有机硅单体
有机硅单体

有机硅单体
有机硅单体是有机硅组分为主的单元,是硅材料应用研究发展的重要基础。
有机硅单
体在实际应用中有着重要的地位,例如光学材料、电子材料、功能材料以及其他个性化产品。
其中,有机硅单体可以通过不同的化学路线发挥着各种性能,用于制备各类产品。
有机硅单体具有优异的性能,能够显著改善物质的物理特性,如硬度、韧性、光学特
性等。
其中,硅烷可以用于润湿性、导电性和抗氧老化性能等方面,有机硅烷还可以改变
熔点、稳定分子结构等。
此外,有机硅单体还具有优良的抗腐蚀性,可以有效防止腐蚀性
物质的腐蚀。
有机硅单体的分离方法主要包括脱氢处理后的高温分离、液相色谱分离和晶体衍射等,而微生物技术是一种新兴的分离分析方法,它可以有效地分离出各种有机硅化合物。
在传
统的分离直接引入有机溶剂时,微生物技术可以减少有机溶剂的使用,同时可以节省分离
的时间和能源。
室温下,有机硅单体的溶解度较低,但在高温下,其可溶性很高,可以与其他原料发
生有机反应,从而制备出更多的有机硅化合物。
因此,有机硅单体具有较高的重要性,
这也使得它成为药物、化妆品和干燥剂等领域中应用有机硅材料发展的基石。
综上所述,有机硅单体是一种功能和特性完善的材料,是硅材料应用及其他大量产品
的重要基础,具有广泛的应用前景。
正是凭借其优异的性能,使有机硅单体在应用中赢得
了越来越多的广泛应用,优越的泛化性能也使它得到了更多的关注。
多种有机硅单体

有机硅单体主要有:甲基氯硅烷(简称甲基单体)、苯基氯硅烷(简称苯基单体)、甲基乙烯基氯硅烷、乙基三氯硅烷、丙基三氯硅烷、乙烯基三氯硅烷、γ-氯丙基三氯硅烷和氟硅单体等。
硅油简介硅油(Silicone oil) ... 乳化硅油. 用于皂基沐浴液。
DC-344. 环状聚二甲基硅氧烷. 195. 在化妆品中与许多组分有高度的相容性,降低产品的粘腻感,作共溶剂、固体粉末分散剂,用于清爽型膏霜、乳液、洗面奶、化妆水、彩妆、香水。
硅油是一种不同聚合度链状结构的聚有机硅氧烷。
它是由二甲基二氯硅烷加水水解制得初缩聚环体,环体经裂解、精馏制得低环体,然后把环体、封头剂、催化剂放在一起调聚就可得到各种不同聚合度的混合物,经减压蒸馏除去低沸物就可制得硅油。
化学性质硅油通常只室温下保持液体状态的线型聚硅氧烷产品,结构式如下:式中,R为烷基、芳基,R'为烷基、芳基、氢、碳官能基及聚醚链等;X为烷基、芳基、链烯基、氢、羟基、烷氧基、乙酰氧基、氯、碳官能基及聚醚链等;n,m=0、1、2、3…最常用的硅油,有机基团全部为甲基,称甲基硅油。
有机基团也可以采用其它有机基团代替部分甲基基团,以改进硅油的某种性能和适用各种不同的用途。
常见的其它基团有氢、乙基、苯基、氯苯基、三氟丙基等。
近年来,有机改性硅油得到迅速发展,出现了许多具有特种性能的有机改性硅油。
硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。
物理性质硅油一般是无色(或淡黄色)、无味、无毒(近年来调查发现,此物质对人体有害)、不易挥发的液体。
硅油不溶于水、甲醇、二醇和-乙氧基乙醇,可与苯、二甲醚、甲基乙基酮、四氯化碳或煤油互溶,稍溶于丙酮、二恶烷、乙醇和丁醇。
聚硅氧烷单体

聚硅氧烷单体,也被称为有机硅单体,是构成聚硅氧烷(也被称为硅酮或硅树脂)的基本单元。
这些单体以其独特的性质和广泛的应用领域,在化学工业中占据了重要的地位。
首先,聚硅氧烷单体的基本结构是由硅原子和氧原子交替排列的链状或网状结构。
硅原子上的有机基团可以变化多样,这为聚硅氧烷提供了丰富的性质和用途。
硅原子和氧原子之间的共价键非常稳定,使得聚硅氧烷具有良好的热稳定性、化学稳定性和电绝缘性。
