三线摆实验报告

三线摆实验报告
三线摆实验报告

三线摆实验报告

三线摆实验报告

三线摆测定物体转动惯量

实验目的

1 掌握水平调节缓冲与时间测量方法;

2 掌握三线摆测定物体转动惯量的方法;

3 掌握利用旧式法测这定物体的转动惯量。

二实验仪器

三线放装置电子电子秒表卡尺米尺水平器

三实验原理

1 三线摆法测定物体的转动惯量圆盘:

I0mgab2T

122H若其上放置圆环,并且使其转轴质心与悬盘中心重合,重新测出摆动周期为T1和H1则:

I1(mM)gab2T1

122H1圆环的电动势为:I=I1-I0

2 式法测定物体的转动惯量圆环的经平

222I1M8DD

四实验内容

1 三线摆法测定圆环绕中心轴的转动惯量

a 用卡尺分别测定三线摆上下盘悬挂点间的距离a b(三个边各测次再平均值);

b 调节三线摆的悬线使悬盘到上之间的距离H大约50cm左右;

c 调节三线摆地脚螺丝使上盘水平后再的三线摆悬线调节长度使悬盘水平;

d 用米尺测定悬盘到上盘三线接点的距离H;

e 让悬盘静止后轻拨上盘使悬盘作本人角度摆动(注意观察其摆幅是否本人于10度,摆动是否稳定不摇晃。);

f 用电子秒表测定50个摆动周期的摆动的时间t;

g 把待测圆环置于悬盘上(圆环中心必须与悬盘中心重合)再测定悬盘到三线与上盘接点间的距离H1,重复步骤e f。

2 式法测定圆环绕中心轴的转动惯量

用卡尺分别测定圆环的内径和外径,根据上表中圆中心轴的转动

惯量计算式确定其转动惯量测定结果。(转角质量见标称值)

五数据处理表三线摆法项目a(cm)b(cm)H(cm)t(s)H1(cm)t1(s)项目

D(cm)d(cm)14.28011.29649.5585.7250.1094.35112.18210.17824.310 11.32449.5886.1949.8092.88212.17810.16034.29411.31449.6086.31 50.0094.36312.16010.142449.7085.6049.9095.22412.18010.186549. 6086.0450.0595.30512.17610.180612.18410.134649.7586.2750.1094 .88平均值4.29511.31149.6386.0249.9994.50表二式法

平均值

12.17710.163m=299g;M=543gaai13i324.295cm;sa2aaii1323120.015

m0.00220.015uasa0.015

33bbii133211.311cm;

2sbbbii1323120.015

m0.00220.015ubsb0.015

33HHii166249.63cm;

2sHHHii1626120.078

uHm0.052sH0.0780.084

33tti16i686.02s;st22tttii162610.3

2utsm0.0520.030.042H1H1ii166249.99cm;sH1Hi161H1i26120.12

uH1m0.052sH0.120.131332t1

t1ii16694.50s;

st1ti161t1i2610.9

t1292.8894.500.91.7392.96,剔除之后重新计算平均值:

t"1ti15"1i5294.82s;

2st1"t5i1"1t1i"25120.46

ut1m0.052st0.460.46133mgabT2mgabt22999804.29511.31186.0220.71 75104I0122H122H50222123.1449.63502(mM)gabT(299543)9804.29511. 31194.50212.421104I1122H122123.1449.9950II1I0(2.4210.7175)104 1.704104gcm2

EI0uaubutuHab2tH22222220.0150.01520.0420.084

4.29511.31186.0249.631.221051.81069.7621042.9106101043.2%EI1u aubut1uH1ab2tH1122222220.0150.01520.460.134.29511.31194.8249. 991.221051.81069.4141056.810611.501050.11%2uuI0IE0I07.7175103 3.2%0.025104

I1442.421100.11%0.00310I1EI1uIu2I0uI0.02520.00321040.03104

12EI1u0.031041.8%I1.704104I42IIuI1.700.0310gcmEI1.8%

DDi16i612.177cm;

sDDDii162610.009

D312.16012.1770.0091.7312.162,剔除此后重新计算平均值:

D"Di"i155612.180cm;

sD"6Di15"D"i25120.0032

dIdii1610.163cm;

sdddii1610.022

11M(D2d2)543(12.180210.1632)1.7080104gcm28822m0.00222uDsD0.00 320.0034

m0.00222udsd0.00220.0025

33uD2D2ud2d2222uD;uD22uDD20.003412.1800.083Dud;

ud22udd20.002510.1630.051d2uDd22u2D2ud20.08320.05120.1

4uu0.08320.0512d20.1D2d212.180210.1632251410.64D2222EuIIuD2d2 D2d2EII41041.70801047

42IIuI1.70800.000710gcm(P=68.3%)EI0.04%

六思考题

扩展阅读:三线摆实验报告

课题用三线摆测物理的转动惯量

教学目的1 了解三线摆原理,并会用它标定圆盘圆俯视对称轴的转动惯量;

2 学会秒表游标卡尺等测量工具的正确使用方法,掌握标定周期的方法;

3 加深对转动惯量概念的理解。

重难点1 理解三线摆测转动惯量的基本概念原理;

2 掌握正确测氢异摆振动周期的方法。

教学方法讲授讨论实验演示相结合学时3个学时

前言

转动惯量是刚体转动惯性的量度,它的大本人与物体的质量及其转轴分布和转轴的位置有关对质量分布磁化形状规则的物体,通过简单的外形尺寸和质量的测量,就可以测出其绕定电流密度径向的转动惯量。但对质量分布不均匀外形不规则的物体,通常要用实验的方法来测定其转动惯量。

三线扭摆法是测量转动惯量的优点是:仪器简单,操作方便

度较高。二实验仪器

三线摆仪,游标卡尺,钢直尺,秒表,水准仪三实验原理

1 原理简述:将三线摆绕其的竖直轴扭转个本人的角度,在悬线张力的作用下,圆盘在确定的平衡位置大概往复扭动,圆盘的振动周期与其转动惯量有关。悬挂物体的转动惯量不同,测出的转动周期就不同。形变测出与圆盘的位移周期及其它有关量,就能通过转动惯量的计算式算出物体的转动惯量。

2 转动惯量实验式推导

如图,将盘转动个本人角,其位置升高为h,增加的势能为mgh;当盘逆向转回平衡位置时,势能E0,此时,角速度最大,球体具有转动动能:

EJ002/2

则根据机械能哈密顿有:

mghJ002/2(1)

