3.2.2一元一次方程的应用(储蓄问题)
一元一次方程的应用储蓄教案

培养学生做题的规范性
学以致用
检验知识的掌握情况
在讨论中巩固知识,培养合作交流意识。提高学生的学习积极性
了解税后利息的应用,加大考点训练
检验知识的掌握情况
课题
一元一次方程的应用(6)
教
学
目
标
知识与能力
1.通过分析教育储蓄中的数量关系,列出方程解决实际问题。
2.能运用计算器处理实际问题中的复杂数据。
过程与方法
1.经历由实际问题抽象、建立方程模型的过程,能抓住等量关系列出方程。
并能解方程。
2.与同伴合作讨论,明白量与量之间的关系。
情感态度与价值观
1.体验运用方程解决日常生活中的问题的过程,进一步体会数学在生活中的实际应用价值。
学生回答
学生讨论理解
学生训练
学生讨论交流后回答
回答
学生独立完成第(1)问
同伴讨论
得出结论
学生讨论第二个3年期的本金
学生利用计算器辅助计算
让学生了解国家对教育事业的重视,以及家长对他们学习的重视
让学生了解有关量之间的关系,为本节课的内容作铺垫
巩固量与量之间的关系,进一步理解公式
培养学生逆向思维,激发学生求知欲
五、拓展与延伸
某时间段,银行一年定期存款的年利率为2.25﹪,向国家交纳20﹪的利息税,一储户取一年到期的本金及利息时,交纳了利息税4.5元,问此储户一年前存入的多少钱?
五、课堂小结
提问:这节课你学到了什么?
不纳利息税的储蓄利息怎么算?
纳利息税的储蓄利息怎么算?
六、作业布置
完成教材147页习题4.12问题解决
3、王老师买了5000元年利率为2.5%的3年期国库券,3年后他可得利息元,本息和元。
一元一次方程的应用储蓄教案

一元一次方程的应用——储蓄教案一、教学目标1. 让学生理解储蓄的基本概念和操作,如本金、利息、存期等。
2. 培养学生运用一元一次方程解决实际问题的能力。
3. 提高学生对数学与生活联系的认识,激发学习兴趣。
二、教学内容1. 储蓄的基本概念和操作。
2. 一元一次方程在储蓄中的应用。
三、教学重点与难点1. 教学重点:理解储蓄的基本概念和操作,掌握一元一次方程在储蓄中的应用。
2. 教学难点:如何将储蓄问题转化为一元一次方程,并求解。
四、教学方法1. 采用案例分析法,以具体的储蓄案例引导学生思考和解决问题。
2. 运用问题解决法,让学生在解决实际问题的过程中掌握一元一次方程的应用。
3. 采用小组讨论法,培养学生的合作能力和交流能力。
五、教学准备1. 准备相关的储蓄案例和问题。
2. 准备黑板、粉笔等教学工具。
教案内容:一、导入(5分钟)1. 向学生介绍储蓄的基本概念和操作,如本金、利息、存期等。
2. 通过提问方式引导学生思考储蓄问题与数学的关系。
二、案例分析(15分钟)1. 给出一个具体的储蓄案例,如某人存入一定金额的钱,按照一定的利率和存期计算利息。
2. 引导学生将储蓄问题转化为一元一次方程。
3. 讲解如何求解一元一次方程,并解释其含义。
三、小组讨论(15分钟)1. 将学生分成小组,每组提供一个储蓄问题,要求用一元一次方程解决。
2. 让学生在小组内讨论和求解问题,选代表进行汇报。
四、巩固练习(10分钟)1. 给学生发放练习题,要求运用一元一次方程解决储蓄问题。
2. 引导学生独立完成练习题,给予个别辅导。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结一元一次方程在储蓄中的应用。
2. 鼓励学生分享自己的学习体会和收获。
六、课后作业(课后自主完成)1. 进一步巩固一元一次方程在储蓄中的应用。
2. 让学生尝试解决更多的储蓄问题,提高解决问题的能力。
六、教学拓展1. 引入不同的储蓄产品,如活期存款、定期存款、零存整取等,让学生了解各自的优缺点和适用场景。
《一元一次方程的应用-储蓄问题》公开课教学PPT课件【初中数学人教版七年级上册】

一元一次方程的应用 储蓄问题
学习目标
1. 掌握列一元一次方程解应用题的步骤;能够找出简单应用题的已知数、 未知数和表示应用题全部含义的相等关系;会列出一元一次方程来解简单 应用题,体会方程是刻画现实世界的一个有效的数学模型.
