大学物理化学公式集(傅献彩_南京大学第五版)
5物理化学第五版(南京大学.傅献彩)相平衡

当系统达平衡时 d A d A d A 0
d A p d V p d V 0
dVdV
p p
当系统达平衡时,两相的压力相等。
同理,可以推广到多相平衡系统
(3) 相平衡条件
设多组分系统中只有 和 两相,并处于平
衡状态。在定温、定压下,
有 d n B 的物质B从 相转移到了 相
根据偏摩尔量加和公式
S 1 d T V 1 d p S 2 d T V 2 d p
dpS2S1 H dT V2V1 TV
单组分系统的两相平衡——Clapeyron方程
dp H dT T V
这就是Clapeyron方程,可应用于任何纯物质的 两相平衡系统
设有1 mol物质,则气-液、固-液和气-固平衡 的Clapeyron方程分别为
p /Pa
C
水f
A
冰
P
610.62 D O
q
B
水蒸气
273.16
T C T /K
临界点: T647.4K p2.2107Pa 临界温度时,气体与液体的密度相等,气-液
界面消失。
高于临界温度,不能用加压的方法使气体液化
OB 是气-固两相平衡线 即冰的升华曲线,理论
上可延长至0 K附近。
OC 是液-固两相平衡线 OC线不能任意延长
单相区,物系点与相点重合;两相区中,只有 物系点,它对应的两个相的组成由对应的相点表示
单组分系统的两相平衡——Clapeyron方程
在一定温度和压力下,任何纯物质达到两相平 衡时,在两相中Gibbs自由能相等
G1 G2
若温度改变dT,则压力改变dp,达新的平衡时
dG1 dG2
根据热力学基本公式,有
《物理化学》第五版-(傅献彩主编)复习题答案(全)

第一章气体1.两种不同的理想气体,如果它们的平均平动能相同,密度也相同,则它们的压力是否相同?为什么?答:由于两种气体均为理想气体,根据理想气体的状态方程式pV=nRT式中n是物质的量,p是压力,V是气体的体积,T是热力学温度,R是摩尔气体常数.又因为"=崙=聳式中川为气体的质量,M为气体分子的摩尔质量,p为气体的密岌pV^RT两边同除以V,则得p=常我们已知气体分子的平均动能是温度的函数,即Et=*hBT所以气体分子的平均平动能仅与温度有关.由题目中已知两种不同的理想气体,平均平动平动能相同,因此它们的温度相同,又因为它们的密度相同.则通过上式力=醫可知压力力仅与M有关.因此得出结论,两种不同的理想气体在它们具有相同的平均平动能,相同密度的条件下,它们的压力不同.压力与M成反比,M越大则p越小.2.在两个体积相等、密封、绝热的容器中,装有压力相等的某理想气体,试问这两个容器中温度是否相等?答:根据理想气体的状态方程式pV^nRT假设在第一个容器中某种理想气体符合向则在第二个容器中存在p2V2^mRT2. 又因为两容器的体积相等,装有的理想气体的压力也相等所以pif Vi=V2则得niRTi =厄夫丁2,两边同除以R则得n\ Ti —«2 T?若两容器中装有相同物质的量的该理想气体,则两个容器中温度相等;否则,两容器中温度不相等.3.Dalton分压定律能否用于实际气体?为什么?答:根据气体分子动理论所导出的基本方程式pV^mNu2式中P是N个分子与器壁碰撞后所产生的总效应,它具有统计平均的意义.平均压力是一个定值,是一个宏观可测的物理量.对于一定量的气体,当温度和体积一定时,它具有稳定的数值.因为通过气体分子动理论所导岀的Dalton分压定律学=直或%=心是摩尔分数)适用于实际气体,经得起实验的考验.4.在273 K时,有三种气体,H Z,O2和CQ,试判别哪种气体的根均方速率最大?哪种气体的最概然速率最小?答:根据:根均方程率"=弟呼或最概然速率Vm或可推知根均方速率、最概然速率与质量的平方根成反比因此,在相同温度273 K的条件下,M HJ= 2X10_3kg • mol-1 =32X10_3kg • mol-1 =44X10~3kg • mol-1H2的根均方速率最大;CO Z的最概然速率最小•5.最概然速率、根均方速度和数学平均速率,三者的大小关系如何?各有什么用处?