其次,聚硅氧烷单体可以通过多种合成方法制备,如水解缩聚法、硅氢加成法等。
这些方法的选择取决于所需的聚硅氧烷的性质和应用。
例如,水解缩聚法常用于制备线型聚硅氧烷,而硅氢加成法则更多地用于制备支化或交联的聚硅氧烷。
聚硅氧烷单体的应用领域十分广泛。
在建筑材料领域,聚硅氧烷可以作为密封剂、粘合剂和涂料的成分,提供优良的耐水、耐候和耐化学腐蚀性能。
在个人护理产品中,聚硅氧烷常用于制作护肤品、化妆品和发胶,赋予产品顺滑、光泽和保湿的特性。
此外,聚硅氧烷还广泛应用于电气绝缘、航空航天、汽车制造和农业等领域。
然而,聚硅氧烷单体的使用也需要注意其潜在的环境风险。
一些聚硅氧烷单体在生产和使用过程中可能会释放到环境中,对生态系统造成潜在的影响。
因此,在开发和使用聚硅氧烷产品时,需要充分考虑其环境友好性和可持续性。
总之,聚硅氧烷单体以其独特的结构和性质,在化学工业中发挥着重要作用。
随着科技的进步和环保意识的提高,相信未来会有更多关于聚硅氧烷单体的研究和应用出现,为人类的生产和生活带来更多的便利和可能。
有机硅单体合成

有机硅单体合成有机硅单体是有机化学中的一类重要化合物,也是合成有机硅化合物的基础。
有机硅单体是指含有硅原子的有机化合物,其分子结构中至少含有一个硅碳键。
由于硅原子与碳原子具有相似的电负性,硅碳键具有较高的极性,使得有机硅单体具有许多独特的化学性质和应用价值。
有机硅单体的合成方法多种多样,其中一种常见的方法是通过硅烷化反应合成。
硅烷化反应是指将含有活性氢原子的有机化合物与含有硅氢键的硅化合物发生反应,生成硅碳键的化学反应。
硅烷化反应常用的有机硅单体合成方法包括氢化硅烷化反应和碳氢化硅烷化反应。
氢化硅烷化反应是指将硅烷化试剂与含有活性氢原子的化合物在催化剂的作用下进行反应。
硅烷化试剂是一类含有硅氢键的化合物,如三甲基硅烷、三乙基硅烷等。
在反应过程中,硅烷化试剂中的硅氢键会与活性氢原子发生反应,生成硅碳键,形成有机硅单体。
氢化硅烷化反应在有机合成中被广泛应用,可以合成各种有机硅单体,如硅烷、硅醇、硅酮等。
碳氢化硅烷化反应是指将含有烯烃或炔烃的有机化合物与硅烷化试剂进行反应,生成硅碳键的化学反应。
在碳氢化硅烷化反应中,烯烃或炔烃中的碳碳双键或三键与硅烷化试剂中的硅氢键发生加成反应,生成硅碳键,形成有机硅单体。
碳氢化硅烷化反应是一种重要的有机合成方法,可以合成各种含有硅碳键的化合物,如烯基硅烷、炔基硅烷等。
除了硅烷化反应,还有其他一些方法可以合成有机硅单体。
例如,通过硅酸酯的水解反应可以合成硅醇类化合物;通过硅氢化反应可以合成硅烷类化合物。
这些方法都在不同的情况下得到了广泛的应用。
有机硅单体具有许多独特的性质和应用。
首先,由于硅碳键的极性和硅原子的大尺寸,有机硅单体具有较高的热稳定性和化学稳定性,可以在高温和极端条件下使用。
其次,有机硅单体具有较低的表面张力和较好的润湿性,可以被广泛用于润滑剂、表面活性剂等领域。
此外,有机硅单体还可以作为合成高分子材料的单体,用于制备硅橡胶、硅树脂等。
有机硅单体是有机化学中重要的化合物,通过不同的合成方法可以合成各种有机硅单体。
有机硅单体及其应用

主要有机硅产品及应用目前有机硅产品繁多,品种牌号多达万种,常用的就有4000余种,大致可分为原料、中间体、产品及制品三大类:★有机硅单体:主要指有机氯硅烷等合成有机硅高聚物的单体,如甲基氯硅烷、苯基氯硅烷、乙烯基氯硅烷等原料。
★有机硅中间体:主要指线状或环状体的硅氧烷低聚物,如六甲基二硅氧烷(MM)、八甲基环四硅氧烷(D4)、二甲基环硅氧烷混合物(DMC)等。
★有机硅产品及制品:由中间体通过聚合反应,并添加各类无机填料或改性助剂制得有机硅产品。
主要有硅橡胶(高温硫化硅橡胶和室温硫化硅橡胶)、硅油及二次加工品、硅树脂及硅烷偶联剂四大类。
