6_期权定价的连续模型及BS公式

合集下载

金融工程_第11章_期权定价的BS公式.ppt

金融工程_第11章_期权定价的BS公式.ppt

股票价格如何变化的假设
对数正态分布
对数正态分布和正态分布
未来股票价格分布
未来股票价格的期望值和方差
股票价格变化假设:连续时间模 型
股票价格的对数正态分布特性
dS Sdt Sdz
d ln S ( 2 )dt dz
2
ln
ST
ln
S
~
[(
2
2
)(T
t),
T t]
ln
ST
~ [ln
波动率的估计
波动率估计的注意事项
11.3 B-S公式的基本假设及推 导
BS模型推导
Black-Scholes微分方程的正式推导
dS Sdt Sdz
df ( f S f 1 2 f 2S 2 )dt f Sdz
S
t 2 S 2
S
S St Sz
f
( f S
S
f t
1 2
风险中性定价步骤
应用于股票远期合约
到期日远期合约的价值 ST K
f erT E(ST K )
f erT E(ST ) KerT
E(ST ) SerT f S KerT
应用风险中性定价推导B-S公式
欧式看涨期权到期日的期望价值为 E[max(ST X ,0)]
c er(T t) E[max(ST X ,0)]
S
(
2 )(T
2
t),
T t]
期望值
方差
E(ST ) Se(T t)
var(ST ) S e [e 2 2(Tt) 2 (Tt) 1]
例子
例子
练习
11.2 预期收益率和波动率及其估 计
A、预期收益率

【财务成本管理知识点】BS模型

【财务成本管理知识点】BS模型

(三)布莱克-斯科尔斯期权定价模型(BS模型)1.假设(1)在期权寿命期内,买方期权标的股票不发放股利,也不做其他分配;(2)股票或期权的买卖没有交易成本;(3)短期的无风险利率是已知的,并且在期权寿命期内保持不变;(4)任何证券购买者能以短期的无风险利率借得任何数量的资金;(5)允许卖空,卖空者将立即得到所卖空股票当天价格的资金;(6)看涨期权只能在到期日执行;(7)所有证券交易都是连续发生的,股票价格随机游走。

2.公式C0=S0[N(d1)]-X[N(d2)]或=S0[N(d1)]-PV(X)[N(d2)]其中:d1={ln(S0/X)+[]t}/或=ln[S0/PV(X)]/+(/2)d2=d1-式中:C0-看涨期权的当前价值;S0-标的股票的当前价格;N(d)-标准正态分布中离差小于d的概率;X-期权的执行价格;e-自然对数的底数,约等于2.7183;r c-连续复利的年度的无风险报酬率;t-期权到期日前的时间(年);In(S0÷X)-的自然对数;-连续复利的以年计的股票回报率的方差。

【手写板】3.参数估计(1)无风险利率的估计①期限要求:无风险利率应选择与期权到期日相同的国库券利率。

如果没有相同时间的,应选择时间最接近的国库券利率。

②这里所说的国库券利率是指其市场利率(根据市场价格计算的到期收益率),而不是票面利率。

③模型中的无风险利率是按连续复利计算的利率,而不是常见的年复利。

连续复利假定利息是连续支付的,利息支付的频率比每秒1次还要频繁。

【手写板】如果用F表示终值,P表示现值,r c表示连续复利率,t表示时间(年);则:【手写板】前【教材例7-13】沿用[例7-10]的数据,某股票当前价格50元,执行价格52.08元,期权到期日前的时间为0.5年。

每年复利一次的无风险利率4%,相当连续复利的无风险利率r c=ln(1.04)=3.9221%。

【教材例7-14】假设t=1年,F=104元,P=100元,则:r c=ln(104/100)÷1=ln(1.04)÷1=3.9221%【提示】严格来说,期权估值中使用的利率都应当是连续复利,包括二叉树模型和BS模型。

期权定价的连续模型及BS公式

期权定价的连续模型及BS公式

期权定价的连续模型及BS公式期权定价是金融学中一个重要的问题,它涉及到市场上期权的价格如何形成以及如何计算的问题。

在期权定价的研究中,连续模型和BS公式是常用的工具和方法之一连续模型是指在对期权定价进行建模时,假设资产价格(或指数)是连续的、随机的过程。

这些模型通常是基于随机微分方程的形式,最常见的连续模型是几何布朗运动模型和扩散模型。

其中几何布朗运动是一个经典的连续模型,它是由英国数学家罗伯特·布莱利·布朗提出的。

几何布朗运动的数学表达式是一个随机微分方程,即:dS_t = \mu S_t dt + \sigma S_t dW_t其中,S_t是资产价格(或指数),\mu是资产的预期收益率,\sigma是资产价格的波动率,dW_t是布朗运动的增量。