答:在Maxwell速率分布曲线上有一最高点,该点表示具有这种速率的分子所占的分数最大,这个最高点所对应的速率称之为最概然速率(編或缶分子的数学平均速率(q)为所有分子速率的数学平均值根均方速率(Q是一个统计平均值,它与各个分子的速率有关,但又不等于任务单个分子的速率.三种速率之比在三者中,最概然速率最小,根均方速率最大,数学平均速率居中.6. 气体在重力场中分布的情况如何?用什么公式可以计算地球上某一高度的压力?这样的压力差能 否用来发电?答:在重力场中,气体分子受到两种互相相反的作用.无规则热运动将使气体分子均匀分布于它们所能达到的空间,而重力的作用则要使重的气体分子向下 聚集.由于这两种相反的作用,达到平衡时,气体分子在空间中并排均匀的分布,密度随高度的增加而减少•假定在。
物理化学傅献彩版知识归纳

物理化学傅献彩版知识归纳一、热力学第一定律1、内容:能量守恒定律在化学反应中的应用,内容为:封闭系统中发生的能量转化等于该系统内所有物体能量的总和。
2、公式:ΔU = Q + W,其中ΔU为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。
3、应用:判断反应是否自发进行;计算反应过程中的焓变等。
二、热力学第二定律1、内容:熵增加原理,即在一个封闭系统中,自发进行的反应总是向着熵增加的方向进行。
2、公式:ΔS = Σ(δQ/T),其中ΔS为系统熵的变化,δQ为系统热量的变化,T为热力学温度。
3、应用:判断反应是否自发进行;计算反应过程中的熵变等。
三、化学平衡1、定义:在一定条件下,可逆反应达到平衡状态时,反应物和生成物的浓度不再发生变化,各组分的浓度之比等于系数之比。
2、公式:K = [C]^n/[D]^m,其中K为平衡常数,C和D分别为反应物和生成物的浓度,n和m分别为反应物和生成物的系数。
3、应用:判断反应是否达到平衡状态;计算平衡常数;计算反应物的转化率等。
四、电化学基础1、原电池:将化学能转化为电能的装置。
主要由正极、负极、电解质和隔膜组成。
2、电解池:将电能转化为化学能的装置。
主要由电源、电解液、电极和导线组成。
3、电池的电动势:E = E(标准) - (RT/nF)ln(a(正)/a(负)),其中E为电池的电动势,E(标准)为标准状况下的电动势,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)和a(负)分别为正极和负极的活度。
4、电解的电压:V = (RT/nF)ln[(a(正)·a(阴))/(a(阴)·a(阳))],其中V为电解电压,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)、a(阴)和a(阳)分别为正极、阴极和阳极的活度。
《物理化学》第五版是南京大学傅献彩等编著的教材,该教材是化学、化工类专业本科生的基础课教材,也可作为从事化学、化工领域科研和工程技术人员的参考书。
傅献彩物理化学-第五版总结

0K
偏摩尔量、化学势及化学势判据:
Z nB Z B ,m T ,P ,nc
Z U , H ,V , A, G , S
B
G nB
G B ,m T ,P ,nc
B
B 0
有可能发生过程 可逆过程
3. 基本过程、基本公式
P A 115 kPa , PB 60 . 0 kPa
* *
3. 298.15K,反应
1 2
N
2
3 2
H
2
NH
3
的 rG m ( 298 . 15 K ) 16 . 46 kJ . mol
1
求①物质的量之比为
n N : n H : n NH
2 2
3
1:3:2
的混合气体在总压力为101325Pa下的压
m
rH
( 298 K ) C H
m
( H 2 , 298 K )
f H m ( H 2 O , l , 298 K )
反应的恒压热效应与恒容热效应的关系:
rH
m
( 298 K ) r U m ( 298 K )
B
( g ) RT
如反应
H 2 ( g ) 0 .5 O 2 ( g ) H 2 O (l )
B f H m ( B , 298 K )
1
241 52 ( 235 ) kJ . mol