硅橡胶再通过模压、挤出等硫化成型工艺,制得导电按键、密封圈、泳帽等最终直接用品。
一、有机硅单体尽管有机硅品种繁多,但其起始生产原料仅限于为数不多的几种有机硅单体,其中占绝对量的是二甲基二氯硅烷,其次有苯基氯硅烷,前者用量占整个单体总量的90%以上。
此外,三甲基氯硅烷、乙基及丙基氯硅烷、乙烯基氯硅烷等等,也是生产某些品种不可或缺的原料。
有机氯硅烷(甲基氯硅烷、苯基氯硅烷、乙烯基氯硅烷)是整个有机硅工业的基础,而甲基氯硅烷则是有机硅工业的支柱。
大部分有机硅聚合物是通过二甲基二氯硅烷为原料制得的聚二甲基硅氧烷为基础聚合物,再引入其他基团如苯基、乙烯基、氯苯基、氟烷基等,以适应特殊需要。
甲基氯硅烷生产流程长、技术难度大,属技术密集、资本密集型产业,所以国外各大公司都是基础厂规模化集中建设,而后加工产品则按用途、市场情况分散布点。
二、有机硅中间体有机硅单体通过水解(或醇解)以及裂解制得各种不同的有机硅中间体,有机硅中间体是合成硅橡胶、硅油、硅树脂的直接原料,包括六甲基二硅氧烷(MM)、六甲基环三硅氧烷(D3)、八甲基环四硅氧烷(D4)、二甲基环硅氧烷混合物(DMC)等线状或环状硅氧烷系列低聚物。
三、硅橡胶硅橡胶是有机硅聚合物中的重要产品之一,在所有橡胶中,硅橡胶具有最广的工作温度范围(–100~350℃),耐高低温性能优异。
简述有机硅单体生产的工艺流程

简述有机硅单体生产的工艺流程有机硅单体生产的工艺流程可以分为下述几个步骤:1.硅矿石准备:选用高纯度的硅矿石,如石英、硅灰石或硅酸盐矿石等作为原料。
通过矿石破碎、磨细和浮选等步骤,得到纯度较高的硅酸盐矿石。
2.熔炼和还原:将硅酸盐矿石和还原剂(如焦炭)放入高温电炉中进行熔炼和还原反应。
在高温下,硅酸盐被还原成纯净的金属硅,同时生成CO和CO2等气体。
通过炉底的出口,将生成的液态金属硅收集起来。
3.精制:通过熔炼的硅金属中,还包含一些杂质,如铝、铁、钙和镁等。
这些杂质需要通过精炼过程去除。
一种常用的方法是将硅金属与氯化氢气体反应生成氯化物,然后通过升华或凝华的方式将其分离出来。
4.氯化:将精炼后的硅金属与氯气进行反应,生成氯化硅。
这是非常重要的一步,因为氯化硅是有机硅合成的重要原料之一、反应中会产生热量,需要控制反应温度和氯气的流量,以确保反应的高效进行。
5.与有机物反应:将氯化硅与有机化合物进行反应,生成有机硅单体。
这个步骤通常涉及到有机合成反应,需要在适当的温度和压力条件下进行。
常见的有机化合物包括甲基氯硅烷、环氧硅烷和硅烷等。
这些有机硅单体可以用于制造硅橡胶、硅油、硅树脂、硅胶等有机硅材料。
6.精炼和分离:生成的有机硅单体中,可能还会残留一些未反应的氯化物或其他杂质。
为了提高产品的纯度,需要对有机硅单体进行精炼和分离。
例如,可以使用蒸馏、结晶、萃取等技术,将有机硅单体从杂质中分离出来,并提高其纯度。
7.筛选和包装:最后,对有机硅单体进行筛选,去除颗粒杂质,确保产品的纯净度。
然后将有机硅单体进行包装,以便于储存和运输。
总的来说,有机硅单体的生产工艺流程包括硅矿石准备、熔炼和还原、精制、氯化、有机反应、精炼和分离、筛选和包装等步骤。
在每个步骤中都需要严格控制温度、压力和反应条件,以确保产品的质量和纯度。
这些有机硅单体可以广泛应用于化工、材料、医药等领域,具有很高的经济和技术价值。
有机硅单体

有机硅单体简介有机硅单体是由有机化合物和硅原子结合而成的化合物。
在化学结构上,有机硅单体往往由一个或多个有机基团连接到硅原子上。
有机硅单体具有独特的物化性质,广泛应用于化工、医药、电子等领域。
本文将介绍有机硅单体的特性、制备方法和应用领域。