2.通过选用合理步骤解一元一次方程和列出一元一次方程解应用题,了解 “未知”可以转化为“已知”的思想方法.
再见
三、巩固练习
练习:某农户计划用手头一笔钱买年利率为2.98%的三年期某债券,如果他想得到本 息共2万元,应买这种债券多少元?(结果保留整数)
分析:数量关系式:本金+本金×利率×期数=本息和
解:设该农户应买这种债券x元,根据题意得方程 x+3×2.98%x=20000
解方程得
x 20000 18405 1.0867
一、导入新课
一、储蓄问题涉及的基本量及数量关系 利息=本金×利率×期数 本息和=本金+利息
二、运用方程解决实际问题的一般步骤
1.审题:分析题意,找出题中的数量及其关系;
2.设元:选择一个适当的未知数用字母表示 ( 例如x) ; 3.列方程:根据相等关系列出方程; 4.解方程:求出未知数的值; 5.检验:检查求得的值是否正确和符合实际情形,并写出答案.
二、例题讲解
例:小芳把春节得到的压岁钱2000元存入银行的教育储蓄,3年后她从银 行取回2180元,问银行的年利率是多少?
数量关系式:本金+本金×利率×期数=本息和 解:设银行的年利率为x,根据题意得方程
2000+3×2000x=2180 解方程,得x=3%. 经检验,x=3%是方程的解. 答:银行的年利率为3%.
.
经检验,x 20000 是方程的解.
一元一次方程的之储蓄问题-课件

一元一次方程在储蓄问题中的求解方法
代数法
实际应用
通过代入、消元、替换等代数技巧求 解一元一次方程。
一元一次方程在储蓄问题中可以用来 计算利息、本金、投资回报等。
图像法
通过绘制一元一次方程的图像,直观 地找到解。
03
储蓄问题的实例分析
简单储蓄问题实例
总结词
简单储蓄问题实例主要涉及单一储蓄 账户,利率固定,存取时间明确。
一元一次方程的之储 蓄问题-ppt课件
目 录
• 储蓄问题简介 • 一元一次方程在储蓄问题中的应用 • 储蓄问题的实例分析 • 储蓄问题的解决方案和策略 • 储蓄问题的未来发展和研究方向
01
储蓄问题简介
储蓄问题的背景和意义
储蓄问题与日常生活密切相关 ,是财务管理和投资决策的重 要基础。
解决储蓄问题有助于个人和企 业合理规划资金,实现财富的 增值和保值。
储蓄问题的研究有助于推动金 融理论和数学模型的发展,为 经济决策提供科学依据。
储蓄问题的基本概念
储蓄账户
个人或企业在银行开设 的用于存储资金的账户
。
利息
银行根据储蓄账户中的 余额和时间,给予储户
的一定回报。
本金
储户存入银行的原始资 金。
利率
银行根据市场情况和政 策规定,设定的年化收
益率。
储蓄问题的应用场景
比较最优解和近似解
比较最优解和近似解的优劣,选择合适的解法应用于储蓄问题中。
05
储蓄问题的未来发展和研究方向
储蓄问题的研究现状和进展
01
储蓄问题的研究已经取得了一定 的成果,但仍然存在一些挑战和 问题需要进一步解决。
02
目前的研究主要集中在储蓄问题 的建模、算法设计和实证分析等 方面,未来需要进一步加强这些 方面的研究。
一元一次方程的之储蓄问题-课件

储蓄问题的实际生活应用
度假储蓄
你可以利用储蓄问题来规划度 假储蓄,例如:每月储蓄的金 额和储蓄期限。
教育储蓄
通ห้องสมุดไป่ตู้解决储蓄问题,你可以为 孩子的教育储备资金,确保其 接受更好的教育。
应急储蓄
储蓄问题可以帮助你规划应急 储备金,应对突发事件或紧急 开销。
3
Step 3
列出一元一次方程,并解方程求出未知数的值。
小学生容易出现的解题错误
1 忽略关键信息
孩子们可能忽略题目中的关键信息,导致解题错误。
2 解方程过程错误
在解方程的过程中,孩子们可能会犯算术错误,如计算错误或符号错误。
3 应用问题不熟悉
孩子们可能对储蓄问题的应用不熟悉,导致解题错误。
方程的加减消元法
一元一次方程的之储蓄问 题-PPT课件
这个PPT课件将帮助你了解一元一次方程在储蓄问题中的应用。通过实际的 例子和解决方案,我们将探讨储蓄的意义、如何列出方程并解决它们以及储 蓄问题的实际应用。
什么是一元一次方程
一元一次方程是一个未知数的一次方程,例如:ax + b = 0。它是数学中最基 础的方程类型之一,我们将一元一次方程与储蓄问题联系起来,帮助你理解 方程的概念。
方程的形式及代数意义
形式
一元一次方程的标准形式为ax + b = 0,其中a和b是已知的常数,x是未知数。
代数意义
方程中的未知数表示一个未知量,通过解方程可以确定这个未知量的值。
