高数 微分方程

合集下载

高数第七章微分方程知识点

高数第七章微分方程知识点

高数第七章微分方程知识点
高数第七章微分方程的知识点主要包括:
1. 微分方程的基本概念:微分方程是包含导数或微分的方程,一般形式为
f(x, y', ..., y^{(n)}) = 0。

微分方程的阶数是指微分方程中所含导数或微分的最高阶数。

微分方程的解是指使微分方程成立的函数,不含任意常数的解称为特解,若微分方程的解中所含的相互独立的任意常数的个数与微分方程的阶数相等,称这个解为通解。

2. 高阶微分方程:高阶微分方程是阶数大于一的微分方程。

例如,二阶常系数齐次线性微分方程,形如 y'' + py' + q = 0 (p, q为常数)的方程。

3. 齐次方程:齐次方程是一种特殊的微分方程,可以通过变量代换化为另一种形式的一阶微分方程。

一阶齐次方程的形式为dydx=φ(yx),或者可化为这种形式的方程。

4. 一阶线性微分方程:一阶线性微分方程是包含一个未知函数及其导数的一次幂的方程,形式为 dydx+P(x)y=Q(x)。

如果Q(x)=0,则方程为齐次的,反之为非齐次的。

以上内容仅供参考,建议查阅高数教材或咨询专业人士以获取更准确的信息。

高数微分方程公式大全

高数微分方程公式大全

高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。

下面我将从不同角度介绍一些常见的高等数学微分方程公式。

1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。

齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。

线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。

2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。

非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。

欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。

3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。

常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。

常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。

4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。

对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。

三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。

常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。

大一高数微分方程总结

大一高数微分方程总结

大一高数微分方程总结在大学高数中,微分方程是一个重要的领域,其中涉及到许多不同类型的方程,如一阶线性微分方程、二阶线性微分方程、非齐次线性微分方程等等。

以下是一些常见的微分方程及其解法的总结:1. 一阶线性微分方程:y" = kx + b其通解为:y = C1e^(kx + b) + C2e^(-kx + b)其中 C1 和 C2 是常数。

2. 二阶线性微分方程:y"" = ky + f(x)其通解为:y = C1e^(kx) + C2e^(-kx) + ∫[C3e^(kx) + C4e^(-kx)]f(x)dx 其中 C1、C2、C3 和 C4 是常数,∫表示求和积分。

3. 非齐次线性微分方程:y" = ky + f(x)其中 f(x) 不是常数,而是关于 x 的函数。

其通解为:y = C1e^(kx) + C2e^(-kx) + ∫[C3e^(kx) + C4e^(-kx)]f(x)dx 其中 C1、C2、C3 和 C4 是常数,∫表示求和积分。

4. 齐次线性微分方程:y" = ky其通解为:y = Ce^(kx)其中 C 是常数。

5. 分离变量法:对于某些类型的微分方程,可以使用分离变量法来求解。

例如: y" = kyy = e^(kx) + C1sin(kx) + C2cos(kx)其中 C1 和 C2 是常数。

6. 凑微分法:凑微分法可以用来求解某些类型的微分方程,例如:y" = 3y^2 + 2xyy = Ce^(2x) + Dx(e^(2x) - 1)其中 C 和 D 是常数。

以上是一些常见的微分方程及其解法的总结。

在实际问题中,需要根据具体情况选择合适的解法。

高数-全微分方程

高数-全微分方程

)
ydx − xdy x = d arc tan 又 2 2 y x + y 1 , 取积分因子 µ ( x , y ) = 2 2 x + y
ydx − xdy dx + =0 2 2 x + y
则方程化为: 则方程化为
两边积分的方程的通解为: 两边积分的方程的通解为
H
y M A
O
• • •
T
θ
ρg s x
设A 到M 弧段长为 , 弧段长为s, 绳索的线密度为ρ, 则该段绳索的重量为ρgs 绳索的线密度为 , 则该段绳索的重量为 。 绳索在点A 处的张力沿水平方向向左,其大小设为H; 绳索在点 处的张力沿水平方向向左,其大小设为 ; 在点M 处的张力沿绳索斜向上, 并在M 点与绳索相切, 在点 处的张力沿绳索斜向上 并在 点与绳索相切 设其倾角为θ、大小为 设其倾角为 、大小为T 。
6
熟记一些简单常用的二元函数的全微分, 熟记一些简单常用的二元函数的全微分,如
dx ± dy = d ( x ± y ) ydx &# y y − ydx + xdy y = d x2 x ydx − xdy x = d ln xy y ydx − xdy x = d arc tan 2 2 y x + y ydx − xdy 1 x − y = d ln 2 2 2 x + y x − y
x5 + 3 2 2 1 x y − xy 3 + y 3 = C . 2 3
2
注: 当条件
∂P ∂Q ≠ 不能满足时, 可引入积分因子 ∂y ∂x 不能满足时, 可引入积分因子