特性有机硅单体具有以下特性:1.稳定性:有机硅单体在大多数温度范围和环境条件下都表现出较高的化学稳定性,能够抵抗氧化、酸碱和热分解。
2.低表面张力:有机硅单体具有较低的表面张力,使其在液体表面形成薄膜,有助于润湿和涂覆。
3.耐热性:有机硅单体具有良好的耐热性,能够承受高温条件下的应用。
4.惰性:有机硅单体表现出较高的化学惰性,不易与其他化合物发生反应。
5.绝缘性:有机硅单体具有良好的绝缘性能,常用于电子领域。
制备方法有机硅单体的制备方法有多种,常见的包括:1.水解方法:将有机硅烷类化合物或硅醇与水反应,生成有机硅单体。
这是一种常见且简便的制备方法。
2.氧化方法:通过将有机硅烷类化合物在氧气或氧化剂存在下氧化反应,制备有机硅单体。
3.环化方法:通过有机化合物与硅氢化合物反应,形成环状结构的有机硅单体。
4.聚合方法:将含有硅原子的化合物进行聚合反应,得到有机硅单体的聚合体。
应用领域有机硅单体在众多领域中有着广泛的应用,主要包括以下几个方面:1.化工领域:有机硅单体可以用作涂料、油墨、粘合剂和胶粘剂的成分,具有优异的润湿性、粘合性和耐候性。
2.医药领域:有机硅单体在医药制剂中有多种应用,常用于控释药物的载体和表面活性剂。
3.电子领域:有机硅单体作为绝缘材料广泛应用于半导体、光纤和集成电路等领域。
4.化妆品领域:有机硅单体可以用作化妆品中的成分,常见于护肤品和彩妆产品,能够提供滑腻感和保湿效果。
5.汽车领域:有机硅单体用于汽车涂料和润滑油中,提供防腐蚀和低摩擦的特性。
结论有机硅单体是一类由有机化合物和硅原子结合而成的化合物,具有独特的物化性质。
它的制备方法多样,并且在化工、医药、电子等领域中有着广泛的应用。
有机硅单体生产工艺研究与优化

有机硅单体生产工艺研究与优化一、有机硅单体生产工艺研究在有机硅单体的生产过程中,主要采用了两种方法,即热裂解法和嵌碳法。
热裂解法是指将硅甲烷或硅氧烷等有机硅化合物加热至高温,使其发生裂解反应,生成有机硅单体。
这种方法具有反应速度快、产量高的优点,但存在能源消耗高、产品纯度低等问题。
嵌碳法是通过将硅烷和碳源反应生成碳负载硅烷,然后再通过热裂解反应脱除碳源,得到有机硅单体。
这种方法具有能耗低、产物纯度高的优点,但是催化剂的选择和反应条件的控制对产品质量有较大影响。
二、有机硅单体生产工艺优化1.催化剂选择:催化剂对有机硅单体生产的影响很大。
目前常用的催化剂有贵金属催化剂、过渡金属催化剂和非金属催化剂等。
优化催化剂的选择,可以提高反应速度、降低温度和压力等操作条件。
2.反应条件控制:反应温度、压力和反应物的比例等反应条件对有机硅单体的生成有很大的影响。
通过优化反应条件,可以增加有机硅单体的产量和纯度。
3.副反应的控制:在有机硅单体的生产过程中,常伴随着一些副反应,如聚合反应、异构反应等,这些副反应会降低有机硅单体的产量和质量。
通过优化反应条件或添加合适的抑制剂,可以有效控制副反应。
4.产品分离纯化:有机硅单体通常与其他反应产物混合在一起,需要进行分离和纯化。
传统的分离纯化方法包括蒸馏、结晶、吸附等。
优化分离纯化工艺,可以提高有机硅单体的纯度和回收率。
三、新的有机硅单体生产工艺流程基于以上研究和优化,提出了一种新的有机硅单体生产工艺流程。
具体步骤如下:1.选择合适的催化剂和反应条件。
在催化剂选择方面,可以采用贵金属催化剂,如铑催化剂或钯催化剂。
在反应条件方面,优化反应温度、压力和反应物的比例。
2.控制副反应的发生。
通过添加合适的抑制剂或优化反应条件,控制副反应的发生,提高有机硅单体的产量和质量。
3.优化产品分离纯化工艺。
采用适当的分离纯化方法,如蒸馏、结晶、吸附等,提高有机硅单体的纯度和回收率。