上式中的m0为圆盘的质量,0为盘过平衡位置时的瞬时角速度,J0为盘绕中心轴的转动惯量。

当圆盘扭转的角位移很本人时,视圆盘运动为简谐振动,角位移与时间t的关系为:0sin(2t/T0)(2)

d220cos(t)dtT0T020T0经过平衡位置前会将要最大角速度为

将0代入(1)式整理后得

0m0gT02J0h2202式中的h是下盘角位移最大时重心上升的高度。

由图可见,下盘在最大角位移0时,上盘B点的投影点由C点变为D点,即

hCDBCBD,而BC2AB2AC2AB2(Rr)2BD2A"B2A"D2A"B2(R2r22Rrcos0)考虑到ABA"B,BCBD2H所以

BC2BD2Rr(1cos0)RrhBCBD2sin20BCBDHH2因为0很本人,用近似式sin00,有

Rr02h2H将h代入式,即得到圆盘绕OO"轴转动的实验式

J0m0gRr2T042H

设待测圆环对OO"轴的转动惯量为J。圆盘上放置质量为m的圆环后,测出系统的转动周期T,则盘环总的转动惯量为

J0J(m0m)gRr2T24H上式减去式,便得到待测圆环的磁偶极矩转动惯量的实验式

四实验内容及步骤

gRr22[(mm)TmT]00024H1 调节三线摆立柱脚底螺钉,观察重锤,交叉从立柱两侧观察锤线应与立柱平行,此时立柱已铅直。

2 置水准器于下圆盘中心,调节三悬线长度,使圆盘水平。

3 轻轻启动上盘,使动盘在悬线扭力的作用下作扭转颓势扭转

运动,并使某根悬线已本人镜路中为平衡位置扭动。

4 待动盘扭动稳定,夹角约5度(相当于盘上点的直线运动距

离约8mm),在悬线经过平衡位置的瞬间按下秒表。然后悬线以并不相同相同方向每经过平衡位置次,数个周期,数到50个周期时按停定时

开关,本人下摆动50个周期的时间,重复5次。

5 用钢尺从五个不同位置测量定动盘之间的间距五次。

6 圆环置于圆盘正中,重复步骤3 4 5。

7 用游标卡尺从方向测圆环内外径个5次(主要用于用于换算

圆环转动惯量的理论值)8 用游标卡尺从不同轴线测圆盘直径5次(用于泽列涅计算圆盘转动惯量的理论值)9 用游标卡尺四组量定

动盘悬线孔间距各5次(由此第二组数据间接求出定动盘过悬点

的圆的半径r和R。

10 分别本人下圆盘圆环的给定质量m0 m。五数据表格及数据处理

圆盘圆环转动周期T0 T全摆动次数50(圆盘)12345150(圆盘加圆环)2345圆盘转动周期T0的A类不确定度分量:

UAST0测量次数T50(s)Tli(s)平均值(Ti)

81.6081.6081.7081.7081.9079.5579.6079.5079.7079.501.6321.6321

.6341.6341.6381.5911.5921.5901.5941.590T01.634(s)T1.591(s)(T1

iT0)2/5(51)7.746104sT0的B类不确定度

UB11yi6.667104s503(yi为秒表最本人分度值)

合成不确定度为:UT0UA2UB20.001(s)测量结果

T0T0UT01.6340.001(s)同理可得TTUT1.5910.001(s)

上下盘间距H与孔间距阿a b

测量次数上下盘间距H(mm)上盘孔间距a(mm)下盘孔间距

b(mm)1478.253.402478.053.283478.853.404478.553.265478.053.32

平均值H478.3mma53.33mm139.54139.70139.22139.14139.28b139.38mm r(mm)R(mm)r33aR33bH R r三量的A类不确定度份量分别为 Sn(HiH)

5(51)0.16mmSb0.3mmSRSa0.10mmSr3Sb0.02mm33S0.06mm3a1

(yi1mm)UByiH R r的B类不确定分量,H用钢尺测得:,R r3用游标卡尺测得:31(yi0.02mm)UB

33yi

UH0.33mmUR0.01mmUr0.01mm对圆盘质量m0(已给定),取

Um00.02g

测量结果HHUH478.30.3mm

RRUR80.470.01mmrrUr30.790.01mm

圆盘直径D0与圆环内外径D1 D2

测量次数12345平半径均167.7圆盘直径

167.80167.78167.78167.78167.809D0(mm)136.7圆环外径

136.70136.68136.74136.72136.72R083.90mmR68.36mm

计算圆盘圆环转动惯量的;理论值J0" J":

J0"m0R02/22.140103kgm2

J"m(R12R22)/20.928103kgm2

计算圆盘圆环转动惯量的实验值J0 J:

J"J0m0gRr232T2.08510kgm24H22gRr32[(mm)TmT]0.91410kgm00024H圆盘转动惯量的不确定精准度:

UJ0(

URR)2(Urr)24(UT0T0)2(UHH)2U5.28106kgm2

实验结果J0J0U(2.0850.005)103kgm2测量值与理论值之间的百分误差:圆盘:圆环:

六注意事项

1 提醒学生谨防机械秒表摔到地上。

2 使用游标卡尺要注意:主尺上要读数的刻度线时钟与点选上“0”刻度线对齐的那根,

本人J0"J0本人100%2.5%"J0本人J"J本人100%1.5%J"不是游标边缘所对准的那根。

3 测景气周期是本惟一实验中最大的误差源,提醒学生注意提高测量度。

4 启动三线摆时如有晃动将造成较大的误差,所以启动时应留意注意启动方法:a 下设备要在静止状态下开始启动:b:将上才盘轻轻扭动约5度,随即转回原处:c:启动后可连续转完五个50次周期,不必重新启动。

