生物学家和生 物医学家的日常工作,波谱技术成为探究大自然中分子 内部秘密的最可靠、最有效的手段。NMR是其中应用最 广泛研究分子性质的最通用的技术:从分子的三维结构 到分子动力学、化学平衡、化学反应性和超分子集体、 有机化学的各个领域。 1945年 Purcell(哈佛大学)和 Bloch(斯坦福大学)发 现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器
6C
19
,
9
F
I = 1/2 I = 3/2
2 1
H
14
7N
Cl
,
79 35
Br
10 5
B
自旋量子数 I 不等于零的核都能产生核磁共振,但目 前有实用价值的仅有1H谱和13C谱。
I=n/2
n = 0 , 1 , 2 动量,原子核是带电的粒子,在自 旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量数A和 原子序数Z: A 偶数 Z 偶数 I 0 自旋形状 无自旋现象 自旋球体 NMR信号 无 有 有 有 原子核
PFT-NMR谱仪
PFT-NMR谱仪与CW谱仪主要区别: 信号观测系统,增加了脉冲程序器和数据采集、处理系统。各种核 同时激发,发生共振,同时接受信号,得到宏观磁化强度的自由衰 减信号(FID信号),通过计算机进行模数转换和FT变换运算,使 FID时间函数变成频率函数,再经数模变换后,显示或记录下来, 即得到通常的NMR谱图。
•
瑞士科学家库尔特· 维特里希因“发明了利用核磁共振技术测 定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔 化学奖。
概述:
将磁性原子核放入强磁场后,用适宜频率的 电磁波照射,它们会吸收能量,发生原子核能级 跃迁,同时产生核磁共振信号,得到核磁共振。
利用核磁共振光谱进行结构测定,定性与定量 分析的方法称为核磁共振波谱法。
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级。
E
N
I
H 0 2 N H 0
在外磁场中,核自旋能级差Δ E和外磁场强度B成正比。 照射样品的电磁波能量hν正好等于 Δ E时,氢原子核吸收能量,
从低能级跃迁到高能级,产生核磁共振现象。
γ B 核磁共振吸收频率: ν = 2π
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场, 如频率为v射,当v射等于进动频率v ,发生共振。
低能态原子核吸收交变电场的能量,跃迁到高能态,称核磁共振。
核磁共振的条件
ΔE = h v迴= h v射= h BO /2π 或 v射= v迴= BO /2π 射频频率与磁场强度Bo是成正比的,在进行核磁共
NMR仪器的主要组成部件: 磁体:提供强而均匀的磁场 样品管:直径4mm,长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样 品 扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附 加可变磁场,用于扫描测定 射频接受器 :用于探测NMR信号,此线圈与射频发生器、 扫描发生器三者彼此互相垂直。
自旋核在磁场中的取向和能级
具有磁矩的核在外磁场中的自旋取向是 量子化的,可用磁量子数 m 来表示核自 旋不同的空间取向,其数值可取:m =I, I-1, I-2, ……,-I,共有2I +1个取向。
核磁共振的产生
在外磁场中,核自旋能级分裂为(2I+1)个,可以看作 是自旋的核在外加磁场中的取向数。
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHz 60 100 200 300 500
核磁共振仪
分类:
按磁场源分:永久磁铁、电磁铁、超导磁场
按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--, 800 MHz(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
氢核自旋能级分裂为(2I+1)= 2个。
无外加磁场
外加磁场中
z
z
z
B0
m = +1/2
m =+1 m =
m = m = m = m = 1
m = 1/2
m = 1
m = 2 I=2
I = 1/2
I=1
m=+1/2, 与外磁场平行,是顺磁排列,代表低能态, I=1/2的氢核 m= -1/2, 与外磁场相反, 是逆磁排列, 代表高能态。
Pyridine
Cyclohexane
C5D5N
C6H12
核磁共振波谱主要参数
用于结构分析的主要参数有化学位移, 自旋偶合常数,信号强度(峰面积)。
12C,16O, 32S, 28Si, 30Si 1H, 13C, 15N, 19F, 31P 11B,17O,33S,35Cl,79Br,127I 2H, 10B, 14N
奇数 奇数或偶数 1/ 2
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 偶数 奇数 1, 2, 3, --- 自旋惰球体
氢核在外磁场中的2个自旋状态,用自旋磁量子数ms表示。
1
E
ms= - 2
ΔE
零磁场
h γ B0 ΔE = π 2
ms= + 2
B0 B
1
B为外磁场强度,核的磁旋比γ是物质的特征常数。
核的回旋和核磁共振
当一个原子核的核磁 矩处于磁场BO中, 由于核自身的旋转, 而外磁场又力求它取 向于磁场方向,在这 两种力的作用下,核 会在自旋的同时绕外 磁场的方向进行回旋, 这种运动称为 Larmor进动。
FT-NMR谱仪特点:
有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨 率好(0.45Hz)。可用于测定1H,13C,15N,19F,31P等核的一维 和二维谱。 可用于少量样品的测定。
核磁共振仪与实验方法
按磁场源分:永久磁铁、电 磁铁、超导磁
按交变频率分:40兆,60兆
, 90 兆 , 100 兆 , 220 兆 , 250兆,300兆赫兹…… 频率越高,分辨率越高
NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对 判断化合物的空间结构起重大作用。 英国R. R. Ernst教授因对二维谱的贡献而获得1991年的Nobel 奖。
H 0 2.68108 1s 1 4.69 2 2 3.14
2.0015108 s 1 200.15 MHz (1s 1 1Hz)
c 0 6.73107 1s 1 4.69 2 2 3.14
5.026107 s 1 50.26MHz