2角边角角角边

合集下载

探索三角形全等的条件-角边角、角角边教学设计

探索三角形全等的条件-角边角、角角边教学设计

《探索三角形全等的条件-角边角、角角边》教学设计一、教学内容及解析本课是北师大版七年级下册,第四章第二节第二课时的内容。

全等三角形是平面几何的基础性的核心内容,三角形全等条件的探究是个重要的课题。

本节课是在学习了三角形有关要素、全等三角形的概念、性质以及探索出边边边能判定三角形全等以后进行的。

本节课的知识具有承上启下的作用,是判定三角形全等的重要依据,也是为以后说明线段相等、两角相等提供方法。

在能力培养上,无论是动手操作能力、逻辑思维能力,还是分析概况问题、解决问题的能力,简单的推理能力。

也渗透了分类讨论思想、化一般为特殊、化未知为已知的思想。

因此,全等三角形的判定是今后几何证明的起点,在整个初中数学的学习中有至关重要的作用。

二、教学目标及解析:(1)知识与能力目标①让学生在自主探究的过程中得出“ASA”公理和推导出“AAS”定理,掌握“角边角、角角边”是判定三角形全等的方法。

②使学生会运用“ASA”公理和“AAS”定理解决实际问题。

③发展学生有条理的数学语言的表达能力。

(2)过程与方法目标:①通过通过学生动手操作、观察实验、探索交流、分析归纳等活动,经历探索新知的过程,体会获得数学结论的过程,积累数学活动的经验。

(3)情感、态度与价值观目标:①通过探究活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。

②通过实际生活中的有关全等三角形判定的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。

三、学生学情分析:七年级的学生观察、操作、猜想能力已经有了很大的发展,但是演绎推理、归纳、运用数学意识的思想比较薄弱。

在相关知识的学习过程中,学生已经经历了一些简单探索活动,并进行了一些简单的逻辑推理过程,解决了一些简单的现实问题,获得了一些数学活动经验的基础,同时在以前的数学学习中学生已经经历全等三角形判别条件的探索活动,具有了一定的问题分析能力及归纳演绎的能力,具备了一定的合作与交流的能力。

12.2 第3课时 “角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备

12.2 第3课时 “角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备

12.2 第3课时“角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备课(人教版)一、教学目标1.理解“角边角”和“角角边”两种关系的概念及特点。

2.掌握通过给定的角边关系,判断两个角是否相等的方法与技巧。

3.能够灵活运用“角边角”和“角角边”两种关系,解决相关的角度计算问题。

二、教学重点1.角边角的概念和特点。

2.角边角关系的判断方法。

3.解决相关的角度计算问题。

三、教学难点灵活运用“角边角”和“角角边”两种关系,解决相关的角度计算问题。

四、教学过程1. 导入新知•引入问题:根据已经学过的知识,请问下面的两个角是否相等?1.∠ABC 和∠CBA2.∠ABC 和∠BCA•让学生思考并讨论这两个问题,并与学生一起找出判断的依据和方法。

