2019年全国高考文科数学分类汇编---概率统计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年全国高考文科数学分类汇编---概率统计

1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付

金额

支付方式

不大于

(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

【答案】(Ⅰ)400人;

(Ⅱ)1 25

(Ⅲ)见解析.

【解析】

【分析】

(Ⅰ)由题意利用频率近似概率可得满足题意的人数;

(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;

(Ⅲ)结合概率统计相关定义给出结论即可.

【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,

所以样本中两种支付方式都使用的有1003025540

---=,

所以全校学生中两种支付方式都使用的有

40

1000400100

⨯=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,

所以该学生上个月支付金额大于2000元的概率为

125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为1

25

因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,

依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.

【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.

2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生

C. 616号学生

D. 815号学生

【答案】C 【解析】 【分析】

等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.

【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n

=+()n *∈N ,

若8610n =+,则1

5

n =

,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.

3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

(1)分别估计男、女顾客对该商场服务满意的概率;

(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:

2

2

()

()()()()

n ad bc

K

a b c d a c b d

-

=

++++

【答案】(1)43 ,

55

(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.

【解析】

【分析】

(1)从题中所给的22

⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;

(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,

所以男顾客对商场服务满意率估计为

1404 505

P==, 50名女顾客对商场满意的有30人,

所以女顾客对商场服务满意率估计为

2303 505

P==,

(2)由列联表可知

2

2

100(40203010)100

4.762 3.841

7030505021

K

⨯-⨯

==≈>

⨯⨯⨯

所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.

【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2

K 的值,独立性检验,属于简单题目.

4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为

A. 23

B.

35 C. 25

D. 15

【答案】B 【解析】 【分析】

本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有

{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其

中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为

63

105

=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.

5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.

【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为

39.2

0.9840

=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.

6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.

相关文档
最新文档