58 kJ . mol
1
B C P , m ( B ) ( 30 4 . 2 19 . 1) J . K
物化公式总结(傅献彩第五版)

物理化学(第五版)公式总结傅献彩版专业:化学姓名:XXX学号:XXX物化公式总结第五章 相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。
1、相律: F = C - P + n , 其中: C=S-R-R’ (1) 强度因素T ,p 可变时n =2 (2) 对单组分系统:C =1, F =3-P(3) 对双组分系统:C =2,F =4-P ;应用于平面相图时恒温或恒压,F =3-P 。
Clapeyron 方程(任何纯物质的两相平衡):m vap m vap V T H dT dp ∆∆=(气-液),mfus mfus V T H dT dp ∆∆=(液-固)Clausius -Clapeyron 方程:2ln RT H dT p d mvap ∆=(Δvap H 与T 无关,气体参与,V 凝聚相体积忽略)2、相图(1)相图:相态与T ,p ,x 的关系图,通常将有关的相变点联结而成。
(2)实验方法:实验主要是测定系统的相变点。
常用如下四种方法得到。
对于气液平衡系统,常用方法蒸气压法和沸点法; 液固(凝聚)系统,通常用热分析法和溶解度法。
3、单组分系统的典型相图对于单组分系统C =1,F =C -P +2=3-P 。
当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。
pT lBC AOsgC 'pTlBCA Os gFGD单斜硫pT液体硫BCAO正交硫硫蒸气(a) 正常相图 (b) 水的相图 (c) 硫的相图图6-1 常见的单组分系统相图B Apx B (y B )B Apx B (y B)BApx B (y B )(a) 理想混合物 (b) 最大负偏差的混合物 (c) 最大正偏差的混合物图6-2 二组分系统恒温下的典型气液p -x 相图BAtx B (y B )BAtx B (y B)BAtx B (y B )(a) 理想或偏差不大的混合物 (b) 具有最高恒沸点(大负偏差) (c) 具有最低恒沸点(大正偏差)BAtxBBAtx B DCGFOgg + l g + ll 1 + l 2p = 常数lBAtx B (y B )(d) 有最高会溶点的部分互溶系统 (e)有最高和最低会溶点的部分互溶系统 (f) 沸点与会溶点分离x B (y B )BAtx B (y B )BAtBAtx B (y B )(g) 液相部分互溶的典型系统 (h)液相有转沸点的部分互溶系统 (i) 液相完全不互溶的系统图6-3 二组分系统恒压下的典型气液相图(2)液-固系统相图: 通常忽略压力的影响而只考虑t -x 图。
物理化学第5-6章课后答案傅献彩_第五版(南京大学化学化工学院)

第五章相平衡I- ⅛,□(s)分解的反应方程为⅛O(s)-Ξ⅛(s) + γ<λ<gλ当用⅛O(s)进行分無达平衡时•系统的组分数、自由度数和可能平衡共存的最大相数各为多少?解:S=31C=S-R=2Φ-3t f~ C÷2-Φ=l/=0时4最大为4-2.搭出如下各系统的组分数、相数和自曲度数各为多少?(1)NH4CKs)在抽空容器中,部分分解为NH^⅛),HCKg)达平衡:(2)NKCiCS)在含有一定量NHNE的容器中,部分分解为NH√g)τHCKgJ达平衡;(3)NH i HS(S)与任竜量的NH3(g}和H J SCg)^合,达分解平衡;(4)在900K 时Cx叮与CO(g),CO⅛Cg) ∕λ (G达平翫解:NHKnNHa Cg) + HCKg)门)呂=3* C=S-R-R, {R=l f R f = ∖) [NH s]=[HCl]-C=I TΦ=2∙t /=C-Φ+2 = lC2)S=3t C=S-R-R'=2 Φ=2,f=C~Φ~∖~2=2C3)S=3, C=S-R-R, =3-1-0=2. Φ=2f=OM2=2(同2)C<s)+yQCg)-COCg)①<4)9t>0K 时’CXXg)+⅛ (g)-α⅛ (g)②$=4, C^R-R f(◎中KxxI 的慑不定龙=0、C=S-R-R f = 4-2-0=2Φ=2 Γ ^C+i-φ^l.