与储蓄问题的联系
一元一次方程可以用来解决关于储蓄的具体问题,例如:每月存款金额、储蓄期限等。
一元一次方程的应用储蓄教案

一元一次方程的应用——储蓄教案第一章:引言1.1 教学目标让学生了解储蓄的基本概念。
让学生掌握一元一次方程在储蓄问题中的应用。
1.2 教学内容储蓄的定义和分类。
存款利息的计算方法。
一元一次方程的概念和性质。
1.3 教学方法采用案例分析法,引导学生通过实际问题理解一元一次方程的应用。
采用小组讨论法,培养学生的合作能力和解决问题的能力。
第二章:储蓄的基本概念2.1 教学目标让学生了解储蓄的定义和分类。
让学生掌握存款利息的计算方法。
2.2 教学内容储蓄的定义和分类,包括活期储蓄和定期储蓄。
存款利息的计算方法,包括单利和复利。
2.3 教学方法采用讲解法,向学生讲解储蓄的定义和分类。
采用实例演示法,向学生展示存款利息的计算方法。
第三章:一元一次方程的应用3.1 教学目标让学生掌握一元一次方程的概念和性质。
让学生学会运用一元一次方程解决储蓄问题。
3.2 教学内容一元一次方程的概念和性质,包括解的概念和求解方法。
一元一次方程在储蓄问题中的应用,包括存款和取款问题。
3.3 教学方法采用讲解法,向学生讲解一元一次方程的概念和性质。
采用案例分析法,引导学生通过实际问题解决储蓄问题。
第四章:存款问题4.1 教学目标让学生学会运用一元一次方程解决存款问题。
让学生了解不同存款方式下的利息计算方法。
4.2 教学内容存款问题的解决方法,包括本金、利率和时间的计算。
不同存款方式下的利息计算方法,包括单利和复利。
4.3 教学方法采用案例分析法,引导学生通过实际问题解决存款问题。
采用小组讨论法,培养学生的合作能力和解决问题的能力。
第五章:取款问题5.1 教学目标让学生学会运用一元一次方程解决取款问题。
让学生了解取款时的利息计算和手续费问题。
5.2 教学内容取款问题的解决方法,包括本金、利息和手续费的计算。
取款时的利息计算和手续费问题,包括利息的计算方法和手续费的收取方式。
5.3 教学方法采用案例分析法,引导学生通过实际问题解决取款问题。
初一数学上册:一元一次方程解决应用题【储蓄、储蓄利息问题】

初一数学上册:一元一次方程解决应用题【储蓄、储蓄利息问题】(一)知识点(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息/本金×100%(二)例题解析1.为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:(1)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;一年2.25三年2.70六年2.88(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。
解:(1)设存入一个6年的本金是X元,依题意得方程X(1+6×2.88%)=20000,解得X=17053(2)设存入两个三年期开始的本金为Y元,Y(1+2.7%×3)(1+2.7%×3)=20000,X=17115(3)设存入一年期本金为Z元,Z(1+2.25%)6=20000,Z=17894所以存入一个6年期的本金最少。
2.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).解:设这种债券的年利率是x,根据题意有4500+4500×2×X×(1-20%)=4700,解得x=0.03答:这种债券的年利率为3%3.白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于()A.1B.1.8C.2D.10点拨:根据题意列方程,得(10-8)×90%=10(1-x%)-8,解得x=2,故选C。
一元一次方程储蓄问题