综上所述,有机硅单体生产工艺的研究与优化对于提高有机硅单体的产量和质量具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机硅单体主要有:甲基氯硅烷(简称甲基单体)、苯基氯硅烷(简称苯基单体)、甲基乙烯基氯硅烷、乙基三氯硅烷、丙基三氯硅烷、乙烯基三氯硅烷、γ-氯丙基三氯硅烷和氟硅单体等。
硅油简介硅油(Silicone oil) ... 乳化硅油. 用于皂基沐浴液。
DC-344. 环状聚二甲基硅氧烷. 195. 在化妆品中与许多组分有高度的相容性,降低产品的粘腻感,作共溶剂、固体粉末分散剂,用于清爽型膏霜、乳液、洗面奶、化妆水、彩妆、香水。
硅油是一种不同聚合度链状结构的聚有机硅氧烷。
它是由二甲基二氯硅烷加水水解制得初缩聚环体,环体经裂解、精馏制得低环体,然后把环体、封头剂、催化剂放在一起调聚就可得到各种不同聚合度的混合物,经减压蒸馏除去低沸物就可制得硅油。
化学性质硅油通常只室温下保持液体状态的线型聚硅氧烷产品,结构式如下:式中,R为烷基、芳基,R'为烷基、芳基、氢、碳官能基及聚醚链等;X为烷基、芳基、链烯基、氢、羟基、烷氧基、乙酰氧基、氯、碳官能基及聚醚链等;n,m=0、1、2、3…最常用的硅油,有机基团全部为甲基,称甲基硅油。
有机基团也可以采用其它有机基团代替部分甲基基团,以改进硅油的某种性能和适用各种不同的用途。
常见的其它基团有氢、乙基、苯基、氯苯基、三氟丙基等。
近年来,有机改性硅油得到迅速发展,出现了许多具有特种性能的有机改性硅油。
硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。
物理性质硅油一般是无色(或淡黄色)、无味、无毒(近年来调查发现,此物质对人体有害)、不易挥发的液体。
硅油不溶于水、甲醇、二醇和-乙氧基乙醇,可与苯、二甲醚、甲基乙基酮、四氯化碳或煤油互溶,稍溶于丙酮、二恶烷、乙醇和丁醇。
它具有很小的蒸汽压、较高的闪点和燃点、较低的凝固点。
随着链段数n的不同,分子量增大,粘度也增高,固此硅油可有各种不同的粘度,从0.65厘沲直到上百万厘沲。
如果要制得低粘度的硅油,可用酸性白土作为催化剂,并在180℃温度下进行调聚,或用硫酸作为催化剂,在低温度下进行调聚,生产高粘度硅油或粘稠物可用碱性催化剂。
硅油具有卓越的耐热性、电绝缘性、耐候性、疏水性、生理惰性和较小的表面张力,此外还具有低的粘温系数、较高的抗压缩性)有的品种还具有耐辐射的性能。
硅油制品及应用硅油有许多特殊性能,如温粘系数小、耐高低温、抗氧化、闪点高、挥发性小、绝缘性好、表面张力小、对金属无腐蚀、无毒等。
由于这些特性,硅油以应用在许多方面而具有卓越的效果。
在各种硅油中,以甲基硅油应用得最广泛,是硅油中最重要的品种,其次是甲基苯基硅油。
各种官能性硅油及改性硅油主要用于特殊目的。
性状:无色无味无毒不易挥发的液体。
用途:有各种不同的粘度。
有较高的耐热性、耐水性、电绝缘性和较小的表面张力。
常用作高级润滑油、防震油、绝缘油、消泡剂、脱模剂、擦光剂、隔离剂和真空扩散泵油等。
以甲基硅油最为常用。
经乳化或者改性后用在纺织品后整理上的平滑柔软手感整理,日常的护理用品的香波中也加入乳化硅油提高毛发的润滑度。
此外,还有乙基硅油、甲基苯基硅油、含腈硅油等。
制备或来源:由二官能团和单官能团有机硅单体经水解缩聚而得的油状物。
硅烷偶联剂 Y(CH2)nSIX3硅烷偶联剂是由硅氯仿(HSiCl3)和带有反应性基团的不饱和烯烃在铂氯酸催化下加成,再经醇解而得。
它在国内有KH550,KH560,KH570,KH792,DL602,DL171这几种型号。
硅烷偶联剂实质上是一类具有有机官能团的硅烷,在其分子中同时具有能和无机质材料(如玻璃、硅砂、金属等)化学结合的反应基团及与有机质材料(合成树脂等)化学结合的反应基团。