玉在制水煤气的过稈中,有五种物质,CCs)τCX)(g),CC⅛Cg}Λ⅛⅛)和H2OCgJ建立如下三牛平衡,试求该系统的独立组分数.CCs> + H- 0(g)^=⅛(g)÷CO(g)(1>C0⅛(g) + H? ⅛)-H3 0(fi) +CO(g) ¢2)Ce⅛(g)+CCs>-2Co(g> <3)解:建立3个平衡,(3)式可⅛¢1)+(2)得到RT S= 5C^S-R-R f=^二已知T‰CαS和H2O(I)可以生成如下三种水合物:Na a CQ ∙ H S O(S) ,N¾C0⅛・7H2OCs)和Na2CC⅛ * IOH2 O(s)试求门)在大气压下•与Na S CQ J水溶液和冰平衡共存的忒合盐的最大值;<2)在298K时,与水蒸气平衡共存的水合盐的最大值.解:(1〉S=5.R=3IJ R Z^O C=S-R~R f^=2每生咸一种含水盐+ R增加1.S增加1:匚、值不变.在∕⅛∙τ√* =C+1-Φ Γ =0时血绘大为3.已知有NamEQ水陪揪和H2O(≡)两相•则还能生成一种含水盐.(2)同样地τ∕* =C+I^Φei⅛大为3故还可最多有两种含水盐主成-5∙在不同温度下•测得Ag2O(S)分解时氧气的分压如下:T/K 401 417 443 463 486P(Co2)∕kPa10 20 51 101 203试问(1)分别于413K和423K时,在空气中加热银粉,是否有Ag2O(S)生成?(2)如何才能使Ag2O(S)加热到443K时而不分解?△ 1解:⑴ Ag2O(s)^=i2Ag(s)÷-∣-θ2(g)空气中O2的分压为0. 21 ×po=0. 21X101. 325kPa=21. 3Pa当空气中Q的分压大于或等于Ag2O的分解压力时,能生成Ag2O,否则不能,作PJ -T图,可以看出413K时P OZ的压力V空气中O Z的分压,能生成Ag"),而在423K时如=25kPa>O. 21Pa不能生成Ag2O.(图略)(2)从所给数据可知,在443K时,如解的平衡压力为5IkPa故当O2的分压大于51kPa时Ag2O不分钟.6・通常在大气压力为101. 3kPa时,水的沸点为373K,而在海拔很高的高原上,当大气压力降为66. 9kPa时,这时水的沸点为多少?已知水的标准摩尔气化焙为40. 67kJ・moΓ1,并设其与温度无关.解:根据ClaUniUS-CIaPeyrOn 方程式—H lf与温度无关时•%=鬻G卡66.9 _40. 67 × IO3z 1 1、Iln10L3(丽飞)T2=361. 56K.7.某种溜冰鞋下面冰刀与冰的接触面为:长7. 62cm,宽2. 45X 10~3cm.若某运动员的体重为60kg,试求<1)⅛动员施加于冰面的总压力.(2)在该压力下冰的熔点.已知冰的摩尔熔化熔为6∙ OIkJ ∙ moΓ1•冰的正常熔点为273K,冰和水的密度分别为920和IOOOkg •解:PA = P e÷P⅛P运=Gs = τng∕S= 2X7. ^×2.4^<10^3= 1.58×109PaP运》护 * P总=P远=1∙ 58 × IO R Pa 根据克拉贝龙方程•CIft . _ △汕Hm臥L T ∙ Δfu9V m皿Vm=I8X10-3(誌δ-禽)= -1.556×10^6m3∙ kg~1L58X10«Pa-l. OlXlO5Pa≡占诰労君r⅞, InT加-0∙ 04114≡lnτ^73κE =262. 2K.8.已知在1013kPa时.正已烷的正常沸点为342K,假事实上它符合TrOUton规则,即Δv.p‰ZT b¾ 88J ・KT・moΓ,,试求298K时正已烷的蒸气压.解:根据TrOUtOn规则Δvv H n∕Tb≈88J ・ K-】・moΓ1ΔvH>H m=88×342=116. 964kJ ・moΓ1根据克拉贝龙方程Δrtt>Hm与温度无关时•叱刖譬(*~⅜I 4 _ ]血964kJ ∙ rpoL( __________ 1 X I-I rl lnI 2VP QInA -8. 