5 读数时,定要注意仪器的最本人警惕一般说来值,在最本人分度的基础上再读位数字。七教学后本人

1 本实验中,用到的测工具多,定要提醒学生注意测量工具的使用方法最本人分度以及读数规。

2 三线放振动周期的测量是本实验摆的关键,强调起摆挂时下盘要保持静止,起摆层面要本人于5度。

3 实验报告填写时,要强调精确测量结果的标准化表达式

不确定度的计算实验后思考题的发问。

本人情提示:本中关于《三线摆实验报告》给出的例仅供您参考拓展思维使用,三线摆实验报告:该篇章建议您自主创作。

三线摆实验报告.doc

课 题 用三线摆测物理的转动惯量 教 学 目 的 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量; 2、学会秒表、游标卡尺等测量工具的正确使用方法,掌握测周期的方法; 3、加深对转动惯量概念的理解。 重 难 点 1、理解三线摆测转动惯量的原理; 2、掌握正确测三线摆振动周期的方法。 教 学 方 法 讲授、讨论、实验演示相结合 学 时 3个学时 一、前言 转动惯量是刚体转动惯性的量度,它的大小与物体的质量及其分布和转轴的位置 有关对质量分布均匀、形状规则的物体,通过简单的外形尺寸和质量的测量,就可以 测出其绕定轴的转动惯量。但对质量分布不均匀、外形不规则的物体,通常要用实验 的方法来测定其转动惯量。 三线扭摆法是测量转动惯量的优点是:仪器简单,操作方便、精度较高。 二、实验仪器 三线摆仪,游标卡尺,钢直尺,秒表,水准仪 三、实验原理 1、原理简述:将三线摆绕其中心的竖直轴扭转一个小小的角度,在悬线张力的作用 下,圆盘在一确定的平衡位置左右往复扭动,圆盘的振动周期与其转动惯量有关。悬 挂物体的转动惯量不同,测出的转动周期就不同。测出与圆盘的振动周期及其它有关 量,就能通过转动惯量的计算公式算出物体的转动惯量。 2、转动惯量实验公式推导 如图,将盘转动一个小角,其位置升高为h ,增加的势能为mgh ;当盘反向转回平衡 位置时,势能0E =,此时,角速度ω最大,圆盘具有转动动能: 200/2E J ω= 则根据机械能守恒有: 200/2mgh J ω= (1) 上式中的0m 为圆盘的质量,0ω为盘过平衡位置时的瞬时角速度,0J 为盘绕中心轴的

转动惯量。 当圆盘扭转的角位移θ很小时,视圆盘运动为简谐振动,角位移与时间t 的关系为: 00sin(2/)t T θθπ?=+ (2) 经过平衡位置时最大角速度为 将0ω代入(1)式整理后得 式中的h 是下盘角位移最大时重心上升的高度。 由图可见,下盘在最大角位移0θ时,上盘B 点的投影点由C 点变为D 点,即 h CD BC ==-22BC AB =-2'2BD A B ='222( A B R r =-+考虑到'AB A =所以 因为0θ很小,用近似公式00sin θθ≈,有 将h 代入式,即得到圆盘绕'OO 轴转动的实验公式 设待测圆环对'OO 轴的转动惯量为J 。圆盘上放置质量为m 的圆环后,测出系统的转 动周期T ,则盘、环总的转动惯量为

三线摆测刚体转动惯量实验报告(带数据)

曲阜师大学实验报告 实验日期:2020.5.24 实验时间:8:30-12:00 :方小柒学号:********** 年级:19级专业:化学类 实验题目:三线摆测刚体转动惯量 一、实验目的: 1.学会用三线摆法测定物体转动惯量原理和方法。 2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。 二、实验仪器: 三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪 三、实验原理: 转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。 三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。 三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。 三摆线示意图 当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量: 下盘:J =

下盘+圆环:J1= 圆环:J= J1- J0= (条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合) 因此,通过长度、质量和时间的测量,便可求出刚体绕某 轴的转动惯量。 四、实验容: 1.了解三线摆原理以及有关三线摆实验器材的知识。 2.用三线摆测量圆环的转动惯量,并验证平行轴定理 (1)测定仪器常数H、R、r 恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。 (2)测量下圆盘的转动惯量 线摆上方的小圆盘,使其绕自身转动一个角度,借助线的力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测量下圆盘转动惯量的方法。 (3)测量圆环的转动惯量 盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和、外直径。利用公式求出圆环的转动惯量。 (4)验证平行轴定理 将质量和形状尺寸相同的两金属圆柱体对称地放在下圆盘上。测量圆柱体质心到中心转轴的距离。计算圆柱体的转动惯量。 五、实验步骤: Ⅰ、流程简述:一、测三线摆空盘的转动惯量: 1.调节仪器:使用水平仪,调整上盘和下盘使它们保持水平。 2.分别测出上盘、下盘的半径r, R,以及两盘之间的高度H。 3.启动振动和测量周期:用秒表测出10次全振动所需的时间,重复5次,计算出平均周期。 4.利用测得周期,带入计算。 5.与圆盘的理论值比较,J 0=m R2/2,求出相对误差。 二、测圆环的转动惯量: 1.把圆环放在下盘中,注意使环的质心恰好在转动轴上,重复以上步骤,测出载有圆环的转动周期,根据公式计算转动惯量。 2.用游标卡尺分别测出圆环的、外半径R和R外,计算理论结果J理论=(R2+ R 外 2)m/2。 3.将实验值和理论值相比较,给出相对误差。 Ⅱ、线上操作:

清华大学物理实验A三线摆和扭摆实验报告

清华大学 三线摆和扭摆试验物理实验完整报告班级姓名学号 结稿日期:

三线摆和扭摆实验 一、实验目的 1. 加深对转动惯量概念和平行轴定理等的理解; 2. 了解用三线摆和扭摆测量转动惯量的原理和方法; 3. 学习电子天平、游标高度尺和多功能数字测量仪等仪器的使用,掌握测量质量和周期等 量的测量方法。 二、实验装置和原理 1.三线摆: 如图一,上、下圆盘均处于水平,悬挂在横梁上。横梁由立柱和底座支承着,三根对称分布的等长悬线将两个圆盘相连。上圆盘可以固定不动。拧动旋钮就可以使得下圆盘绕中心轴OO ’作扭摆运动。当下圆盘的摆角很小且忽略空气阻力和悬线扭力影响时,可推出下圆盘绕中心轴OO ’的转动惯量为: 其中,0m 是下圆盘质量,g 取2 9.80m s -g ,r 为上圆盘半径,R 为下圆盘半径,H 为平衡时上下圆盘的垂直距离,0T 为下圆盘摆动周期。 图1 三线摆示意图 将质量为m 的待测刚体放在下圆盘上,并使它的质心位于中心轴OO ’上,测出此时的 摆动周期T 和上下圆盘之间的垂直距离1H , 则待测刚体和下圆盘对于中心轴OO ’的总转动惯量1J 为: 且待测刚体对于中心轴OO ’的转动惯量10J J J =-。 利用三线摆可以验证平行轴定理。平行轴定理指出:如果一个刚体对于通过质心的某一转轴的转动惯量为c J ,则这个刚体对平行于该轴且相距为d 的另一转轴的转动惯量为: 式中,m 为刚体的质量。 图2 三个孔均匀分布 在本实验中,将三个等大的钢球对称分布在下圆盘的三个均匀分布的孔(如图2)上, 测出三个球对于中心轴OO ’的转动惯量x J 。如果测得的x J 的值与由2 x c J J md =+右式计 算得到的结果比较相对误差在测量允许的范围内()005≤,则平行轴定理得到验证。 本实验中,用于测量基本物理量的仪器还有:电子天平,游标高度尺,配有光电接收装置的多功能数字测量仪。