这个方程描述了资产价格的变化情况,包括预期收益率和波动率对价格变化的影响。

通过这个方程,可以计算出期权的价格。

另一个常用的连续模型是扩散模型。

扩散模型是在几何布朗运动的基础上进行扩展的模型,它考虑了资产的波动率是随时间变化的情况。

在扩散模型中,资产价格的波动率是一个随机过程,即:dS_t = \mu S_t dt + \sigma_t S_t dW_t其中的\sigma_t是时间t上的波动率。

这个模型可以更准确地描绘资产价格的变化情况,特别适用于对期限较长的期权进行定价。

BS(Black-Scholes)公式是一个基于几何布朗运动的连续模型的定价公式。

它是由美国经济学家费希尔·布莱克和美国经济学家默顿·米勒·施尔斯在1973年提出的,被广泛应用于期权定价。

BS公式的数学表达式为:C=S_0N(d_1)-Xe^{-rT}N(d_2)其中,C是看涨期权的价格,S_0是资产的当前价格,N(\cdot)是标准正态分布函数,d_1是一个与标准正态分布相关的变量,d_2是另一个与标准正态分布相关的变量,X是期权的执行价格,r是无风险利率,T是期权的时间到期。

期权定价的连续模型及BS公式

期权定价的连续模型及BS公式
调整。
2020/10/8
可以在c 和k 之间建立一个关系式,使得 cWk 的方差
等于 2T
即令: Var(cWk ) c2Var(Wk ) c2k 2T
于是式(5-6)
ST S0eT eWT e 2T / 2
其中 WT ~ N (0,T )
20120/10/8
对数正态模型(为什么?)
为能对模型进行标准正态变换,并对不确定性进行合并。
对 S1 进行重新定义:
S1 e e t cZ1c2 / 2S0
为什么?
210220/10/8
随机变量Z 的一个重要等式
c2
E ecZ e 2
(5-5)
于是
E exp(cZ c2 / 2) 1
E S1 et S0
第二个因素表示的随机变量的漂移率为零
20520/10/8
特别注意:
ln
St S0
Bt
2
2
t
Bt
2
2
t
~
N
2
2
t,
2t
目的:对期权进行定价
20620/10/8
几何布朗运动参数估计:
波动率 漂移率
思路:用样本均值和方差来代替总体的均值和方差
若已知在一段较长时间[0,T]内的股价数据 ,这段时间由n个
长度相等的子区间 t 所构成,如果已知第 i(i 0,1, , n) 个
3月21日 5.27 5.22 5.29 5.26 5.27 5.27 5.27 5.26
3月22日 5.3 5.28 5.31 5.43 5.46 5.46 5.53 5.56
3月23日 5.6 5.68 5.69 5.69 5.67 5.61 5.68 5.68

期权定价公式

期权定价公式
9
期权 二 B-S期权定价模型
期权定价公式的应用
证券组合保险:实现能够确定最 大损失的投资策略
➢评估组合保险成本
➢给可转债定价 ➢为认沽权证估值
可转债=债权+看涨期权 可赎回:债权+看涨期权多头 (转换权)+看涨期权空头(赎
回权)
认沽权证的执行导致发行更多的 股票,有稀释效应
10
期权
三 基本期权策略
➢利用期权套期保值 ➢利➢用有期担权保获的利看跌期权
➢➢用出看 售涨 看期 涨权期套权期获保利值空头头寸 ➢➢出出售售看有跌抵期补权的获看利涨期权以防市场走低 ➢➢转利好用市期况权获利 ➢利➢用出期售权看转涨好期市权况转好市况 ➢出售看跌期权转好市况
11
期权
三 基本期权策略
➢利用期权套期保值
有股票怕跌怎 么办?
➢出售看涨期权转好市况 有时候通过出售股票的“实值”看涨期权而不是直 接出售股票可以增加收益
➢出售看跌期权转好市况
如果打算购买股票时,可以通过出售实值看跌期 权而增加收益
18
空头股票+空头看跌期权=空头看涨期权
p
o
o
p
p
o
16
期权
三 基本期权策略
➢利用期权获利
股票上涨时持有 股票,还想获取
➢出售看跌期权获利
额外收入,怎么 办?
过度出售看跌期权——持有股票并同时出售这种股
票的看跌期权
股票多头+看跌期权空头
o
p
o
p
o
p
17
期权
三 基本期权策略
➢转好市况——既可以保值又可以获利
o
p
p
o
o
p
14
期权

BS期权定价公式

BS期权定价公式

BS期权定价公式Black-Scholes 期权定价模型⼀、Black-Scholes 期权定价模型的假设条件Black-Scholes 期权定价模型的七个假设条件如下:1. 风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。