一元一次方程储蓄问题利用列一元一次方程解应用题,除了要掌握列一元一次方程的一般步骤外,还要能熟练掌握储蓄问题中的一些常用术语:①本金:顾客存入银行的钱;②利息:银行付给顾客的酬金;③本息和:本金与利息的和;④期数:存入的时间;⑤利率:每个期数内的利息与本金的比;⑥年利率:一年的利息与本金的比;⑦月利率:一个月的利息与本金的比;⑧从1999年11月1日起,国家对个人在银行的存款征得利息税:禾I」息税二利息X20%;⑨计算公式:利息二本金X利率X期数•等等.总之,我们在解决储蓄这样的问题时,要注意以下尖系:①对于教育储蓄这样的不纳利息稅的储蓄,利息二本金X利率X期数;本息和二本金 +利息二本金(1+利率X期数);②对于需纳20%的利息稅的储蓄,利息二本金X利率X期数X (1- 20%);本息和二本金+利息二本金+本金X利率X期数X(1- 20%)•只要很好地利用好这几个尖系,储蓄的问题就可很容易地变成刻画储蓄问题的一元一次方程・例1某段时间,银行一年定期存款的年利率为2.25%.向国家交纳利息税,一储户取一年到期的本金及利息时,交纳了利息税4・5元,问这储户一年前存入多少钱?分析从这个问题中可看出:所求的一年前存入多少钱是本金45元是利息税即利息X20%二本金X 利率X期数X 20%•其中期数二1年•年利$=2.25%所以,这个问题可利用本金、利息、利率、期数、利息稅之间的尖系列出一元一次求解•解设这储户一年前存入银行x元钱,根据题意,列出方程xX 2.25%X 1 X 20%二4.5解,得x二1000所以这个储户存入银行1000元钱.例2 一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息稅•例如,存入一年期100元,到期储户纳稅后所得的利息的计算公式为:税后利息二100X2.25%—100X225%X20%二100 X 2.25%(1- 20%),已知某储户有一笔一年期定期储蓄到期纳税后得到的利息450元,问该储户存入多少本金?分析由题意可知本金X年利率X(1- 20%)二450元,利用这个等量尖系,设出未知数就可列出一元一次方程・解设存入本金x元,根据题意,得2.25%(1—20%)x=450解这个方程,得x二25000所以该储户存入25000元本金.例3李明以两种形式储蓄了500元钱,一种储蓄年利率是5%,另一种是4%,一年后共得利息23元5角,两种储蓄各存了多少钱(不用纳利息税)?分析首先是待求的有两个未知数,我们需设出一个,另一个未知数借助于题中的条件用第一个未知数表示出来;其次要清楚利息二本金X利率X期数.解设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500 — x)元,根据题意,得x X 5%+(500—x)X 4%= 23.5解这个方程,得x二350500— x= 500- 350= 150所以年利率是5%和4%的储蓄分别存了350元和150元・例4为了使贫困学生能够顺利完成大学学业,国家设立了助学贷款・助学贷款分0.5~1年期、1〜3年期、3~5年期、5~8年期四种,贷款利率分别为5.85% 5.95%,6.03%,6.21%,贷款利息的50%由政府补贴,某大学生刚入学准备贷6年期的款,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元(可借助计算器)?分析贷款和储蓄是两个正好相反的过程,这位大学生6年后最多能够一次还清20000元,这就意味着他现在贷的款到6年后的本息和为20000元,要注意这里有国家的优惠政策:贷款利息的50%都由政府补贴,于是此题的等量尖系为贷款(相当于本金)+贷款X 6.21 %x 6X 50%二20000元.解设现衽至多可以贷x元,根据题意,得x( 1+6.21%X 6X 50%)二20000. 借助于计算器,算得x〜16859元.所以该大学生至多可贷16859元.例5王叔叔想用一笔钱买年利率为2.89%的3年期国库券,如果他想3年后的本息和为2万元,现在应买这种国库券多少?分析购买国库券是为了支援国家建设,因此也无需纳利息稅・2万元二20000元是3年后的本息和,因此等量尖系为:现在买的国库券X (1+2.89%X 3)二20000.解设应买这种国库券x元,则(1+2.89%X 3)x= 20000利用计算器,解得x二18404.34342 ;根据实际意义x〜18405.所以王叔叔现在应买这种国库券18405元.例6我国股市交易中每买卖一次需交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利多少元?分析衽股市市场每买卖一次都需交7.5%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本金+利息-利息税=实得本利和
解:设:小明存入银行的压岁钱有x元,由题意得
解得 x=500 答:小明存入银行的压岁钱有500元.