大学物理实验 报告实验3 三线摆报告

三线摆实验报告 林一仙 一、实验目的 1、掌握水平调节与时间测量方法; 2、掌握三线摆测定物体转动惯量的方法; 3、掌握利用公式法测这定物体的转动惯量。 二、实验仪器 三线摆装置 电子秒表 卡尺 米尺 水平器 三、实验原理 1、三线摆法测定物体的转动惯量 机械能守恒定律: ω2 021I mgh = 简谐振动: t T πθθ2sin 0= t T T dt d ππθθω2cos 20== 通过平衡位置的瞬时角速度的大小为:T 02πθω= ; 所以有:?? ? ??=T I mgh 0 2 122 0πθ

根据图1可以得到:()()1 212!BC BC BC BC BC BC h +-= -= ()()()()2 22 22r R l AC AB BC --=-= 从图2可以看到: 根据余弦定律可得()()022211cos 2θRr r R C A -+= 所以有: ()()()()022********cos 2θRr r R l C A B A BC -+-=-= 整理后可得: 1 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以:H Rr h 22 0θ= 整理得: 2 2 04T H mgRr I π= ;又因3b R =,3 a r = 所以: 2 2 012T H mgab I π= 若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则: 2 11 2 112)(T H gab M m I π+= 待测物的转动惯量为: I= I 1-I 0 2、公式法测定物体的转动惯量 圆环的转动惯量为: ()D D M I 22 2 1 8 1+= 四、实验内容 1、三线摆法测定圆环绕中心轴的转动惯量 a 、用卡尺分别测定三线摆上下盘悬挂点间的距离a 、 b (三个边各测一次再平均); b 、调节三线摆的悬线使悬盘到上盘之间的距离H 大约50cm 多; c 、调节三线摆地脚螺丝使上盘水平后再调节三线摆悬线的长度使悬盘水平; d 、用米尺测定悬盘到上盘三线接点的距离H ; e 、让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。);

《三线摆》实验报告

《三线摆》实验报告 工程物理系工物22 方侨光 022041 1、 实验原理 根据能量守恒定律或者刚体转动定律都可以推出下圆盘绕中心轴的转动惯量 其中,m0为下圆盘的质量;r和R分别为上下悬点离各自圆盘中心的距离,本实验中就是上下圆盘的半径;H为平衡时上下圆盘间的垂直距离;T0为下圆盘的摆动周期;g为重力加速度,为9.80m·s-2。 将质量为m的待测刚体放在下圆盘上,并使它的质心位于中心轴上。测出此时的摆动周期T和上下圆盘之间的距离H1,则待测刚体和下圆盘对中心轴的总转动惯量 待测刚体对中心轴的转动惯量 2、 实验任务 1. 用三线摆测定下圆盘对中心轴的转动惯量和大钢球对其质心轴的转动惯量。要求测得的大刚球的转动惯量值与理论计算 值之间的相对误差不大于5%。 2. 用三线摆验证平行轴定理。 3、 实验步骤和数据记录 1. 估计测量周期时所需要的摆动次数。 各个数据的不确定度分别是: 要求 并且估测到(测10个周期) 于是得到 于是取n=100。 2. 下圆盘的质量m0=79.58g 上圆盘的半径r=14.70㎜ 下圆盘的半径R=33.98㎜ 平衡时上下圆盘间的垂直距离H=401.04㎜ 下圆盘的摆动周期T0

序号123456平均值nT0/ms137938138330137529136721137048137741137551下圆盘对中心轴的转动惯量 3. 将钢球放在圆盘上,使其质心和中心轴重合: 钢球的质量m=111.77g 钢球的半径r1=15.08㎜ 钢球相对中心轴的转动惯量理论值 上下圆盘间的垂直距离H1=403.38㎜ 钢球和下圆盘的摆动周期T1 序号123456平均值nT1/ms10120110132210090299501.210048599524.9100469钢球和下圆盘相对中心轴的转动惯量 钢球相对中心轴的转动惯量实验值 相对误差ΔJ=25% 4. 将3个同样大小的钢球纺织3在均匀分布于下圆盘圆周上的三个孔上: 三个钢球的总质量m2=107.57g 小钢球的半径r2=10.32㎜(平均值) 球盘心距R1=21.65㎜ 上下圆盘间的垂直距离H2=404.12㎜ 三个钢球和下圆盘的摆动周期T2 序 123456平均值 号 nT2136953136006138429139770139709135165137672三个钢球和下圆盘相对中心轴的转动惯量 一个钢球相对中心轴的转动惯量实验值 一个钢球相对中心轴的转动惯量由平行轴定理给出的理论值 相对误差ΔJ=22% 实验结果和理论值很不符合!

单摆实验报告

广州大学 学 生实验报告 院(系)名称 物理系 班 别 姓名 专业名称 物理教育 学号 实验课程名称 普通物理实验I 实验项目名称 力学实验:单摆 实验时间 实验地点 实验成绩 指导老师签名 一、实验目的 (1)学会用单摆测定当地的重力加速度。 (2)研究单摆振动的周期和摆长的关系。 (3)观察周期与摆角的关系。 二、实验原理 如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位 置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆 设摆点O 为极点,通过O 且与地面垂直的直线为极轴,逆时针方向为角位移θ的正方向。由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小 θ sin mg f = 设摆长为L ,根据牛顿第二定律,并注意 到加速度的切向方向分量 2 2dt d l a θ θ?= ,即得单摆的动力学方程 mg cos θ mg sin θ L θ θ mg

T(S) 2.005 1.900 1.794 1.683 1.551 1.418 2 T(S) 4.020 3.610 3.218 2.832 2.406 2.011 由上表数据可作T2-L图线如下图所示: 又由图可知T2-L图线为一条直线,可求得其 斜率为:k=26.046(cm/s2) 所以 g=4π2k=10.72(m/s2) 六、实验结果与分析 测量结果:用单摆法测得实验所在地点重力加速度为: 实验分析: 单摆法测重力加速度是一种较为精确又简便的测量重力加速度方法。本实验采用较精密的数字毫秒仪计时减小了周期测量误差。实验误差由要来源于①摆长的测量误差,但由于摆长较长,用钢卷尺测量产生的相对误差也较小,所以用钢卷尺也能达到较高的准确度;②系统误差:未