314J ∙ K^l∙ moΓ1( 342K 298K)+ lnl°1* 3kPp2=0∙ 41kPa.9.从实验测得乙烯的蒸气压与温度的关系为In 瓷=-号竖+1. 75In-^-1. 928×10~2-^ + 12. 26试求乙烯在正常沸点169. 5K时的摩尔蒸发熔变.解:根据克拉贝龙方程•当V e»Vi从乙烤蒸气压与温度关系式得•dln%p= 1921 K/ Γ5 +1. 75/ 丁一1. 928 X10一2在乙烤的正常沸点T=I69. 5K时d∣n%τ=0∙C胡=伶学πXPH In=8. 314×0. O58X169.5X=81.73J ・moΓ,.10・已知液态碑AS(I)的蒸气压与温度的关系为In 育=-等^+20. 30固态碑AS(S)的蒸气压与温度的关系为In 盘=-翌泮+ 29. 76试料的三相鮒温度和氐丸.解:在三相点上,固态与液态碑的F相等.(ln%a=-3^K+20. 30jln^p a=~15^9κ+29.76解得:T=IO92. 4K, p=3664. 38kPa.11.在298K时,纯水的饱和蒸气压为3167. 4Pa,若在外压为101. 3kPa的空气中,求水的饱和蒸气压为多少?空气在水中溶解的影响可忽略不计.解:外压与蒸气压的关系,空气不溶解于水,可看成是不活泼气体,lnP%∙=呂*(以_九)p;是无惰性气依时的蒸气压,久是当外压为P t时•有惰性气体存在时的蒸气压依题意得等温∖"P fξ∕p;=漲# (P ・_P ;)⅛67.4 = 8⅛⅜98(IOI ∙3×1°3~3167M)V W (I) = Ig£ *I mPrI ⅞1 m °1 ≈ 18cm 3 = 1. 8 × 10~5 m 3%=3169. 66Pa可以看出影响很小,因为V(g)»V(l).12. 在36OK 时,水(A)与异丁醇(B)部分互溶,异丁醇在水相中的摩尔分数为刘=0. 021.已知水相中 的异丁醇符合Henry 定律,Henry 系数HB=I ・58X 疔Pa.试计算在与之平衡的气相中,水与异丁醇的分 压•已知水的摩尔蒸发熔为40. 66kJ ・mol~1 ,且不随温度而变化.设气体为理想气体.解:水相中的异丁醇符合Henry 定律有 PB=It 小・ X B = I. 58× 106Pa×0. 021=≡33180Pa 水的分压 AA=Z —如= (IOl300—33180>Pa=68120Pa. 13. 根据所示碳的相图(图5-4),回答如下问题: ⑴曲线OA,OB,OC 分别代表什么意思? (2) 指出O 点的含义,(3) 碳在常温、常压下的稳定状态是什么?(4) 在2000K 时•增加压力,使石墨转变为金刚石是一个放热 反应,试从相图判断两者的摩尔体积哪个大?(5) 试从相图上估计,在2000K 时,将石墨转变为金刚石至少 夏加多大压力?解:(1)OA'代表,金刚石与石墨的两相平衡线,OB 表示液态 C 与石蜃的两相平衡线,OC 代表金刚石与液相C 的两相平衡线.(2) 0点代表液态C,金刚石和石墨的三相点是QA,OB,OC 的交点・此点2=3,/=0,三相点的温度 压力皆由系统确定.(3) 碳任常温,常压下稳定状态是石墨. (4) 根据克拉贝龙方程. d%τ= 邈;・石墨(s)" 金刚石(S)d%τ即为OA 线的斜率为正. 龛卷 >0 ∆H ra <0,7>0Λ∆⅛1<0即由石墨变成金刚石体积滅小,石墨的摩尔体积较大. (5) 估汁53XlO 8Pa 时可以将石最转变为金刚石.14. 在外压为101.3kPa 的空气中,将水蒸气通入固体碘I 2 (s)与水的混合物中,进行蒸汽蒸倔.在 371. 6K 时收集谐出蒸汽冷凝,分析他岀物的组成得知,生IOog 水中含碘81. 9g.试计算在371. 6K 时碘的 蒸气压.而R 2 ∕Z P H 2O =叫 /∏H 2O P I 2 + P H 2O = P解出汐S =5556. 87PaP H 2O =5556. 9Pa图5-4 解:1,-Z ∏H 2OTAQ 3K15. 水(A)与氯苯(B)互溶度极小,故对氯苯进行蒸汽蒸谓.在101. 3kPa 的空气中,系统的共沸点为 365K,这时氯苯的蒸气分压为29kPa.