S 遵循⼏何布朗运动,即dz dt SdS σµ+=。

其中,dz 为均值为零,⽅差为dt 的⽆穷⼩的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的⼀个随机值),µ为股票价格在单位时间内的期望收益率,σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。

µ和σ都是已知的。

简单地分析⼏何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个⽅⾯:⼀是单位时间内已知的⼀个收益率变化µ,被称为漂移项,可以被看成⼀个总体的变化趋势;⼆是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。

2.没有交易费⽤和税收,不考虑保证⾦问题,即不存在影响收益的任何外部因素。

3. 资产价格的变动是连续⽽均匀的,不存在突然的跳跃。

4. 该标的资产可以被⾃由地买卖,即允许卖空,且所有证券都是完全可分的。

5. 在期权有效期内,⽆风险利率r 保持不变,投资者可以此利率⽆限制地进⾏借贷。

6.在衍⽣品有效期间,股票不⽀付股利。

7.所有⽆风险套利机会均被消除。

⼆、Black-Scholes 期权定价模型(⼀)B-S 期权定价公式在上述假设条件的基础上,Black 和Scholes 得到了如下适⽤于⽆收益资产欧式看涨期权的Black-Schole 微分⽅程:rf Sf S S f rS t f =??+??+??222221σ其中f 为期权价格,其他参数符号的意义同前。

通过这个微分⽅程,Black 和Scholes 得到了如下适⽤于⽆收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---=其中,t T d tT t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln())(2/()/ln(c 为⽆收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量⼩于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。

B-S期权定价模型、公式与数值方法

B-S期权定价模型、公式与数值方法
P124的例子
B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd

6_期权定价的连续模型及BS公式

6_期权定价的连续模型及BS公式
如果高于执行价格则该期权支付1元由于期权到期时价格超过执行价格的概率为1份现金或无价值看涨期权的现值为ertt第五节第五节blackblackscholesscholes公式的推导公式的推导202111962第六节第六节看涨期权与看跌期权平价看涨期权与看跌期权平价欧式看涨期权的价格与欧式看跌期权的价格有关若卖空一份带抛补的看涨期权的价格卖出一份看涨期权执行价为x同时又买了一份价格为p的看跌期权执行价为x202111963则到期收益为x第六节第六节看涨期权与看跌期权平价看涨期权与看跌期权平价于是202111964pcsexspc如果则通过买卖存在套利机会第六节第六节看涨期权与看跌期权平价看涨期权与看跌期权平价对于具有与欧式看涨期权定价相同参数的欧式看跌期权定价平价公式将欧式看涨期权定价的blackscholes公式代入得
Black-Scholes方程的结果认为,由于在方程中消掉 了漂移项 ,而漂移项代表人们对证券价格未来变化的预期, 也即证券的风险期望收益率。因此,这意味着期权的价格与 人们对证券价格未来变化的预测无关,投资者的风险偏好并 不影响期权价格。
2020/11/28
36
从BS微分方程中我们可以发现:衍生证券的价值决定公式中出 现的变量为标的证券当前市价(S)、时间(t)、证券价格的 波动率(σ)和无风险利率r,它们全都是客观变量,独立于主 观变量——风险收益偏好。而受制于主观的风险收益偏好的标 的证券预期收益率并未包括在衍生证券的价值决定公式中。
38
应该注意的是: 实际期权交易中,很多看涨期权是通过竞价市场而非
理论公式定价。
2020/11/28
39
习题: 若某日某股票的相关数据如下,求V
S0 80 X 100
0.8
r 0.05
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
40
60
80 100 120 140 160
0.5, 1
1, 1
3 2.5
2 1.5
1 0.5
0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
4 3 2 1
0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
6 5 4 3 2 1 0
第六章:期权定价的连续模型
第一节 连续时间股票模型 第二节 离散模型 第三节 连续模型的分析 第四节 Black-Scholes模型 第五节 Black-Scholes公式的推导 第六节 看涨期权与看破跌期权平价 第七节 二叉树模型和连续时间模型 第八节 几何布朗运动股价模型应用的注意事项
1
保罗· 萨缪尔森在1965年首次提出:
16
S0 1, 0.10, c 0.40, t 1
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
200
400
600
800
1000
1200
4
3.5
3
2.5
2
1.5
1
0.5
0
0
5
10
15
20
25
30
35
40
45
50
式(5-6)中将时间分成小的增量 t ,并考虑 k 步
运行的影响,一段固定的时间 T kt可以分成许多小时 间段。
个不足之处,即有两个不确定项。
第一个漂移项来自 et 中的 ,其作用类似于债券
和货币基金市场中的利率 r
k
第二个漂移项来自于
c Zi e i
当然希望期望的所有的漂移来自于一个方面,即 et
2020/10/2
10
为能对模型进行标准正态变换,并对不确定性进行合并。
对 S1 进行重新定义:
S1 e e t cZ1c2 / 2S0
于是式(5-6)
ST S0eT eWT e 2T / 2
其中 WT ~ N (0,T )
2020/10/2
20
对数正态模型(为什么?)
S S eWT 2 / 2 T
T
0
:表明长期趋势; :表明波动率。
这两个参数如何影响股价?
(5-7)
2020/10/2
21
1.4
Hale Waihona Puke 101.3 81.2
式中,Bt ~ N (0,t) 由此得到的就是股价的几何布朗运动模型(GBM)。
式(5-8)与具有连续时间变量T的离散模型(5-7)相同。
2020/10/2
24
特别注意:
事实上,针对同样的时间 T ,可以分成不同的 k 个 区间。
应该注意到:随着 k 的增加,Wk 的方差 k 会增加。
为了使得 cWk 的总方差独立于 k ,需要对常量 c 随 k 进行
调整。
2020/10/2
19
可以在c 和k 之间建立一个关系式,使得 cWk 的方差
等于 2T
即令: Var(cWk ) c2Var(Wk ) c2k 2T
2020/10/2
6
在式(5-1)中,如果令 0
即可得到上述微分方程,这是一个确定性的公式。 然而,股价并不具有公式(5-2)所示的可预测性和确定性。 令随机变量 Z ~ N (0,1)
定义
其中,Z1 ~ N (0,1)
c 为常数
S1 etecZ1 S0
2020/10/2
7
于是,可得股价序列 S2 , S3 , Sk