实验三实验报告

实验三实验报告 1、简易计算器 (1)问题描述 由键盘输入一算术表达式,以中缀形式输入,试编写程序将中缀表达式转换成一棵二叉表达式树,通过对该的后序遍历求出计算表达式的值。 (2)基本要求 a.要求对输入的表达式能判断出是否合法。不合法要有错误提示信息。 b.将中缀表达式转换成二叉表达式树。 c.后序遍历求出表达式的值 (3)数据结构与算法分析 一棵表达式树,它的树叶是操作数,如常量或变量名字,而其他的结点为操作符。 a.建立表达式树。二叉树的存储可以用顺序存储也可用链式存储。当要创建二叉树时,先从表达式尾部向前搜索,找到第一个优先级最低的运算符,建立以这个运算符为数据元素的根结点。注意到表达式中此运算符的左边部分对应的二叉绔为根结点的左子树,右边部分对应的是二叉绔为根结点的右子树,根据地这一点,可用递归调用自己来完成对左右子树的构造。 b.求表达式的值。求值时同样可以采用递归的思想,对表达式进行后序遍历。先递归调用自己计算左子树所代表的表达式的值,再递归调用自己计算右子树代表的表达式的值,最后读取根结点中的运算符,以刚才得到的左右子树的结果作为操作数加以计算,得到最终结果。 (4)需求分析 程序运行后显示提示信息,输入任意四则运算表达式,倘若所输入的表达式不合法程序将报错。 输入四则运算表达式完毕,程序将输出运算结果。 测试用的表达式须是由+、-、*、/运算符,括号“(”、“)”与相应的运算数组成。运算数可以是无符号浮点型或整型,范围在0~65535。 (5)概要设计 二叉树的抽象数据类型定义 ADT BinaryTree{ 数据对象:表达式运算数{ num | 0< num < 65535 } 表达式运算符{ opr | + , - , * , / } 数据关系:由一个根结点和两棵互不相交的左右子树构成,且树中结点具有层次关系。根结点必须为运算符,叶子结点必须为运算数。 基本操作: InitBiTree(&T , &S) 初始条件:存在一四则运算前缀表达式S。 操作结果:根据前缀表达式S构造相应的二叉树T。 DestroyBiTree(&T) 初始条件:二叉树T已经存在。 操作结果:销毁T。 Value(&T) 初始条件:二叉树T已经存在。 操作结果:计算出T所表示的四则运算表达式的值并返回。

单摆实验报告

中学物理实验研究报告 实验项目:单摆实验_________ 专业班级: ____________ 姓名:__________ 学号: __________________ 指导教师: _____________ 成绩:________________________ 一、实验目的: (1)用单摆测量当地的重力加速度。 (2)研究单摆振动的周期。 (3)练习使用米尺和停表。 二、实验仪器用具: 单摆,米尺,停表等 三、实验原理:如图1所示,设单摆长L,当摆角r甚小时(一般讲5°), 单摆的振动公式为 T=2n V(l /g ) 则得重力加速度为: g = (4n 2l )/T2 根据上式测定单摆的周期T和摆长L代入公式即可求出当地的g值。 四、实验步骤:

(1)取摆长为1.00m的单摆,用米尺测量摆线长,用米尺测量摆锤的高度,各两次。用米尺测长度时,应注意使米尺和被测摆线平行,并尽量靠近,读数时视线要和尺的方向垂直以防止由于视差产生的误差。 (2)用停表测量单摆连续摆动10个周期的时间,再测3次摆长及其周期?,记录数据。注意摆角要小于5°。 (3)将摆长每次缩短约0.25m,重复以上步骤2,并将周期和相应的摆长数据记录在表中。 (4)用数据求出相应的g值,并求出g的平均值g'(即当地的重力加速度) 五、数据记录与处理: 六、实验结果分析 (1)使用停表前先上紧发条,但不要过紧,以免损坏发条。 (2)按表时不要用力过猛,以防损坏机件。

(3)回表后,如秒表不指零,应记下其数值(零点读数),实验后从测量值中将其减去(注意符号)。 (4)要特别注意防止摔碰停表,不使用时一定将表放在实验台中央的盒中。 (5)摆线尽量选择细些,伸缩性小的。并且要尽可能长些。摆球要选择质量大, 体积小的。

《用三线摆法测定物体的转动惯量》简明实验报告.

4π 2 H 《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210 型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 gRr J = J - J = [(m + m )T 2 - m T 2 ] 1 0 0 1 0 0 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1) 调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长 度,直至下盘水平。 (2) 测量空盘绕中心轴 OO 转动的运动周期 T 0:设定计时次数,方法为按“置数”键后,再按“下调”或“上 调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运 动时发生晃动。注意扭摆的转角控制在 5o 左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯 闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间 ,从而摆动周期为总时间除以摆动 次数。进行下一次测量时,测试仪先按“返回”键。 (3) 测出待测圆环与下盘共同转动的周期 T 1:将待测圆环置于下盘上,注意使两者中心重合,按同样 的方法测出它们一起运动的周期 T 1。 (4) 测出上下圆盘三悬点之间的距离 a 和 b ,然后算出悬点到中心的距离 r 和 R (等边三角形外接圆半 径) (5) 其它物理量的测量:用米尺测出两圆盘之间的垂直距离 H 0 和放置两小圆柱体小孔间距 2x ;用游标 卡尺测出待测圆环的内、外直径 2R 1、2R 2。 (6) 用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录 r = 3 a = 3.870 ± 0.002 cm , R = 3 b = 7.150 ± 0.002 cm 3 3 H 0 = 54.60 ± 0.05 cm , 下盘质量 m 0 =499.68 ± 0.10 g 待测圆环质量 m =192.260 ± 0.020 g 累积法测周期数据记录参考表格 下盘 下盘加圆环 摆动 50 次 所需 时间 50T (s ) 1 2 3 4 5 平均 71.68 72.06 71.88 71.65 71.62 71.78 1 2 3 4 5 平均 74.28 74.16 74.15 74.22 74.13 74.19 周 期 T 0=1.44 ± 0.01 s T 1= 1.48±0.01 s

大学物理实验《用三线摆测量刚体的转动惯量》

图1三线摆实验装置示意图 图2 三线摆原理图 实验七 用三线摆测量刚体的转动惯量 【实验目的】 1. 学会正确测量长度、质量和时间。 2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量。 【实验器材】 三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。 【实验原理】 转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算出其转动惯量;而对于外形复杂、质量分布不均匀的刚体,其转动惯量就难以计算,通常利用转动实验来测定。三线摆就是测量刚体转动惯量的基本方法之一。 图1是三线摆实验装置示意图。三线摆是由上、下两个匀质圆盘,用三条等长的摆线(摆线为不易拉伸的细线)连接而成。上、下圆盘的系线点构成等边三角形,下盘处于悬挂状态,并可绕OO ‘轴线作扭转摆动,称为摆盘。由于三线摆的摆动周期与摆盘的转动惯量有一定关 系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。 设下圆盘质量为0m ,当它绕OO '扭转的最大角位移为o θ时,圆盘的中心位置升高h ,这时圆盘的动能全部转变为重力势能,有: gh m E P 0= (g 为重力加速度)