此处,n=0~3;X-可水解的基团;Y一有机官能团,能与树脂起反应。
X 通常是氯基、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基等,这些基团水解时即生成硅醇(Si(OH)3),而与无机物质结合,形成硅氧烷。
Y是乙烯基、氨基、环氧基、甲基丙烯酰氧基、巯基或脲基。
这些反应基可与有机物质反应而结合。
因此,通过使用硅烷偶联剂,可在无机物质和有机物质的界面之间架起"分子桥",把两种性质悬殊的材料连接在一起提高复合材料的性能和增加粘接强度的作用。
硅烷偶联剂的这一特性最早应用于玻璃纤维增强塑料(玻璃钢)上,作玻璃纤维的表面处理剂,使玻璃钢的机械性能、电学性能和抗老化性能得到很大的提高,在玻璃钢工业中的重要性早已得到公认。
目前,硅烷偶联剂的用途已从玻璃纤维增强塑料(FRP)扩大到玻璃纤维增强热塑性塑料(FRTP)用的玻璃纤维表面处理剂、无机填充物的表面处理剂以及密封剂、树脂混凝土、水交联性聚乙烯、树脂封装材料、壳型造型、轮胎、带、涂料、胶粘剂、研磨材料(磨石)及其它的表面处理剂。
在硅烷偶联剂这两类性能互异的基团中,以Y基团最重要、它对制品性能影响很大,起决定偶联剂的性能作用。
只有当Y基团能和对应的树脂起反应,才能使复合材料的强度提高。
一般要求Y基团要与树脂相容并能起偶联反应。
编辑本段应用领域硅烷偶联剂的应用大致可归纳为三个方面:(一)用于玻璃纤维的表面处理能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,即使在湿态时,它对复合材料机械性能的提高,效果也十分显著。
目前,在玻璃纤维中使用硅烷偶联剂已相当普遍,用于这一方面的硅烷偶联剂约占其消耗总量的50%,其中用得较多的品种是乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。
(二)用于无机填料填充塑料可预先对填料进行表面处理,也可直接加入树脂中。
能改善填料在树脂中的分散性及粘合力,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。
(三)用作密封剂、粘接剂和涂料的增粘剂能提高它们的粘接强度、耐水、耐气候等性能。
硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。
硅烷偶联剂作为增粘剂的作用原理在于它本身有两种基团;一种基团可以和被粘的骨架材料结合;而另一种基团则可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,大大改善了粘接强度。
硅烷偶联剂的应用一般有三种方法:一是作为骨架材料的表面处理剂;二是加入到粘接剂中,三是直接加入到高分子材料中。
从充分发挥其效能和降低成本的角度出发,前两种方法较好。
编辑本段具体应用硅烷偶联剂在胶粘剂工业的具体应用有如下几个方面:①在结构胶粘剂中金属与非金属的胶接,若使用硅烷类增粘剂,就能与金属氧化物缩合,或跟另一个硅烷醇缩合,从而使硅原子与被胶物表面紧紧接触。
如在丁腈酚醛结构胶中加入硅烷作增粘剂,可以显著提高胶接强度。
②在胶接玻璃纤维方面国内外已普遍采用硅烷作处理剂。
它能与界面发生化学反应,从而提高胶接强度。
例如,氯丁胶胶接若不用硅烷作处理剂时,胶接剥离强度为1.07公斤/厘米2,若用氨基硅烷作处理剂,则胶接的剥离强度为8.7公斤/厘米2。
③在橡胶与其他材料的胶接方面,硅烷增粘剂具有特殊的功用。
它明显地提高各种橡胶与其它材料的胶接强度。
例如,玻璃与聚氨酯橡胶胶接时,若不用硅烷作处理剂,胶的剥离强度为0.224公斤/厘米2,若加硅烷时,剥离强度则为7.26公斤/厘米2。
