结构生物化学第十二章 酶活性的调节

合集下载

12-第十二章-细胞周期调控

12-第十二章-细胞周期调控
之后人们在CHO细胞、酵母与粘菌中也获得相 应的MF,这类物质随后被统称为MPF。
The discovery of MPF
Maturation promoting factor,MPF (成 熟促进因子), or M-phase promoting factor, MPF (M-期促进因子).
(三) CDC基因及周期蛋白Cyclin的发现
CDC基因的研究
1960s Leland Hartwell,1970s Paul Nurse 以 芽殖酵母和裂殖酵母为实验材料,利用温度敏感 突变株,发现许多与细胞分裂有关的基因(cell division cycle gene, cdc)。
Paul M. Nurse
Leland Hartwell 研究细胞周期调控机制的模式生物: 上图,裂殖酵母;下图,芽殖酵母
G1/S期CDK激酶: cyclin E-CDK2;
S期CDK激酶: cyclinA-CDK2;
M期CDK激酶: cyclinB-CDK1、 cyclinA-CDK1。
1. Cyclin-CDK激酶的激活、活性抑制及降解
(1)激活
人类CDK2的三种状态: Cyclin + CDK = Cyclin-CDK(活化)
三、细胞周期调控机制 Regulation Mechanism
of Cell Cycle
Cyclin-CDK——调控 细胞周期的引擎:不 同的周期蛋 ;不 同的Cyclin- CDK在不 同的时相表现活性, 影响不同的下游事件。
G1期CDK激酶: cyclinD-CDK4、 cyclinD-CDK6 ;
进 一 步 的 研 究 发 现 MPF=p34cdc2 ( 或 p34cdc28)+cyclin B,序列分析表明cyclin B 与酵母的p56cdc13蛋白为同源物。

生物化学 酶的作用机制与调节

生物化学 酶的作用机制与调节
这些基团被称为活性中心外必须基团 在大多数情况下酶分子要比底物分子大
研究酶活性部位的方法
化学修饰法
用某些化学试剂与酶分子侧链基团以共价键结合,观察酶的 活性改变,以确定活性中心的氨基酸残基
如果共价修饰后酶活性不受影响,则修饰的氨基酸残基不是 活性中心内的;如果酶活性丧失或降低,则修饰的氨基酸残基 可能位于活性中心内
2.广义酸碱催化
由广泛的质子供体(酸)和质子受体 (碱)参与的酸碱催化
生理条件不是强酸强碱而是近于中性 的环境,因此高反应性的H+和OH-环境 不存在
因此广义酸碱催化指的是细胞内的弱 酸弱碱参与的接受H+和提供H+的催化
①专一酸碱催化只与pH相关, 与缓冲液浓度无关
②广义酸碱催化与pH和缓冲 液浓度都相关
(NAG-NAM)n
5 4
3
1 2
N-乙酰氨基葡萄糖 NAG
①溶菌酶水解断开 NAM-NAG间的 β1,4-糖苷键
②溶菌酶不能水解
×
NAG-NAM间的
β1,4-糖苷键
③溶菌酶也能水解几丁 质(NAG多聚糖) NAG-NAG间的 β1,4-糖苷键
CH3 | R= -CH | COOH
乳酸基
酶的催化实例
酸嘧啶核苷 ③2’,3’-环磷酸核苷水解释放3’-磷酸核苷
酶的催化实例
胰核糖核酸酶A
酶活性中心的研究确定 A.酶切法
① 用枯草杆菌蛋白酶限制性水解20-21氨基酸残基间肽键,得到S 肽(20肽)和S蛋白(104肽),二者均无活性
② S肽与S蛋白在中性pH共育,可完全恢复活性 ③ 人工合成S肽氨基端的13个氨基酸与S蛋白共育,可恢复70%活性 ④ 去除人工肽His12和Met13的S肽,共育不能恢复活性