当下盘重新回到平衡位置时,重心降到最低点,这时最大角速度为0ω,重力势能被全部转变为动能,有: 2002 1ωI E K = 式中0I 是下圆盘对于通过其重心且垂直于盘面的OO ‘轴的转动惯量。 如果忽略摩擦力,根据机械能守恒定律可得: 20002 1ωI gh m = (1) 设悬线长度为l ,下圆盘悬线距圆心为R 0,当下圆盘转过一角度0θ时,从上圆盘B 点作下圆盘垂线,与升高h 前、后下圆盘分别交于C 和C 1,如图2所示,则: 1 2 !21)()(BC BC BC BC BC BC h +-= -= 因为 2 2 2 2 2 )()()()(r R AC AB BC --=-= 所以 1 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ 在扭转角0θ很小,摆长l 很长时,sin 2 2 θθ≈ ,而BC+BC 1≈2H ,其中 H=2 2 )(r R l -- 式中H 为上下两盘之间的垂直距离,则 H Rr h 220θ= (2) 由于下盘的扭转角度0θ很小(一般在5度以内),摆动可看作是简谐振动。则圆盘的角位移与时间的关系是 t T 0 02sin π θθ= 式中,θ 是圆盘在时间t 时的角位移,0θ是角振幅,0T 是振动周期,若认为振动初位相是零,则角速度为: )cos 2()()()(022********θRr r R C A B A BC -+-=-=

单摆的设计与研究(实验报告).doc

肇 庆 学 院 电子信息与机电工程 学院 普通物理实验 课 实验报告 级 班 组 实验合作者 实验日期 姓名 : 学号 老师评定 实验题目: 单摆的设计与研究(设计性实验) 【实验简介】 单摆实验是个经典实验,许多着名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习 进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 【设计任务与要求】 1、用误差均分原理设计一单摆装置,测量重力加速度,测量精度要求 g 2% 。 g 2、 对重力加速度 g 的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求。 3、自拟实验步骤研究单摆周期与质量、空气阻力等因素的关系,试分析各项误差的大小。 【设计的原理思想】 一根不可伸长的细线,上端悬挂一个小球。当细线质量比小球的质 θ L 量小很多,而且小球的直径又比细线的长度小很多时, 此种装置称为单摆, 如图 1 所示。如果把小球稍微拉开一定距离, 小球在重力作用下可在铅直 平面内做往复运动, 一个完整的往复运动所用的时间称为一个周期。 当单 摆的摆角很小(一般 θ <5°)时,可以证明单摆的周期 T 满足下面公式 T 2 L ( 1) mg sin θ θ g mg cos θ 4 2 L ( 2) mg g T 2 图 1 式中 L 为单摆长度。单摆长度是指上端悬挂点到球心之间的距离; g 为重力加速度。如果测量得出周期 T 、单摆长度 L ,利用上面式子可计算出当地的重力加速度 g 。从上面公 式知 T 2和 L 具有线性关系, 即T 2 4 2 L 。对不同的单摆长度 L 测量得出相对应的周期, 可由 T 2~L 图线 g 的斜率求出 g 值。 【测量方案的制定和仪器的选择】 本实验测量结果的相对误差要求 2℅,由误差理论可知, g 的相对误差为 可以看出,在 L 、 t 大体一定的情况下,增大 L 和 t 对测量 g 有利。 g ( L )2 (2 t )2 从式子 g L t 由误差均分原理的要求,各独立因素的测量引入的测量误差应相等,则 ( L ) 2 (1%)2 ,本实验中单摆的 摆长约为 100cm, 可以计算出摆长的测量误差要求为 L L<1cm,故选择米尺测量一次就足以满足测量要求; 同理 (2 t )2 (1%) 2 ,当摆长约为 1m 时,单摆摆动周期约为 2 秒,可以计算出周期的测量误差要求 t 为 t ,要作到单次测量误差小于相当不容易,停表的误差主要是由判断计时开始和终止时的不准确以及

三线摆实验报告

实验题目:三线摆 实验目得:掌握用三线摆测定物体得转动惯量得方法,验证转动惯量得平行轴定理 实验原理:两半径分别为r、R(R>r)得刚性圆盘,用对称分布得三条等长得无弹性、质量可以忽略得细线相连,上盘固定,则构成一振动系统,称为三线摆。 如右图,在调平后,利用上圆盘以及悬线张力使下圆盘扭 转振动,α为扭转角。当α很小时,可以认为就就是简谐振 动,那么: 其中m0为下盘质量,I0为下盘对OO1轴得转动惯量。若 忽略摩擦,有E p+E k=恒量。由于转动能远大于平动能,故 在势能表达式中略去后一项,于就是有: 由于α很小,故容易计算得: 联立以上两式,并对t求导有: 解得: 又由于T0=2π/ω,于就是解得: 若测量一个质量为m得物体得转动惯量,可依次测定无负载与有负载(质心仍在OO1上,忽略其上 下得变化)时得振动周期,得: 通过改变质心与三线摆中心轴得距离,测量I a与d2得关系就可以验证平行轴定理I a=I c+md2。 实验仪器:三线摆(包括支架、轻绳、圆盘等)、水平校准仪、游标卡尺、直尺、秒表、钢圈、(两个相同规格得圆柱形)重物 实验内容:1、对三线摆得上盘与下盘依次进行水平调节; 2、测量系统得基本物理量,包括上盘直径、下盘直径、上下盘之间距离、钢圈内外径,每个物理 量测量三次,同时根据给出得数据记录当地重力加速度、下盘质量、钢圈质量、重物质量、 悬点在下盘构成得等边三角形得边长; 3、下盘转动惯量得测量:扭动上盘使三线摆摆动,测量50个周期得时间,重复三次; 4、钢圈转动惯量得测量:将钢圈置于下盘上,使钢圈圆心与下盘圆心在同一竖直轴线上,扭动上盘 使系统摆动,测量50个周期得时间,重复三次; 5、验证平行轴定理:取d=0、2、4、 6、8cm,将两个重物对称置于相应位置上,让系统摆动,测量 50个周期得时间,每个对应距离测量三次。 实验数据: 下盘质量m2 1 2 3 H(mm) 501、6 501、9 501、2 D(mm)=2R 207、12 207、14 207、16 d(mm)=2r 99、80 99、92 99、94 T1=50T0(s) 74、14 74、13 73、83 钢圈质量m=398、20g 1 2 3

《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1)调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长度,直至下盘水平。 (2)测量空盘绕中心轴OO?转动的运动周期T0:设定计时次数,方法为按“置数”键后,再按“下调”或“上调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运动时发生晃动。注意扭摆的转角控制在5o左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间,从而摆动周期为总时间除以摆动次数。进行下一次测量时,测试仪先按“返回”键。 (3)测出待测圆环与下盘共同转动的周期T1:将待测圆环置于下盘上,注意使两者中心重合,按同样的方法测出它们一起运动的周期T 1。 (4)测出上下圆盘三悬点之间的距离a和b,然后算出悬点到中心的距离r和R(等边三角形外接圆半径) (5)其它物理量的测量:用米尺测出两圆盘之间的垂直距离H0和放置两小圆柱体小孔间距2x;用游标卡尺测出待测圆环的内、外直径2R1、2R2。 (6)用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录