试求(1) 气相中氯苯的含凰加(2) 欲蒸出IoOO kg 纯氯苯,需消耗多少水蒸气?已知氯苯的摩尔质量为112. 5g ・moΓ1. 解:⑴在“°空气中•氯苯的蒸气压为29kPa,则水的蒸气压为,P H 2OOQ刃=伽/P 总=PC 6H S C ∣∕P e=JQ2~2=O- 286Hn Wy/MB = 29 卩:町/M 厂(IoI ・3-29)IOoOKg/112・ 5g ∙ mo 「= 39kPaVV A Z18g ∙ moΓl ^7Γ3id⅛ 叭=WH 2o =398. 9kg 希消耗水,398. 9kg.16. 在273K 和292K 时,固体苯的蒸气压分别为3. 27kPa 和12. 30kPa,液体苯在293K 时的蒸气压为 10. 02kPa.液体苯的摩尔蒸发熔为34.14 kJ ・moΓ1.试求(D303K 时液体苯的蒸气压; (2) 固体苯的摩尔升华焙; (3) 固体苯的摩尔熔化焙. 解:(1)克拉贝龙方程式: InA/»=爷(*-*)I、ZIA AOl n _ 34・ 17kJ ∙ / 1 1 、“化 / °∙ 02kl a一 & 314J ・ KT ・ moiτ( 293K _ 303K )∕>2≡15. 92kPa.⑵同理 Jn√2∕√ι=^=(γr~γr) I n 30 = A⅛L X ( —1 -------- 1— \ n3.27 & 314 k 273K 393K 7 ∆H m =44.05kJ ∙ moL∙ (3) Δ⅛ H nl =ΔΛ H rn -» H m= 44∙ 05-34. 17≡9. 88kJ ∙ moΓ1.17. 在298K 时,水(A)与丙醇(B)的二组分液相系统的蒸气压与组成的关系如下页表所示,总蒸气压 在X B =O. 4时出现极大值:(1) 请画岀p-χ~y 图•并指岀各点、线和面的含义和自由度;(2〉将x tt =0. 56的丙醇水溶液进行精協•精懈塔的顶部和底部分别得到什么产品? (3)若以298K 时的纯丙醇为标准态,求X B =O. 2的水溶液中,丙醇的相对活度和活度因子•(2)nc 6H 5αX ∏H 2O =吋5。
大学物理化学公式集(傅献彩_南京大学第五版) 下册

电解质溶液法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=∞∞+Λm,m λ=()F U U FU ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。
近似:+∞+≈,m ,m λλ +∞+≈,m ,m U U m m Λ≈Λ∞(浓度不太大的强电解质溶液)离子迁移数:t B =I I B=QQ B∑B t =∑+t +∑-t =1电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1cell l R K A ρρ== c e l l 1K R k R ρ== 科尔劳乌施经验式:Λm =()c 1m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞+--+=+ m U F λ∞∞+,+=奥斯特瓦儿德稀释定律:Φc K =()mm m 2m c c ΛΛΛΛ∞∞Φ-平均质量摩尔浓度:±m =()v1v v m m --++平均活度系数:±γ=()v1v v --+γγ+ 平均活度:±a =()v1v v a a --++=m mγ±±Φ 电解质B 的活度:a B =va ±=vm m ⎪⎭⎫ ⎝⎛Φ±±γ+v v v B +a a a a ±--== m +=v +m B m -=v -m B ()1v v v B m v v m +±+--=离子强度:I =∑i2i i z m 21德拜-休克尔公式:lg ±γ=-A|z +z --|I可逆电池的电动势及其应用(Δr G )T,p =-W f,max (Δr G m )T,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hHE =E φ-d Dc C hHg G a a a a ln zF RT标准电动势E φ与平衡常数K