2012年高考文科数学分类汇编:函数(术科班)

2012年高考文科数学分类汇编:函数(术科班)
2012年高考文科数学分类汇编:函数(术科班)

2012年高考文科数学分类汇编:函数

1.(天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )

A.x y 2cos =

B.x y 2log =

C.2

x

x e e y --= D.13+=x y 2.(四川)函数()10≠>-=a a a a y x ,,的图象可能是( )

3.(陕西)下列函数中,既是奇函数又是增函数的为( )

A.1+=x y

B.2x y -=

C.x

y 1= D.x x y = 4.(山东)函数()()

2411x x x f -++=ln 的定义域为 . 5.(江西)设函数()?????>≤+=12112x x

x x x f ,,,则()()=3f f . 6.(湖北)定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为(

)

7.(大纲)函数()11-≥+=

x x y 的反函数为( ) A.()012≥-=x x y B.()112≥-=x x y C.()012≥+=x x y D.()112≥+=x x y

8.(北京)函数()x x x f ??

? ??-=2121的零点个数为 . 9.(安徽)计算:=?4932log log .

10.(重庆)函数()()()4-+=x a x x f 为偶函数,则实数=a ________.

11.(安徽)设集合{}3123≤-≤-=x x A |,集合B 是函数()1-=x y lg 的定义域, 则=B A ( ) A.()21, B.[]21, C.[)21, D.(]21,

12.(浙江)设函数()x f 是定义在R 上的周期为2的偶函数,当[]10,∈x 时,()1+=x x f ,则 =??

? ??23f _______________. 13.(四川)函数()x x f 211

-=的定义域是 .(用区间表示)

14.(上海)已知()x f y =是奇函数,若()()2+=x f x g 且()11=g ,则()=-1g _______ .

15.(上海)方程03241=--+x x 的解是 .

16.(陕西)设函数发()?????

? ??≥=0210x x x x f x ,,,则()()=-4f f .

17.(福建)已知关于x 的不等式022>+-a ax x 在R 上恒成立,则实数a 的范围是_________.

18.(北京)已知函数()x x f lg =,若()1=ab f ,则()()

=+22b f a f _________. 19.(天津)已知212.=a ,2021.-??

? ??=b ,225log =c ,则a ,b ,c 的大小关系为( ) A.a b c << B.b a c << C.c a b << D. a c b << 20.(江苏)函数()x x f 621log -=的定义域为 .

21.(上海)已知()()1+=x x f lg . (1)若()()1210<--

答案:BCD ()(]2001,, - 913 BA 1 4 4 D 23 ??? ??∞-21, 3 32l o g =x 4 ()80, 2 A (]60,

21.解:由题意,得 ()()[]()x x x f 2212121-=+-=-lg lg 所以,()()()()1

2212221+-=+--=--x x x x x f x f lg lg lg 得不等式组为???

????<+-<>+>-10122101022x x x x ,解得,3132<<-x

2018年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 2 x —2?y 2 =2上,贝U △ ABP 面积的取值范围是 和d 2,且d 1 d 2 =6,则双曲线的方程为 2 2 x ■丄=1 4 12 2 x D — 9 、选择题 1.【2018全国一卷 4】 已知椭圆C : 第九篇:解析几何 X 2 V 2 評廿1的一个焦点为(2 ,0),则C 的离心率为 1 A.- 3 2.【2018全国二卷 6】 1 B.- 2 2 x 2 双曲线 2-爲=1(a 0,b 0)的离心率为,3,则其渐近线方程为 a b A . y 二 2x B . y = 3x D . y 3 x 2 3.【2018全国 11】已知F , F 2是椭圆C 的两个焦点,P 是C 上的一点,若PR_ PF 2 , 且.乙PF 2F 1 =60,则C 的离心率为 A . J 2 B . 2-3 C. D . .3-1 4.【2018全国 三卷 8】直线x y *2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆 A . 2,61 B . 4,8〕 D . 5.【2018全国三卷10】已知双曲线 C : 三卷 =1(a 0 , b 0)的离心率为 .2 ,则点(4,0) 到C 的渐近线的距离为 B . 2 C. 2 D . 2,2 2 x 6.【2018天津卷7】已知双曲线 — a =1(a 0, b 0)的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于 A , B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为 d 1 12 4 =1