生物化学第十二章 酶活性的调节

生物化学第十二章 酶活性的调节
第十二章 酶活性的调节机制
提纲
一、酶的“量变”
1. 酶的“量变”和“质变”的主要差别 2. 同工酶 3. 酶的合成和降解
二、酶的“质变”
1. 别构调节 2. 共价修饰调节 3. 水解激活 4. 调节蛋白的激活或抑制 5. 聚合与解离
精选2021版课件
2
酶需要在正确的时间 和正确的地点有活性
不合适的表达 或激活导致细 胞的癌变或死
12
酶活性的精选别202构1版调课件节
13
具有正协同效应的别构酶
精选2021版课件
14
具有正协同效应别构酶
精选2021版课件
15
无协同效应的别构酶
精选2021版课件
16
别构酶实例——氨甲酰转移酶
天冬氨酸转氨甲酰酶(ATC)是大肠杆菌嘧啶核 苷酸从头合成途径中的限速酶,它催化氨甲酰磷 酸和Asp形成N-氨甲酰天冬氨酸和无机磷酸,其活 性受到严格的调控。
精选2021版课件
7
别构调节
别构调节的原理在于一些酶除了活性中心以外,还含有别构中心,该中 心能够结合一些特殊的配体分子(有时为底物)。当别构中心结合配体 以后,酶构象发生改变,从而影响到活性中心与底物的亲和力,并最终 导致酶活性发生变化。
能够进行别构调节的酶称为别构酶,与别构中心结合调节酶活性的配体 分子称为别构效应物。起抑制作用的别构效应物称为别构抑制剂,起激 活作用的别构效应物称为别构激活剂。由底物作为别构效应物产生的别 构效应称为同促效应,否则,就称为异促效应。许多别构酶具有多个别 构中心,能够与不同的别构效应物结合。
酶活性的反馈抑制
精选2021版课件
9
解释别构酶别构效应和与底物 结合的协同效应的两个模型
齐变模型(MWC模型) 序变模型(KNF模型)

《生物化学》酶的作用机制和酶的调节

《生物化学》酶的作用机制和酶的调节

side view
胃蛋白酶原
在pH5.0以下断裂 切去44个氨基酸片断
胃蛋白酶
溶菌酶
必需基团
酶的活性中心往往只是包括酶蛋白的几个氨基酸残 基,而对于活性中心以外的氨基酸残基,并非是可有可无 的,有些氨基酸残基也是酶表现催化活性所必需的,称为 必需基团。因此酶的活性中心属于必需基团的一部分,必 需基团还包括其它一些对酶活性必需的氨基酸残基。
(五)金属离子催化
1、需要金属的酶分类 (1)金属酶 含紧密结合的金属离子,多属于过渡金 属离子如,Fe2+、Fe3+、Cu2+、Zn2+、 Mn2+或Co3+。 (2)金属-激活酶 含松散结合的金属离子,通常为碱和碱 土金属离子,如Na+、K+、Mg2+或Ca2+。
(五)金属离子催化
2、金属离子以三种主要途径参加催化过程: (1)通过结合底物为反应定向 (2)通过可逆的改变金属离子的氧化态调 节氧化还原反应 (3)通过静电稳定或屏蔽负电荷
(一)酶活性部位的特点
1、活性部位在酶分子的总体中只占相当小的部分。 2、酶的活性部位是一个三维实体。 3、酶的活性部位并不是和底物的形状正好互补的,而 是在酶和底物结合的过程中,底物分子或酶分子, 有 时是二者构象同时发生变化后才互补的。 (诱导 契合学说)。 4、酶的活性部位位于酶分子表面的一个裂缝内,底物 分子结合到裂缝内并发生催化作用。 5、底物通过次级键较弱的的力结合到酶上。 6、酶活性部位具有柔性或可运动性。
广义酸基团 (质子供体) 广义碱基团(质子受体)
(四)共价催化(covalent catalysis)
共价催化又称亲核催化或亲电子催化,在催化时, 亲核催化剂或亲电子催化剂能分别放出电子或汲 取电子并作用于底物的缺电子中心或负电中心,迅 速形成不稳定的共价中间复合物,降低反应活化能, 使反应加速。

考研生物化学-12

考研生物化学-12

考研生物化学-12(总分:100.00,做题时间:90分钟)一、选择题(总题数:29,分数:38.00)1.酶之所以能加速反应速度,并不是因为______。

(分数:1.00)A.使反应物集中于酶分子B.使反应物的键适当定向C.利用肽键的能量使反应活化能下降√D.提供酸碱侧链作为质子供体和受体解析:2.双底物双产物酶促动力学分为哪两大类?______(分数:1.00)A.序列反应和随机反应B.有序反应和乒乓反应C.乒乓反应和序列反应√D.有序反应和随机反应解析:3.有的酶存在多种同工酶形式,这些同工酶所催化的反应______。

(分数:1.00)A.并不完全相同B.完全相同,而且反应的平衡常数也相同C.完全相同,但由于每一种同工酶的活性不同,反应的平衡常数可以不同√解析:4.一种酶的竞争性抑制剂将有下列哪种动力学效应______。

(分数:1.00)A.Km增加,Vmax不变√B.Km减小,Vmax不变C.Vmax增加,Km不变D.Vmax减小,Km不变解析:5.达到反应平衡时决定酶催化反应中底物转化为产物比率的参数是______。