Sk etecZk Sk1
(5-3)
设 Zi ,iid, Zi ~ N (0,1),i 1, 2, , k
2020/10/2
8
于是得:
k
Sk
c e e kt i1
Zi
S0
(5-4)
与式(5-2)相比有什么特点?
包含了随机项,因此更接近实际!
2020/10/2
9
该模型有一个优点,包含了随机变量;但存在一
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10 8 6 4 2 0
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
方程(5-1)是一个SDE,一般SDE没有简洁的封闭形式的解。 方程(5-1)的解(几何布朗运动)
St S0 exp Bt 2 / 2 t (5-8)
1.1
6
1
4
0.9
2 0.8
0.7
0
20
40
60
80 100 120 140 160
0
0
20
40
60
80 100 120 140 160
0, 0.5
2
0, 1
2.4
1.8
2.2
2 1.6
1.8 1.4
1.6
1.2 1.4
1
1.2
0.8
0
20
40
60
80 100 120 140 160
1
0
2020/10/2
14
特别注意:
模型(5-6)尽管也是一种离散模型, 但比二叉树模型具有更丰富的意义。
因为
S1
e e e S t cW1 c2 / 2 0
允许 S1 取任何正值
为什么?
2020/10/2
15
当 E exp(cW1 c2 / 2) 1 时
是否 S1 et S0
否!
2020/10/2
为什么?
2020/10/2
11
随机变量Z 的一个重要等式
c2
E ecZ e 2
(5-5)
于是
E exp(cZ c2 / 2) 1
E S1 et S0
第二个因素表示的随机变量的漂移率为零
2020/10/2
12
进一步
若令: 则: 因为:
k
kt
c Zi kc2 / 2
i1
S e e S k
则根据二叉树模型,在一个给定时间间隔 t
S1 et S0 Sk1 et Sk
2020/10/2
4
于是
Sk ekt S0
令 T kt
S T Sk eT S0
这表明k个小时间段的共同影响等同于相应大时间段 T kt 的影响。
2020/10/2
5
上式是下列微分方程的解:
dS S
dt
S (T ) eT S0 (5-2)
其中:
dSt Stdt StdBt
St ——股票在 t 时刻的价格
——常量
Bt ——服从布朗运动。
(5-1)
2020/10/2
2
1826年英国植物学家布朗(1773-1858)用显微镜
观察悬浮在水中的花粉时发现的。后来把悬浮微粒的这种 运动叫做布朗运动。
若 S T 表示 T 时刻的股价
0
k
Wk Zi i1
Wk ~ N 0, k
Zi ,iid,且Zi ~ N 0,1,i 1, 2, , k
2020/10/2
13

Sk e e kt cWk ekc2 / 2S0
式(5-6)的分析:
(5-6)
S0 股票的初始价格; ekt 漂移因子(复利因子);
ecWk 随机因子; ekc2 / 2 修正因子。
相关文档
最新文档