2. 角边角的概念介绍•引导学生回顾角的定义,并解释什么是角边角。

•定义:当一个角的两边分别与另外一个角的两边相等时,这两个角互为角边角。

•通过示意图展示角边角的形态,并指导学生理解和掌握这一概念。

3. 角边角关系的判断方法•督促学生观察示例,并帮助学生发现判断角边角关系的方法。

•角边角关系的判断方法:1.两个角的两边分别相等。

2.一个角的两边分别等于另一个角的两边。

•通过示例演示和练习,确保学生掌握判断角边角关系的方法。

4. 解决相关的角度计算问题•给出一些角边角关系的题目,由学生自己解决并解释答案的推理过程。

•通过讨论和解析,引导学生总结解决相关角度计算问题的方法和技巧。

5. 拓展和应用•引导学生思考,如何利用角边角关系解决实际问题,如建筑设计、地图导航等方面的应用。

•让学生自由发挥,探索更多的角度计算问题,并分享解题思路和方法。

五、教学延伸1.在教学过程中,可以加入趣味性的角度计算游戏或竞赛,激发学生的学习兴趣和参与度。

2.引导学生进行角边角关系的衍生思考和推广,挑战更复杂的角度计算问题。

六、教学反思本课通过引入问题、示例演练和任务解决的方法,使学生能够深刻理解“角边角”和“角角边”两种关系的概念和判断方法。

“角边角”、“角角边” PPT课件

“角边角”、“角角边” PPT课件

D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知 B
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC,
∠B=∠C,求证:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
3. 如图,已知∠ACB=∠DBC,∠ABC=∠CDB, 判别下面的两个三角形是否全等,并说明理由.
A
不全等,因为BC虽然是
公共边,但不是对应边.
C
B
D
4.如图∠ACB=∠DFE,BC=EF,那么应补充一
个条件
,才能使△ABC≌△DEF
(写出一个即可). AB=DE可以吗?×
B
A AB∥DE
C F
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法角边角

两角一边

两角一边

例如:
已知如图,∠1 = ∠2,∠C = ∠D 已知如图, , 求证: 求证:AC = AD
证明:在△ABC和△ABD中 ∠1 = ∠2 ∠C = ∠D AB = AB D
A
2 1
B
∴△ABC≌△ABD(AAS) ∴AC = AD(?)
C
A 口答:
A′
B
C
B′
C′
1.两个直角三角形中,斜边和一锐角对应相等,这两个直角 三角形全等吗?为什么?
B′
C′
角边角定理的证明过程: 角边角定理的证明过程:
证明: 证明:在 ∆ABC和∆A′B′C ′中 ∵
A
∠A = ∠A′ ∠ B = ∠ B ′ ∠C =180 −( ∠A+∠B)
B
(三角形内角和性质 三角形内角和性质) 三角形内角和性质
C
∠C ′ = 180 − ( ∠A′ + ∠B′ ) (三角形内角和性质 三角形内角和性质) 三角形内角和性质
∠AOC = ∠BOD
∴ ∆AOC ≅ ∆BOD
( ( ASA) )
已知如图,∠1 = ∠2,∠C = ∠D 已知如图, , 求证: 求证:AC = AD
证明:在△ABC和△ABD中 ∠1 = ∠2 ∠C = ∠D AB = AB D
A
2 1
B
∴△ABC≌△ABD(AAS) ∴AC = AD(全等三角形对应边相等)
A
B
D
E
C
∆ 如图,O是 的中点 ∠ 的中点, 全等吗? 如图 是AB的中点, A =∠B, AOC与∆BOD全等吗 为什么? 为什么?
C
两角和夹边 对应相等
A
O
B
Q 在 ∆AOC和∆BOD

第2课时利用“角边角”“角角边”判定三角形全等

第2课时利用“角边角”“角角边”判定三角形全等
连接AD并延长,交BC于点E. 试找出图中的一对全等的三角形,并证明你的结论。
小结:
1、证明三角形全等的一般步骤:
①把非直接条件(公共边、公共角、对顶角,平行线,平行四边形等图形中的隐含条件)转化为直接条件(三角形中的对应相等的边或角)
②在△与△中 ∵ ∴△≌△
2、证明不在同一个三角形中的边与角相等时,不要忘记证它们所在的三角形全等
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.
(2)小明家衣橱上两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明快速配一块回来,如果只有一把尺子,小明该怎么办?
讨论下面几种情况:
1.给一个条件:
只给定一条边时:
只给定一个角时:
2.给出两个条件可能是:①一边一内角;②两内角;③两边.
情感态度
学生积极参与三角形全等条件的探究过程,从中体会成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.
教学
重点
掌握判定三角形全等的“ASA”和“AAS”条件.
教学
难点
能够进行有条理的思考并进行简单的推理.
授课
类型
新授课
课时
教具
多媒体课件、作图基本工具
教学活动
教学
步骤
师生活动
活动
四:
课堂
总结
反思
【当堂训练】
课本P102习题4.7中T1,T2,T3.
当堂检测,及时反馈学习效果.
【课堂总结】
师:同学们,竹子每生长一步,必做小结,所以它是世界上长得最快的植物,数学的学习也是如此.通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.