(分数:1.00)A.酶的比活力的高低B.酶的Vmax的大小C.酶的转换数√D.酶的Km值解析:6.下列哪一种情况可用增加[S]的方法减轻抑制程度?______(分数:1.00)A.不可逆抑制B.竞争性可逆抑制剂√C.非竞争性可逆抑制剂D.反竞争性可逆抑制剂解析:7.已知某种酶的K m值为0.05mol/L,要使此酶所催化的反应速度达到最大反应速度的80%时,底物浓度应是多少?______(分数:1.00)A.0.04mol/LB.0.8mol/LC.0.2mol/L √D.1.0mol/L解析:8.酶促反应的初速度与下列哪项有关?______(分数:1.00)A.与酶浓度成正比√B.与底物浓度无关C.Km值成正比D.与温度成正比解析:9.酶促反应降低反应活化能的能量来源于______。

生物化学合工大第十二章核酸的酶促降解和核苷酸代谢ppt课件

生物化学合工大第十二章核酸的酶促降解和核苷酸代谢ppt课件

核糖核苷酸的生物合成
1、嘌呤核苷酸的生物合成
(1) 从头合成途径 (2) 补救途径(自学)
2、嘧啶核苷酸的生物合成
(1) 从头合成途径 (2) 补救合成途径(自学)
嘌呤环上各原子的来源
来自CO2 来自天冬氨酸
来自甘氨酸
来自“甲酸盐”
来自“甲酸盐”
来自谷氨酰胺的酰胺氮
5-磷酸核糖焦磷酸
甘氨酸
5-磷酸 核糖胺
HCHLeabharlann CH2N5N,5-NC1H0-OC-HF2H-F4 H4
一碳基团的 S-腺苷蛋氨酸 来源与转变
参与 甲基化反应
N5-CH2-FH4
丝氨酸 FH4
NAD+
NDAH+H+ N5 , N10 -CH2-FH4还原酶
N5 N10 - CH2-FH4
为胸腺嘧啶合 成提供甲基
NAD+ NDAH+H+
N5 , N10 -CH2-FH4脱氢酶
1、核酸酶的分类
(1)根据对底物的 专一性分为
核糖核酸酶(RNase) 脱氧核糖核酸酶(DNase)
非特异性核酸酶
核酸内切酶 (2)根据切割位点分为 核酸外切酶
2、核酸酶的作用特点
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
p
p
p
p
p
p
p
OH 3´
牛脾磷酸二酯酶
( 5´端外切5得3)
蛇毒磷酸二酯酶
组氨酸 苷氨酸
FH4
N5, N10 = CH-FH4
参与嘌呤合成
HCOOH FH4
H2O 环水化酶
H+
N10 -CHO-FH4

生物化学第十二章代谢调节

生物化学第十二章代谢调节

精氨酸 谷氨酰胺 组氨酸 脯氨酸
氨基酸、糖及脂肪代谢的联系 糖
葡萄糖或糖原 磷酸丙糖 磷酸烯醇型丙酮酸
丙氨酸 半胱氨酸 甘氨酸 丝氨酸 苏氨酸 色氨酸
脂肪
甘油三酯 3-磷酸甘油 脂肪酸
丙酮酸
亮氨酸 异亮氨酸 色氨酸
乳酸 乙酰CoA 乙酰乙酰CoA 酮体
亮氨酸 赖氨酸 苯丙氨酸 酪氨酸 色氨酸
天冬氨酸 天冬酰胺
mRNA
阻遏蛋白(无活性)
酶蛋白 阻遏蛋白不能跟操纵基因结合, 结构基因可以表达
D.无活性阻遏蛋白加辅阻遏剂
代谢产物与阻遏蛋白结合,从而使阻遏蛋 白能够阻挡操纵基因,结构基因不表达
代谢产物
原核生物乳糖操纵子
原核生物乳糖操纵子(诱导型操纵子)
•其控制区包括:启动子(P) 和操纵基因。
•结构基因:由β -半乳糖苷酶基因(lacZ),通透 酶基因(lacY)和乙酰化酶基因(lacA)串联在 一起构成。
有色氨酸时,阻遏蛋白与色氨酸结合后才 能与操纵基因结合,从而阻止色氨酸合成 酶类的转录。
trpR P1O trpEtrpD 结合
阻遏物 色氨酸
P2
不转录
trpC trpBtrpA
用于表达载体的trp启动子一般只包含 启动基因、操纵基因、和部分trpE基 因。 目的基因 P1O trpE
大肠杆菌色氨酸操纵子的衰减作用的可能机制
[NADH]/[NAD+]对代谢的调节 金属离子浓度对代谢的调节
酶的含量
合成调节 降解调节
第三节
基因表达的调控
操纵子学说—转录水平的调控 操纵子——由结构基因与上游的启动子、操纵基 因共同构成的原核基因表达的协同单位。
结构基因(编码蛋白质,S)