(X+0.0198x–0.00396x)
例3 王大伯3年前把手头一笔钱作为3年定期 存款存入银行,年利率为5%,到期后得到本息 共23000元,问当年王大伯存入银行多少钱?
解:设当年王大伯存入银行x元, 年利率为5%,存期3年,所以3年的利息为 3×5%x元。3年到期后的本息共为23000元。 由题意得 x+ 3×5%x=23000 解得: x=20000
基 础 练 习
1、小明把5000元按一年期的定期储蓄存入银行,年 利率为1.98%,到期后可得利息 5000× 1.98% 元。 2、小明把x元按一年期的定期储蓄存入银行,年利 率为1.98%,到期后可得利息 1.98%x 元。 3、小明把x元按一年期的定期储蓄存入银行,年利率 为1.98%,利息税的税率为20%,到期后应交利息 0.00396x 20% 元。 税 1.98%x× 1.01584X 最后小明实得本利和为 元。
答:当年王大伯存入银行20000元
问题1 一年期定期储蓄年利率为2.25%,所 得利息要交纳20%的利息税,已知小帅有一笔 一年期定期储蓄,到期纳税后得利息450元,问 小帅存入多少本金? 解 设小帅存入本金 元.
x
根据题意,得
x 2.25% 1 20% 450
解方程,得
x 25000
答:小帅存入本金25000元.
问题2 小帅存入本金1000元,作为两年期的 定期储蓄,到期后他共取出1039.2元,已知利息 税税率是20%,求该储蓄的年利率. 解 : 设两年期储蓄年利率为 x .
根据题意,得
1000 1000 x 2 1 20% 1039.2
解方程,得
x 0.0245
请问这张存单给你哪些信息? 你对哪条信息比较有兴趣?
本金:顾客存入银行的钱.
利息=本金×利率×期数.
从1999年11月1日起,国家对个人在银行的存款征得利息税20% : 税后利息=本金×利率×期数×(1-20% ) . 本息和:本金与税后利息的和. 即:本息和=本金+本金×利率×期数× (1-20% ) .
小明把压岁钱按定期一年存入银行.当时一年期定
期存款的年利率为1.98%,利息税的税率为20%.到期支
取时,扣除利息税后小明实得本利和为507.92元.问小明 存入银行的压岁钱有多少元?
思考:本题中本金多少?利息多少?利息
税多少?设哪个未知数?根据怎样的等量关系 列出方程?如何解方程?
这里有哪些等量关系?
答:两年期储蓄的年利率是2.45%.
国家规定,教育储蓄不征收利息税,为了准备小 帅6年后上大学的学费5000元,他的父母现在就参加 了教育储蓄,下面有两种储蓄方式: (1)直接存入一个6年期(年利率为2.88%);
(2)先存一个3年期的,3年后将本息和自动转存 一个3年期(年利率为2.70%); 你认为哪种储蓄方式开始存入的本金比较少?(结 果四舍五入取整数)
1.小明爸爸前年存了年利率为2.43%的二年期 定期储蓄,今年到期后,扣除利息税,利息 税的税率为20%,所得利息正好为小明买了 一只价值48.60元的计算器,问小明爸爸前年 存了多少元?
练一练
1、某年二年期定期储蓄的年利率为2.25 %,所得利息需交纳20%的利息税。已知某 储户到期后实得利息450元,问该储户存入 本金多少元? 2、老王把5000元按一年期的定期储蓄存 入银行。到期支取时,扣去利息税后实得本 利和为5080元。已知利息税税率为20%,问 当时一年期定期储蓄的年利率为多少?
解:设开始存入 x 元, 储蓄方式(1),根据题意,得:
x x 2.88% 6 5000 解方程,得: x 4263
储蓄方式(2),根据题意,得:
x 1 2.7% 3 x 1 2.7% 3 2.7% 3 500,第一种储蓄方式开始存入的本金少!