4.3第2课时角边角、角角边(教案)

4.3第2课时角边角、角角边(教案)
五、教学反思
在今天的教学中,我发现学生们对角边角、角角边概念的理解普遍存在一些困难。在讲解过程中,我意识到需要用更直观、更贴近生活的方式去解释这些抽象的几何关系。例如,我尝试用学生们熟悉的物体,如三角板、纸飞机等,来说明全等三角形的判定条件,这样似乎更能激发他们的兴趣。
课堂上,我注意到有些学生在案例分析时显得有些迷茫,可能是因为案例与他们的生活经验距离较远。这时,我及时调整策略,引入了一些更接近他们日常生活的例子,如校园里的几何图案、建筑物的结构等,帮助他们建立起几何概念与现实世界的联系。
4.3第2课时角边角、角角边(教案)
一、教学内容
本节课选自教材第四章第三节,第2课时,主题为“角边角、角角边”。教学内容主要包括:
1.理解并掌握角边角、角角边的基本概念及其在几何图形中的应用。
-角边角:两个角共享一条边,且这两个角的非公共边分别是这两个角的邻边。
-角角边:两个角共享一个顶点,且这两个角的另一边分别是这两个角的邻边。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角边角、角角边的基本概念。角边角是指两个角共享一条边,而角角边是指两个角共享一个顶点。这些概念在几何图形的判定中起着关键作用,帮助我们识别全等或相似的三角形。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将了解如何在实际问题中应用角边角、角角边的关系来解决几何问题。
4.培养学生的合作交流意识,通过小组讨论和互助学习,使学生学会倾听他人观点,表达个人想法,共同探索几何图形中的规律和性质,提升团队协作能力。
这些核心素养目标与新教材要求相符,有助于学生在掌握知识的同时,培养其综合能力和学科素养。
三、教学难点与重点
1.教学重点
-核心内容:本节课的教学重点是使学生掌握角边角、角角边的基本概念,并能够运用这些概念进行几何图形的判定和证明。

探索三角形全等的条件(2)角边角、角角边 课件-2022-2023学年人教版八年级上册数学

为证明线段和角相等提供了新的证法
注意
注意“角角边”、“角边角”中两角与 边的区别
1. 如右图,△ABC和△DEF中,AB=DE,∠B=∠E,要使 △ABC≌△DEF ,应添加条件:
2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′= 69° ,∠A′=44°,且AC=A′C′,那么这两个三角形( ) A.一定不全等 B.一定全等 C.不一定全等 D.以上都不对
一个条件
一个角 一条边
两个角
两个条件 一个角一条边 两条边
三个条件
三个角
√ 三条边
两条边一个角
? 两个角一条边
思考问题:如果已知一个三角形的两角及一边,那么 有几种可能的情况呢?
它们能判定两个
三角形全等吗?
A
A
B
C
“两角及夹边”
B
C
“两角和其中一角的对边”
②现已画好一个△ABC,再画一个△A ′ B ′ C ′ , 使A ′ B ′ =AB, ∠A ′ =∠A, ∠B ′ =∠B (即有两角和它们的夹边对应相等).把画 好的△A ′ B ′ C ′剪下,放到△ABC上,它们全等吗?
答:带1去,因为有两角且 夹边相等的两个三角形全等.
1 23
用“角角边”定理繁复图形
一线三直角型(共同点两个直角三角形,斜边相等,图中有三个直 角,一条直角边与另一直角边在同一条直线上),找一对锐角对应 相等,用“角角边”证三角形全等
角边角 角角边
内容 应用
1两角和它们的夹边对应相等的两个三角形全 等(简写成“角边角”或“ASA) 2两个角和其中一角的对边对应相等的两个三 角形全等(简写成“角角边”或“ASA”)
C
A

全等三角形的判定3__角边角和角角边(ASAAAS)定理

三角形全等的判定<3>--角 边角和角角边定理<ASA、A AS
A E
B
FC
判定两个三角形全等有哪些方法? 边边边〔SSS
三边对应相等的两个三角形全等
边角边<SAS>
有两边和它们夹角对应相等的 两个三角形全等.
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
∠ A=∠ D, A B =D E , _________;
练一练
3、如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长.为什么?
A
B CD F
E
练习2
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
例3、已知:点D在AB上,点E在AC
上,AB=AC,∠B=∠C.
求证: AD=AE
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) D
∵ AB=AC(已知) ∠B=∠C(已知) B
∴ △ABE≌△ACD(ASA) ∴AD=AE
E C
1、要使下列各对三角形全等,需要增加什 么条件?
∠ A=∠ D , ∠ B=∠ F, _________;
怎么办?可以 帮帮我吗?
A D
C
E
B
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B 把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
作法: 1、作A/B/=AB; 2、在 A/B/的同旁作∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D与B/E交于点C/.