8. 4 2 7. 【 2018 浙江卷2 】双曲线「宀的焦点坐标是 之和为() D.4魂 二、填空题 【2018全国一卷15】直线y =x ? 1与圆x 2 y 2 2^^0交于A ,B 两点,则 A ? (- 2 , 0), ( .2 , 0) B ? (-2, 0), (2, 0) C . (0, - . 2 ), (0 , ,2) D . (0, -2), (0, 2) 8.【2018上海卷13】设P 是椭圆 呂+以=1 5 3 上的动点,贝U P 到该椭圆的两个焦点的距离 1. 2. 【2018北京卷10】已知直线I 过点(1,0)且垂直于 轴,若 I 被抛物线 y 2 = 4ax 截得的线 3. 段长为4,则抛物线的焦点坐标为 2 2 【2018北京卷12】若双曲线 笃-丿 1(a 0)的离心率为 a 4 -1,则 2 4.【2018天津卷12】在平面直角坐标系中,经过三点( 0,0) 1),( 2,0)的圆 的方程为 5. 2 x 【2018江苏卷8】在平面直角坐标系 xOy 中,若双曲线 2 与=1(a 0,b 0)的右焦点 b 6. F (c,0)到一条渐近线的距离为乜 2 12】在平面直角坐标系 则其离心率的值是 【2018江苏卷 xOy 中,A 为直线I: y = 2x 上在第一象限内的点, B(5,0),以 AB 为直径的圆C 与直线 l 交于另一点D .若AB CD =0,则点A 的横坐标 7. 【2018浙江卷 17】已知点P (0,1),椭圆^+y 2=m (m>1)上两点A ,B 满足AP =2"P B ,则 4 当m= 时,点B 横坐标的绝对值最大.

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考文科数学真题汇编:导数及应用老师版.doc

2012-2017 年高考文科数学真题汇编:导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段2018 年月日: —: 历年高考试题汇编(文)——导数及应用 1.(2014 大纲理)曲线y xe x 1在点(1,1)处切线的斜率等于( C ) A .2e B.e C.2D.1 2.(2014 新标 2 理) 设曲线 y=ax-ln(x+1) 在点 (0,0)处的切线方程为 y=2x,则 a= ( D ) A. 0 B. 1 C. 2 D. 3 3.( 2013 浙江文 ) 已知函数 y=f(x)的图象是下列四个图 象之一,且其导函数 y=f′(x)的图象如右图所示,则该函数的图象是 ( B ) 4.(2012 陕西文)设函数 f(x)= 2x +lnx 则( D )A .x= 1为 f(x) 的极大值点B.x= 1为

f(x) 的极小值点 C.x=2 为 f(x) 的极大值点D.x=2 为 f(x) 的极小值点 5.(2014 新标 2 文) 函数f (x)在x x0 处导数存在,若p : f ( x0 )0 : q : x x0是 f ( x) 的极值点,则 A .p是q的充分必要条件 B. p是q的充分条件,但不是 q 的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是 q 的充分条件,也不是 q 的必要条件 【答案】 C 6.(2012 广东理)曲线y x3 x 3 在点 1,3 处的切线方程为 ___________________. 【答案】 2x-y+1=0 7.(2013 广东理)若曲线y kx ln x 在点 (1,k) 处的切线平行于 x 轴,则k 【答案】 -1 8.(2013 广东文)若曲线y ax2 ln x 在点 (1,a) 处的切线平行于 x 轴,则 a . 【答案】1 2 9 . ( 2014 广东文 ) 曲线y 5 e x 3 在点 (0, 2) 处的切线方程为.

2019年全国高考文科数学分类汇编---概率统计

2019年全国高考文科数学分类汇编---概率统计 1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下: 支付 金额 支付方式 不大于 (Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数; (Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(Ⅰ)400人; (Ⅱ)1 25 ; (Ⅲ)见解析. 【解析】 【分析】 (Ⅰ)由题意利用频率近似概率可得满足题意的人数; (Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率; (Ⅲ)结合概率统计相关定义给出结论即可. 【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人, 所以样本中两种支付方式都使用的有1003025540 ---=,

所以全校学生中两种支付方式都使用的有 40 1000400100 ?=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元, 所以该学生上个月支付金额大于2000元的概率为 125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为1 25 , 因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元, 依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多. 【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力. 2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生 【答案】C 【解析】 【分析】 等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n =+()n *∈N , 若8610n =+,则1 5 n = ,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样. 3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