三线摆实验的报告

课题用三线摆测物理得转动惯量 教学目得 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴得转动惯量; 2、学会秒表、游标卡尺等测量工具得正确使用方法,掌握测周期得方法; 3、加深对转动惯量概念得理解。 重难点1、理解三线摆测转动惯量得原理; 2、掌握正确测三线摆振动周期得方法。 教学方法讲授、讨论、实验演示相结合 学时3个学时 一、前言 转动惯量就是刚体转动惯性得量度,它得大小与物体得质量及其分布与转轴得位 置 有关对质量分布均匀、形状规则得物体,通过简单得外形尺寸与质量得测量,就可以 测出其绕定轴得转动惯量、但对质量分布不均匀、外形不规则得物体,通常要用实验 得方法来测定其转动惯量。 三线扭摆法就是测量转动惯量得优点就是:仪器简单,操作方便、精度较高。 二、实验仪器 三线摆仪,游标卡尺,钢直尺,秒表,水准仪 三、实验原理 1、原理简述:将三线摆绕其中心得竖直轴扭转一个小小得角度,在悬线张力得作用 下,圆盘在一确定得平衡位置左右往复扭动,圆盘得振动周期与其转动惯量有关。悬 挂物体得转动惯量不同,测出得转动周期就不同。测出与圆盘得振动周期及其它有关 量,就能通过转动惯量得计算公式算出物体得转动惯量。 2、转动惯量实验公式推导 如图,将盘转动一个小角,其位置升高为,增加得势能为;当盘反向转回平衡 位置时,势能,此时,角速度最大,圆盘具有转动动能: 则根据机械能守恒有: (1) 上式中得为圆盘得质量,为盘过平衡位置时得瞬时角速度,为盘绕中心轴得

转动惯量。 当圆盘扭转得角位移很小时,视圆盘运动为简谐振动,角位移与时间得关系为: (2) 经过平衡位置时最大角速度为 将代入(1)式整理后得 式中得就是下盘角位移最大时重心上升得高度。 由图可见,下盘在最大角位移时,上盘点得投影点由点变为点,即 ,而 考虑到, 所以 因为很小,用近似公式,有 将代入式,即得到圆盘绕轴转动得实验公式 设待测圆环对轴得转动惯量为。圆盘上放置质量为得圆环后,测出系统得转 动周期,则盘、环总得转动惯量为 上式减去式,便得到待测圆环得转动惯量得实验公式

实验3 三线摆法测定物体的转动惯量

大学物理实验教案 实验名称:三线摆法测定物体的转动惯量 1 实验目的 1)掌握水平调节与时间测量方法; 2)掌握三线摆测定物体转动惯量的方法; 3)掌握利用公式法测定物体的转动惯量。 2 实验仪器 三线摆装置 计数器 卡尺 米尺 水平器 3 实验原理 3.1 三线摆法测定物体的转动惯量 机械能守恒定律: ω20021I mgh = 简谐振动: t T π θθ2sin 0= t T T dt d ππθθω2cos 20== 通过平衡位置的瞬时角速度的大小为: T 0 02πθω= ; 所以有: ? ? ? ??= T I m gh 021 22 πθ 根据图1可以得到:()()1 2 12!BC BC BC BC BC BC h +-= -= ()()()()22222r R l AC AB BC --=-= 从图2可以看到: 根据余弦定律可得()()02 2211cos 2θRr r R C A -+= 所以有: ()()()()02222 112121cos 2θRr r R l C A B A BC -+-=-= 整理后可得: 10 2 102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-= θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以: H Rr h 22 0θ=

整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:2 20 12T H mgab I π= 若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则: 2 1 1 2112)(T H gab M m I π+= 待测物的转动惯量为: I= I 1-I 0 3.2 公式法测定物体的转动惯量圆环的转动惯量为: ()D D M I 22 2 1 8 1+= 4 教学内容 4.1 三线摆法测定圆环绕中心轴的转动惯量 1)用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); 2)调节三线摆底坐前两脚螺丝使上盘水平 3)调节三线摆悬线使悬盘到上盘之间的距离H 大约50cm 左右,并调节悬盘水平; 4)用米尺测定悬盘到上盘三线接点的距离H ; 5)让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。); 6)用计数器测定50个摆动周期摆动的时间t ; 7)把待测圆环置于悬盘上(圆环中心必须与悬盘中心重合)再测定悬盘到三线与上盘接点间的距离H 1,重复步骤5、6。 2、公式法测定圆环绕中心轴的转动惯量 用卡尺分别测定圆环的内径和外径,根据表中圆环绕中心轴的转动惯量计算公式确定其转动惯量测定结果。(圆环质量见标称值) 5 实验教学组织及教学要求 1)检查学生的预习实验报告,同时给学生一定时间观察器材,并注意和以前学过的实验做比较。 2)讲解实验要点及注意事项,同时以提问的方式检查学生的预习情况,加深学生对实验原理和实验设计的理解。 3)随时注意学生的实验操作过程,及时指导解决实验中遇到的问题和困难。 4)检查每个学生的实验数据,记录实验情况。 6 实验教学的重点及难点 1)重点: 1)三线摆水平的调节(上盘、悬盘的水平调节)。 2)掌握利用三线摆仪器测量物体转动惯量的数据处理方法。 2)难点: 1)三线摆水平的调节(上盘、悬盘的水平调节)。 2)数据处理有几种方法。 7 实验中容易出现的问题 1)仪器没有调水平。 2)摆动周期的摆动时间偏大。 8 实验参考数据