④本来无法用一般粘接剂解决的粘接问题有时可用硅烷偶联剂解决。
如铝和聚乙烯、硅橡胶与金属、硅橡胶与有机玻璃,都可根据化学键理论,选择相应的硅烷偶联剂,得到满意的解决。
例如,用乙烯基三过氧化叔丁基硅烷(Y一4310)可使聚乙烯与铝箔相粘合;用丁二烯基三乙氧基硅烷可使硅橡胶与金属的扯离强度达到21.6~22.4公斤/厘米2。
一般的粘接剂或树脂配合使用偶联剂后不仅能提高粘合强度,更主要的是增加粘合力的耐水性及耐久性。
如聚氨基甲酸酯和环氧树脂对许多材料虽然具有高的粘合力,但粘合的耐久性及耐水性不太理想;加入硅烷偶联剂后,这方面的性能可得到显著的改善。
编辑本段其它方面应用硅烷偶联剂的其它方面应用还包括:①使固定化酶附着到玻璃基材表面,②油井钻探中防砂,③使砖石表面具有憎水性,④通过防吸湿作用,使荧光灯涂层具有较高的表面电阻;⑤提高液体色谱柱中有机相对玻璃表面的吸湿性能。
编辑本段使用方法(1)表面预处理法将硅烷偶联剂配成 0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。
所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。
除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH 值调至3.5~5.5。
长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。
氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。
水溶性较差的硅烷偶联剂,可先加入 0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。
(2)迁移法将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。
涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。
对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。
实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。
硅烷偶联剂应用方法硅烷偶联剂主要有表面预处理法和直接加入法,前者用稀释的偶联剂处理填料表面,后者在树脂和填料预混时,加入偶联剂原液。
硅烷偶联剂配成溶液,利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,为硅烷(20%),醇(72%),水(8%),醇为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此需调节溶液的PH值、除氨基硅烷外,其他硅烷加入少量醋酸,调节PH值4-5 ,氨基硅烷因具碱性,不调节。
因硅烷水解后,不能久存,适宜1小时用完。
具体应用(1)预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL (亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。
一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。
(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。
偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。