φ的关系:E φ=φlnK zFRT还原电极电势的计算公式:ϕ=氧化态还原态-a a lnzF RT φϕ 计算电池反应的有关热力学函数变化值:m r S ∆=p T E zF ⎪⎭⎫⎝⎛∂∂m r H ∆=-zEF +p T E zFT ⎪⎭⎫ ⎝⎛∂∂ Q R =T m r S ∆=pT E zFT ⎪⎭⎫⎝⎛∂∂zF ⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫ ⎝⎛21m r 1122T 1T 1H T E T E -=- zF ⎰⎪⎭⎫ ⎝⎛T2E2E 11T E d =dT T H 21T T 2mr ⎰∆ 电极书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极) 电动势测定的应用:(1) 求热力学函数变量Δr G m 、Δr G m Φ、m r H ∆、m r S ∆及电池的可逆热效应Q R 等。
(完整版)傅献彩物理化学主要公式及使用条件总结

第一章 气体的pVT 关系1. 理想气体状态方程式nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p 适用于任意气体。
V RT n p /B B = 适用于理想气体4. 阿马加分体积定律V RT n V /B B =* 此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
(2)Clausius -Clapeyron 方程式(两相平衡中一相为气相):dT dlnp=2m vap RTH ∆ (3)外压对蒸汽压的影响:()()**g e m gg p p RTl V p p ln-= p g 是在惰性气体存在总压为p e 时的饱和蒸汽压。
吉不斯-杜亥姆公式:SdT -Vdp +∑BB B d n μ=0dU =TdS -pdV +∑BB B d n μ dH =TdS +Vdp +∑BB B d n μdF =-SdT -pdV +∑BB B d n μ dG =-SdT +Vdp +∑BB B d n μ在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz 自由能的减少。
等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs 自由能的减少。
溶液-多组分体系体系热力学在溶液中的应用溶液组成的表示法:(1)物质的量分数:B B n x n =(2)质量摩尔浓度:B B Anm W =(3)物质的量浓度:BB n c V=(4)质量浓度B ω 拉乌尔定律 A A Ap p x *= 亨利定律:x m B c B p k x k m k c === 化学势的各种表示式和某些符号的物理意义: 气体:(1)纯理想气体的化学势()()T,p T RTln p p μμΦΦ=+ 标准态:任意温度,p=p φ=101325Pa 。
μφ(T )为标准态时的化学势(2)纯实际气体的化学势()()T,p T RTlnf p μμΦΦ=+ 标准态:任意温度,f=p φ且复合理想气体行为的假想态(即p =p φ,γ=1),μφ(T )为标准态时的化学势。
(3)混合理想气体中组分B 的化学势()()B B B T,p T,RTln x μμ*=p + 因为()()B B T,p T RTln p p μμ*ΦΦ=+ 所以()B T,p μ*不是标准态时的化学势,是纯B气体在指定T 、p 时的化学势。
溶液:(1) 理想溶液组分的化学势()()B B B T,p T,RTln x μμ*=p + ()()p B B B ,m p T ,p TV dp μμΦ*Φ⎰=+ 所以()B T,p μ*不是标准态时的化学势而是温度为T 、溶液上方总压为p 时,纯液体B 的化学势。
(2) 稀溶液中各组分的化学势溶剂:()()A A A T,p T,RTln x μμ*=p + ()A T,μ*p 不是标准态时的化学势而是温度为T 、溶液上方总压为p 时,纯溶剂A 的化学势。