生物化学及分子生物学(人卫第八版)-第12章-物质代谢的联系与调节1

生物化学及分子生物学(人卫第八版)-第12章-物质代谢的联系与调节1

脂酸合成
氨基酸代谢 嘌呤合成 嘧啶合成 核酸合成
乙酰辅酶A羧化酶
谷氨酸脱氢酶 谷氨酰胺PRPP酰胺 转移酶 天冬氨酸转甲酰酶 脱氧胸苷激酶
柠檬酸,异柠檬酸
ADP,亮氨酸,蛋氨酸
长链脂酰CoA
GTP,ATP,NADH AMP,GMP CTP,UTP
dCTP,dATP
dTTP
目录
2.代谢途径的起始物或产物通过变构调节影响 代谢途径 催化亚基 变构酶 调节亚基
调节某些细胞的代谢及功能,并通过各种激素的互相协
调而对机体代谢进行综合调节。
目录
一、细胞水平的代谢调节主要调节 关键酶活性
• 细胞水平的代谢调节主要是酶水平的调节。 • 细胞内酶呈隔离分布。 • 代谢途径的速度、方向由其中的关键酶(key enzyme)的活性决定。
• 代谢调节主要是通过对关键酶活性的调节而
各种物质代谢之间互有联系,相互依存。
目录
二、机体物质代谢不断受到精细调节
内外环境 不断变化 影响机体代谢
适应环境 的变化
机体有精细的调节 机制,调节代谢的 强度、方向和速度
目录
三、各组织、器官物质代谢各具特色
结构不同 不同的组 织、器官 酶系的种类、 含量不同 代谢途径不同、 功能各异
目录
四、各种代谢物均具有各自共同的 代谢池
进行调节,这种调节称为原始
调节或细胞水平代谢调节。
目录
高等生物 —— 三级水平代谢调节
• 细胞水平代谢调节
• 激素水平代谢调节
高等生物在进化过程中,出现了专司调节功能的内
分泌细胞及内分泌器官,其分泌的激素可对其他细胞发
挥代谢调节作用。
• 整体水平代谢调节
在中枢神经系统的控制下,或通过神经纤维及神经 递质对靶细胞直接发生影响,或通过某些激素的分泌来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具有正协同效应的别构酶
具有正协同效应别构酶
无协同效应的别构酶
别构酶实例——氨甲酰转移酶
@ 天冬氨酸转氨甲酰酶(ATC)是大肠杆菌嘧啶核 苷酸从头合成途径中的限速酶,它催化氨甲酰磷 酸和Asp形成N-氨甲酰天冬氨酸和无机磷酸,其活 性受到严格的调控。
@ 对大肠杆菌ATC的动力学研究表明,其动力学曲 线为S型,活性受到嘧啶合成的终产物CTP的反馈 抑制,但受到嘌呤核苷酸ATP的激活。S型曲线表 明该酶与底物结合具有正协同性。
酶共价修饰的几种形式
蛋白质的“可逆磷酸化”
水解激活
@ 大多数蛋白酶以无活性的酶原形式被合成,需要通过 水解(由其它蛋白酶催化或自我催化)去除一些氨基 酸序列以后才会有活性,这种调节酶活性的方式被称 为水解激活。
@ 与共价修饰一样,水解激活是也一种全或无的调节方 式,酶原状态没有活性,但与共价修饰不同的是,它 是不可逆的,即一旦被激活就不可能回到原来的非活 性的酶原状态。
解释别构酶别构效应和与底物 结合的协同效应的两个模型
« 齐变模型(MWC模型) « 序变模型(KNF模型)
齐变模型
@ 该模型认为构成别构酶的亚基能够以两种不同的构象 形式存在,一种构象为R态,另外一种构象为T态。在 一个特定的酶分子内部,构成亚基之间的相互作用致 使每一个酶分子的每一个亚基在某一个时候采取同一 种构象,即要么都是R态,要么都是T态。
第十二章 酶活性的调节机制
提纲
一、酶的“量变”
1. 酶的“量变”和“质变”的主要差别 2. 同工酶 3. 酶的合成和降解
二、酶的“质变”
1. 别构调节 2. 共价修饰调节 3. 水解激活 4. 调节蛋白的激活或抑制 5. 聚合与解离
酶需要在正确的时间 和正确的地点有活性
不合适的表达 或激活导致细 胞的癌变或死