新人教版八年级上册数学12.2 第3课时 “角边角”“角角边”2教案

第3课时“角边角”“角角边”教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角”“角角边”条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中已知两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,•能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.②画线段A′B′,使A′B′=AB .③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A ,使∠D′AB=∠CAB ,∠EB′A′=∠CBA .④射线A′D 与B′E 交于一点,记为C′ 即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等.C 'A 'B 'DCABE两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”). 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D ABFE证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D ,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F在△ABC 和△DEF 中B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA ).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).[例]如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .[分析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD=AE ,只需证明△ADC ≌△AEB 即可. 证明:在△ADC 和△AEB 中A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△ADC ≌△AEB (ASA ) 所以AD=AE . Ⅲ.随堂练习 (一)课本练习. (二)补充练习图中的两个三角形全等吗?请说明理由.50︒50︒45︒45︒DCAB (1)29︒29︒DC A B(2)E答案:图(1)中由“ASA”可证得△ACD ≌△ACB .图(2)由“AAS”可证得△ACE ≌△BDC . Ⅳ.课时小结至此,我们有五种判定三角形全等的方法: 1.全等三角形的定义2.判定定理:边边边(SSS ) 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径. Ⅴ.作业1.学练优课后练习. 板书设计D CABE。

_12.2 三角形全等的判定“角边角”“角角边”教案 2021-2022学年 八年级数学上册人教版

12.2三角形全等的判定第3课时“角边角”“角角边”学习目标1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)自主探究探究点一:应用“角边角”、“角角边”判定三角形全等例1、如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.探究点二:运用全等三角形解决有关问题例2、已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD ⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE =BD+CE.尝试应用1. 如图,玻璃三角板摔成三块,现在到玻璃店在配一块同样大小的三角板,最省事的方法()A. 带①去B. 带②去C. 带③去D.带①②③去 2. 如图,已知∠1=∠2,则不一定能使△A BD ≌△ACD 的条件是( )A. AB=ACB. BD=CDC. ∠B=∠CD.∠BDA=∠CDA3. 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组4.如图,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =; ②CD DN =; ③FAN EAM ∠=∠; ④ACN ABM △≌△. 其中正确的有( )A .1个B .2个C .3个D .4个5. 如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A.BD =DC ,A B =ACB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD.∠B =∠C ,BD =DCAEFBCDMN第4题图6.如图,已知ABC △中,45ABC ∠=, F 是高AD 和BE 的 交点,4CD =,则线段DF 的长度为( ).A .22B . 4C .32D .427.如图,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 的距离分别是AE=1 ,CF=2 , 则EF 长8.如图,点D E ,分别在AB AC ,上,且AD AE =,BDC CEB ∠=∠. 求证:BD CE =.9. 如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD10. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B ,C 作过点A 的直线的垂线BD ,CE ,垂足分别为点D,E.若BD=2,CE=3,则AE= ,AD= .第6题图第5题图A D EB11. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .12.如图,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF 丄BC ;②△ADG ≌△ACF ;③O 为BC 的中点;④AG=DE :其中正确结论的序号是 .13. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC14.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________,并给予证明.B D CAEFEAD BCA D第10题图第12题图第11题图15.如图,已知点E C,在线段BF上,CFBE ,请在下列四个等式中,①AB=DE,②∠ACB=∠F,③∠A=∠D,④AC=DF.选出两个..作为条件,推出ABC DEF△≌△.并予以证明.(写出一种即可)已知:,.求证:ABC DEF△≌△.证明:课堂小结通过今天的学习,你有什么收获?课后作业CEB FDA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档