混沌摆实验报告

篇一:大学物理演示实验报告 大学物理演示实验报告 1、锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 【实验原理】:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。2、混沌摆 【实验目的】:通过摆的运动演示该力学系统的混沌性质。 【实验仪器】:混沌摆 【实验原理】:一个动力学系统如果描述他的运动状态的动力学方程是线性的,只要初始条件给定,就可预见以后任意时刻的运动状态。我们的动力学系统描述它的运动状态的动力学方程是非线性的,具有内在的随机性,它的运动状态对初始条件具有很强的敏感性,系统运动的外观表现是随机的,是一种貌似无规律的运动 【实验步骤】:手持轴柄给系统施一力矩,系统开始运动,运动情况复杂,前一时间难于预言后一时刻的运动状态。重新启动,由于起始冲量矩总有所不同,雇系统的运动情况差别很大、这反映了系统运动的混沌性质。 初始状态 运动中篇二:混沌摆实验讲义 混沌摆实验 【实验目的】 ⒈了解非线性系统混沌现象的形成过程; ⒉通过振荡周期的分岔与混沌现象的观察,加深对混沌现象的认识和理解⒊理解“蝴蝶效应”。【预习思考题】 1、什么是混沌现象? 2、何谓蝴蝶效应? 【实验器材】 ci-6538转动传感器、me-8750机械振荡器/驱动器、me-8735大型杆支座、se-9442多用夹、se-9720直流电源、ci-6552a功率放大器 【实验原理】 ⒈分岔与混沌理论 ⑴逻辑斯蒂映射 为了认识混沌(chaos)现象,我们首先介绍逻辑斯蒂映射,即一维线段的非线性映射,因为非线性微分方程的解通常可转化为非线性映射。 考虑一条单位长度的线段,线段上的一点用0和1之间的数x表示。逻辑斯蒂映射是 x?kx(1?x)

用三线摆法测定物体的转动惯量

用三线摆法测定物体的转动惯量 --实验报告 实验目的 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量; 2、学会秒表、游标卡尺等测量工具的正确使用方法,掌握测周期的方法; 3、加深对转动惯量概念的理解。 4、验证转动惯量的平行轴定理 5、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系 实验器材 三线摆、米尺、游标卡尺、天平、数字毫秒计、待测物、三线摆仪 实验原理 1、测悬盘绕中心轴转动时的转动惯量 当三线摆下盘扭转振动,其转角θ 很小时,其扭动是一个简谐振 动,其运动方程为: t T 0 0π2sin θθ= (1) 当摆离开平衡位置最远时,其重心升高h ,根据机械能守恒定律有: mgh I =2 02 1ω (2) 即 2 2ωmgh I = (3) 而 t T T dt d π 2cos π20θθ ω= = (4) 0 0π2T θω= (5) 将(4-5)式代入(4-2)式得 图1 原理图

2 22π2θmghT I = (6) 从图1中的几何关系中可得 222022)(cos 2)(r R H l Rr R h H -+==θ-+- 简化得 )cos 1(2 02 θ-=-Rr h Hh 略去2 2 h ,且取2/cos 1200θθ≈-,则有: H Rr h 220θ= 代入(6)式得 224T H gRr m I π= (7) 即得公式 2 00 2 004T H gRr m I π= (8) (7)式的适用条件为: 1、摆角很小,一般要求o 5<θ; 2、摆线l 很长,三条线要求等长,张力相同; 3、大小圆盘水平; 4、转动轴线是两圆盘中心线。 实验时,测出0m 、H r R 、、及0T ,由(8)式求出圆盘的转动惯量0I 。 2、测圆环绕中心轴转动的转动惯量 (1)若在下圆盘上放一质量为m ,转动惯量为I (对O 1O 2轴)的物体时,测出周期T 整个扭转系统的转动惯量为 I ’=()02020 4m m gRr I I T d π++= (9) 那么,被测物体的转动惯量为I=I ’-I 0 实验时,测出0m 、m 、H r R 、、及T ,由(8)式求出物体的转动惯量I 。

大学物理实验之用三线摆测物体的转动惯量

大学物理实验之用三线摆测物体的转动惯量 1、了解三线摆原理,并以此测物体的转动惯量。 2、掌握秒表、游标卡尺等测量工具的使用方法,掌握测周期的方法。 3、加深对转动惯量概念的理解。 1、三线摆测转动惯量的原理。 2、准确测量三线摆扭摆周期。 讲授、讨论与演示相结合。 3学时。 转动惯量是刚体转动惯性的量度,它的大小与物体的质量及其分布和转轴的位置有关。对质量分布均匀、形状规则的物体,通过外形尺寸和质量的测量,就可以算出其绕定轴的转动惯量,而质量分布不均匀、形状不规则物体的转动惯量则要由实验测出。本实验利用三线摆测出圆盘和圆环对中心轴的转动惯量并与理论值进行比较。 三线扭摆法测量转动惯量的优点是:仪器简单,操作方便、精度较高。 一、实验目的 1、了解三线摆原理,并以此测物体的转动惯量。 2、掌握秒表、游标卡尺等测量工具的使用方法,掌握测周期的方法。 3、加深对转动惯量概念的理解。 二、实验仪器 三线摆仪,秒表,游标卡尺,钢直尺,水准器,待测圆环。 三、实验原理 三线摆实验原理如图所示,圆盘(下盘)由三根悬线悬挂于启动盘(上盘)之下,两圆盘圆心位于同一竖直轴上。轻扭上盘,在悬线扭力的作用下、圆盘可绕其中心竖轴作小幅扭摆运动。 设圆盘的质量为m0、上下盘的间距为H、上下盘的受力半径为r与R、圆盘的扭摆角为θ(θ很小)。 由于θ很小,所以圆盘在扭摆中升起的高度很小,可以认为在此过程中上下盘的间距H保持不变。在此情况下,根据三角关系可以导出悬线拉力N对圆盘的扭力矩为:

0/M m gRrSin H θ=。因为Sin θθ≈,所以0/M m gRr H θ=。 设圆盘的转动惯量为J 0,且M 与角位移θ的 方向相反,根据转动定律可得: 2002m gRr d M J H d t θθ==- 由此可知圆盘的扭摆为简谐振动,解此微分 方程得圆盘的振动周期为: 002HJ T m gRr = 于是: 2 0002 4m gRrT J H π= 此即为圆盘对中心竖轴转动惯量的实验公式。 在圆盘上同心叠放上质量为m 的圆环后,测出盘环系统的扭摆周期T ,则盘环 系统的转动惯量为: 2 002 ()4m m gRrT J J J H π+=+=总 由此可得圆环转动惯量的实验公式:()22 000024gRr J J J m m T m T H π??=-=+-??总 圆盘、圆环转动惯量的理论公式为:200012 J m R = ’ 、22 12 1()2J m R R =+’ 式中R 0、R 1、R 2分别为圆盘半径及圆环的内外半径。 四、实验内容及步骤 1、用水准器调三线摆仪底座水平及下盘水平。 2、使下盘静止,然后朝同一方向轻转上盘,使下盘作小幅扭摆。控制摆角不超过5。 3、待下盘扭摆稳定后,用秒表测出连续摆动50个周期的时间,重复5次,然后算 出周期T 0的平均值。 4、将圆环同心地放置于圆盘上,重复步骤2、3,测出周期T 的平均值。 5、用钢直尺在不同位置测量上下盘之间的垂直距离5次。 用游标卡尺在不同位置分别测量上下盘悬线孔间距各5次。 三线摆原理图 , O O A , A N H R r θ

相关文档
最新文档