@ ATP和CTP作为别构效应物对ATC活性调节的生理 意义在于有利于平衡胞内的嘌呤核苷酸库和嘧啶 核苷酸库。
氨甲酰转移酶的结构及其催化的反应
ATP和CTP对ATC活性的调节
大肠杆菌ATC的T态和R态的互变
酶的共价修饰调节
« 是指酶活性因其分子内的某些氨基酸残 基发生共价修饰而发生变化的过程。这 种调节方式比别构调节要慢。共价修饰 的方式有:磷酸化、腺苷酸化、尿苷酸 化、ADP-核糖基化和甲基化,其中磷酸 化是最为常见的形式。
时候还有前馈激活(feed-forward activation)和底物激活(substrate activation)。
酶活性的反馈抑制
别构调节最多出现 在代谢途径中的反 馈抑制,它是指一 条代谢途径(通常 是合成代谢途径) 的终产物作为别构 抑制剂抑制代谢途 径前面限速酶的活 性,因此也被称为 终产物抑制。
@ 在溶液中,两种构象可以相互转变,并处于动态的平 衡中,但转变的方式为齐变,即构成它们的亚基要么 一齐从R态变成T态,要么一齐从T态变成R态。
序变模型
@ 该模型认为同一个酶分子既有R亚基,又有T亚基, 也就是溶液中的R态酶(R4)和T态酶(T4)之间存 在多种混合体(R3T1、R2T2、R1T3),各种状态 的酶处于动态平衡之中。
@ 实例:高等动物的乳酸脱氢酶(LDH)有五种形式—M4、 M3H、M2H2、MH3和M4。M4由四个M亚基组成,主要存 在于骨骼肌,H4由四个H亚基组成,主要存在于心脏。
酶的“质变”
——在不改变酶浓度的前提下,对已有的酶 的活性进行的调控
酶活性的别构调节、共价修饰和水解激活调节的异同
别构调节
@ 别构调节的原理在于一些酶除了活性中心以外,还含有别构中心,该中 心能够结合一些特殊的配体分子(有时为底物)。当别构中心结合配体 以后,酶构象发生改变,从而影响到活性中心与底物的亲和力,并最终 导致酶活性发生变化。
@ 此外,该模型还肯定了底物对酶构象有更直接的影 响。在没有底物时,酶差不多都以T态存在,这时活 性中心的构象不适合与酶结合。一旦底物进入活性 中心,因为“诱导契合”导致与底物结合的亚基从T 态转变成R态。
@ 序变模型还认为相邻亚基之间存在相互作用,并且 这种相互作用可以影响到其他亚基的构象状态。
酶解激活
糜蛋白酶的水解激活
某些凝血因子的水解激活
调节蛋白的激活或抑制
« 某些蛋白质能够作为配体与特定的酶结合而调节 被结合酶的活性,这些调节酶活性的蛋白质称为 调节蛋白,其中,激活酶活性的调节蛋白称为激 活蛋白,抑制酶活性的蛋白称为抑制蛋白。抑制 蛋白通常结合在酶的活性中心阻止底物与活性中 心结合而达到抑制的效果。
蛋白酶与蛋白酶抑制剂
各种CDK与其周期蛋白搭档
抑制蛋白对酶活性的抑制
吸烟对α1-抗胰蛋白酶的损伤
乙酰CoA羧化酶的聚合和解离
@ 能够进行别构调节的酶称为别构酶,与别构中心结合调节酶活性的配体 分子称为别构效应物。起抑制作用的别构效应物称为别构抑制剂,起激 活作用的别构效应物称为别构激活剂。由底物作为别构效应物产生的别 构效应称为同促效应,否则,就称为异促效应。许多别构酶具有多个别 构中心,能够与不同的别构效应物结合。
@ 具有协同效应的酶和无协同效应的酶都可以受到别构调节 @ 别构调节最多出现在代谢途径中的反馈抑制(feedback inhibition),有
亡!
酶的“量变”和“质变”的比较
酶的“量变”
« 改变酶量的方式有两种,一种是通过同工酶, 另外一种是通过控制酶基因的表达和酶分子的 降解。
同工酶
@ 定义:是指催化相同的反应但性质不同(Vmax和/或Km不同) 的酶。它们可能以不同的量出现在一种动物不同的组织或器 官,也可能出现在任何真核生物细胞不同的细胞器。
相关文档
最新文档