溶质:()()B B B T,p T,RTln x μμ*=p + ()()()B B x T ,p T R T l n k p μμ*ΦΦ=+ ()()B B B T,p T,RTlnm m μμΦ=p + ()()()B B m T ,p TR T l n k m p μμΦΦΦ⋅ =+ ()()B B B T ,p T,R T l n c c μμ∆Φ=p + ()()()B B c T ,p TR T l n k c pμμ∆ΦΦΦ⋅=+ ()B T,μ*p ,()B T,μ p ,()B T,μ∆p 均不是标准态时的化学势,均是T ,p 的函数,它们分别为:当x B =1,m B =1molkg -1,c B =1moldm -3时且服从亨利定律的那个假想态的化学势。
(4)非理想溶液中各组分的化学势溶剂:()()A A A,x T,p T,RTlna μμ*=p + ()A T,μ*p 不是标准态的化学势,而是a A,x=1即x A =1,γA =1的纯组分A 的化学势。
溶质:()()B B B,x T,p T,RTlna μμ*=p + B ,x B ,xa x γ=()()B B B,m T,p T,RTlna μμ=p + B ,m mB a m mγΦ= ()()B B B ,C T ,p T,R T l n a μμ∆=p + B ,c c B a c c γΦ=()B T,μ*p ,()B T,μ p ,()B T,μ∆p 均不是标准态时的化学势,均是T ,p 的函数,它们分别为:当a B,x =1,a B,m =1,a B,c =1时且服从亨利定律的那个假想态的化学势。
(4)活度a 的求算公式:✓ 蒸汽压法:溶剂a A =γA x A =p A /p A * 溶质:a B =γB x B =p A /k c✓ 凝固点下降法:溶剂()fus m A f fH A 11ln a R T T *∆⎛⎫⎪⎝⎭=- ✓ Gibbs -Duhem 公式从溶质(剂)的活度求溶剂(质)的活度。
B A B A x d ln a d ln a x =-B A B Axd ln d ln x γγ=- (5)理想溶液与非理想溶液性质:理想溶液:mix V 0∆= mix H 0∆= mix B B BS R n lnx ∆∑=-m i x B BBG R T n l n x ∆∑= 非理想溶液:mix V 0∆≠ m i x H 0∆≠ remix B B B B BBG n RTlnx n RTln γ∆∑∑=+ 超额函数:E re id mix mix Z Z Z ∆∆=- 溶液热力学中的重要公式: (1) Gibbs -Duhem 公式(2) Duhem -Margule 公式:BBx dln p 0∑= 对二组分体系:A B A B T Tln p ln p ln x ln x ⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭= 稀溶液依数性:(1)凝固点降低:f f B T K m ∆= ()()2f f A fus m R T K M H A *∆ =(2)沸点升高: b b B T K m ∆= ()()2bb A vap m R TK M H A *∆ =(3)渗透压: B V n R T ∏=化平衡学化学反应亲和势:A =-r m B B BG γμ∆∑=-化学反应等温式:r m r m a G G RTlnQ Φ∆∆=+平衡常数的表达式:()B B g hG Hfpd e D Ep p K K p p p γΦΦΦ∑-== ()B B p pK K p γΦΦ∑-= ()BBf p K K K p γγΦΦ∑-=BBBBx p p p K K K pp γγΦΦ∑∑⎛⎫ ⎪⎝⎭--== ()BBBBc p p RT K K K RT p γγΦΦ∑⎛⎫∑ ⎪⎝⎭--== 温度,压力及惰性气体对化学平衡的影响:r m 2d ln K H dT RT ΦΦ∆= C r m2d ln K U dT RT ΦΦ∆= B B p C c RT K K p γΦΦΦΦ∑⎛⎫ ⎪⎝⎭=。