高考数学文科分类--集合与简易逻辑

2014年高考数学文科分类------集合与简易逻辑 (安徽)2命题“0||,2 ≥+∈?x x R x ”的否定是( ) A.0||,2<+∈?x x R x B. 0||,2≤+∈?x x R x C. 0||,2000<+∈?x x R x D. 0||,2000≥+∈?x x R x 北京1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 5.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 (福建卷)1若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P I 等于( ) A .}43|{<≤x x B .}43|{<

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

2017年高考理科数学分类汇编 导数

导数 1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 【答案】A 【解析】()()2121e x f x x a x a -'??=+++-??? , 则()()324221e 01f a a a -'-=-++-?=?=-????, 则()()211e x f x x x -=--?,()()212e x f x x x -'=+-?, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-. 【考点】 函数的极值;函数的单调性 【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同。 (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值。 2.【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1 【答案】C 【解析】由条件,211()2(e e )x x f x x x a --+=-++,得: 221(2)1211211(2)(2)2(2)(e e ) 4442(e e )2(e e ) x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++ ∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-?++=, 解得12 a =. 【考点】 函数的零点;导函数研究函数的单调性,分类讨论的数学思想 【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

全国高考理科数学试题分类汇编:函数

2013年全国高考理科数学试题分类汇编2:函数 一、选择题 1 .(2013年高考江西卷(理))函数 的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c <<,则函数 ()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A 3 .(2013年上海市春季高考数学试卷(含答案))函数 1 2 ()f x x - =的大致图像是( ) 【答案】A 4 .(2013年高考四川卷(理)) 设函数 ()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1 [,-11]e -, (C)[1,1]e + (D)1 [-1,1]e e -+ 【答案】A 5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ?-+≤?+>? ,若|()f x |≥ax ,则a 的取值范围是 A.(,0]-∞ B.(,1]-∞ C.[2,1]- D.[2,0]- 【答案】D 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数 ()()21=log 10f x x x ?? +> ??? 的反函数()1=f x -

2020年高考数学分类汇编:函数、导数及应用

2020年高考数学分类汇编:函数、导数及其应用 4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()() 0.23531t K I t e --= +, 其中K 为的最大确诊病例数.当() 0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3) A.60 B.63 C.66 D.69 4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()() 0.23531t K I t e --= +, 其中K 为最大确诊病例数.当() 0.95I t K *=时,标志着已初步遏制疫情,则t *约为(In19≈3) A.60 B.63 C.66 D.69 6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天 D .3.5天 8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》 第九篇:解析几何 一、选择题 1.【2018全国一卷4】已知椭圆C :22 214 x y a +=的一个焦点为(20), ,则C 的离心率为 A .1 3 B .12 C D 2.【2018全国二卷6】双曲线22 221(0,0)x y a b a b -=>> A .y = B .y = C .y = D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥, 且2160PF F ∠=?,则C 的离心率为 A .1 B .2 C D 1 4.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆 () 2 222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48, C . D .?? 5.【2018全国三卷10】已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D . 6.【2018天津卷7】已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直 于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1 d

和2d ,且126d d +=,则双曲线的方程为 A 22 1412 x y -= B 22 1124 x y -= C 22 139 x y -= D 22 193 x y -= 7.【2018浙江卷2】双曲线2 21 3=x y -的焦点坐标是 A .(?2,0),(2,0) B .(?2,0),(2,0) C .(0,?2),(0,2) D .(0,?2),(0,2) 8.【2018上海卷13】设P 是椭圆 25x + 23 y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.2 B.2 C.2 D.4 二、填空题 1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线 段长为4,则抛物线的焦点坐标为_________. 3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为 5 2 ,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点

高考试题文科数学分类汇编导数

2012年高考试题分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为

(A)(-1,1] (B)(0,1] (C.)[1,+∞)(D)(0,+∞) 【答案】B 5.【2102高考福建文12】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 【答案】C. 6.【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q 的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8【答案】C 7.【2012高考新课标文13】曲线y=x(3ln x+1)在点)1,1(处的切线方程为________ 【答案】3 4- =x y 8.【2012高考上海文13】已知函数() y f x =的图像是折线段ABC,其 中(0,0) A、 1 (,1) 2 B、(1,0) C,函数() y xf x =(01 x ≤≤)的图像及x轴围成 的图形的面积为【答案】 4 1。

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

相关文档
最新文档