高数微分方程总结

高数微分方程总结

5、二阶常系数齐次线性方程解法
形如 y(n) P1 y(n1) Pn1 y Pn y f ( x)
n阶常系数线性微分方程
y py qy 0 二阶常系数齐次线性方程 y py qy f ( x) 二阶常系数非齐次线性方程
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
解 (1) 由题设可得:
2 p( x)2x 0,
2 x3
p( x)( 1 ) x2
f ( x),
解此方程组,得
p( x) 1 , x
f
(x)
3 x3
.
(2) 原方程为 y 1 y 3 .
x
x3
显见 y1 1, y2 x2 是原方程对应的齐次方 程 的两个线性无关的特解 ,
又 y* 1 是原方程的一个特解, x
dt 2
即 x g x g , 99
x(0) 0, x(0) 0.
10m
o x
解此方程得
x(t)
1
(e
1 3
gt
1
e3
gt
) 1,
2
整个链条滑过钉子 ,即 x 8,
代入上式得
t 3 ln(9 80). (秒) g
最好的,不一定是最合适的;最合适的,才是真正最好的。 最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 快乐的人帮助别人,积极人的肯定自己。——王修强 对于每一个不利条件,都会存在与之相对应的有利条件。 人必须有自信,这是成功的秘密。 人一旦觉悟,就会放弃追寻身外之物,而开始追寻内心世界的真正财富。 这世间最可依赖的不是别人,而是你自己。不要指望他人,一定要坚强自立。 懂得感恩,感谢帮助你的每一个人。 不要因为小小的争执,远离了你至亲的好友,也不要因为小小的怨恨,忘记了别人的大恩。

《高数》第6章

《高数》第6章

把 x t t 0 1, x t t 0 3 代入 x t c1 cos t c2 sin t 和
x t c1 sin t c2 cos t 得 c1 1, c2 3 .故所求的解为: x t cos t 3sin t
得到通解
G ( y ) F ( x) c 1 其中G(y)与F(x)分别是 与f(x)的一个原函数, c是 g ( y) 任意常数,式(2)就是方程(1)的隐式通解. 第 三 步 , 在 第 一 步 中 , 用 g(y) 除 方 程 的 两 边 , 而 g(y)=0 是 不 能 做 除 数 的 , 所 以 对 g(y)=0 要 单 独 考 虑.由g(y)=0解出的y是常数,它显然满足原方程, 是原方程的特解,这种特解可能包含在所求出的通解 中,也可能不包含在所求出的通解中(此时要把它单 独列出). 例1 分方程 y 2 xy 的通解.
例3(推广普通话问题) 在某地区推广普通话,该地 区的需要推普的人数为N,设t时刻已掌握普通话的 人数为p(t),推普的速度与已推普的人数和还未推普 的人数之积成正比,比例常数为k>0于是得到 dp kp ( N p ) dt
此方程称为logisitic方程,在生物学,经济学等学科 领域有着广泛应用. 定义1 含有未知函数的导数(或微分)的方程叫微分方 程.未知函数为一元函数的微分方程称为常微分方 程.如 (1) y x dp kp ( N p ) (2) dt
y P ( x ) y Q ( x ) 的方程称为一阶线性微分方程,其中P(x)为Q(x)的已 知函数.当Q(x)不恒为0时,方程(5) 称为一阶线性非 齐次微分方程.当 Q( x) 0时,方程(5)变成 y P ( x ) y 0 该方程称为一阶线性齐次微分方程. 显然,一阶线性齐次微分方程是可分离变量的方 程.一阶线性非齐次微分方程的求解步骤如下: 第一步,先求解其对应的齐次方程: y P ( x ) y 0

高数上——微分方程的基本概念

高数上——微分方程的基本概念
dy 2x 其中 x 1时, y 2 dx
y 2xdx 即 y x2 C, 求得C 1,
所求曲线方程为 y x2 1 .
例2 列车在平直的线路上以20米/秒的速度行驶, 当制动时列车获得加速度 0.4 米/秒2,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
四、小结
本节基本概念: 微分方程; 微分方程的阶; 微分方程的解; 通解; 初始条件; 特解; 初值问题; 积分曲线.
(t 2 x)dt xdx 0,
实质: 联系自变量,未知函数以及未知函数的 导数(或微分)之间的关系式.
分类1: 常微分方程, 偏微分方程.
y xy, y 2 y 3 y e x , (t 2 x)dt xdx 0,
微分方程的阶: 微分方程中出现的未知函数的最 高阶导数的阶数称之.
对于未知函数y及其导数都是一次的
分类3: 线性与非线性微分方程.
y P( x) y Q( x), x( y)2 2 yy x 0; y xy, y 2 y 3 y e x ,
分类4: 单个微分方程与微分方程组.
dy dx

3
y2z, dzcoskt ,
d2 dt
x
2

k
2C1
cos
kt

k
2C2
sin
kt ,

d2 dt
x
2
和x的表达式代入原方程
,
k 2(C1 cos kt C2 sin kt) k 2(C1 cos kt C2 sin kt) 0.
故 x C1 cos kt C2 sin kt 是原方程的解.

高数微分方程

高数微分方程

高数微分方程高数微分方程是高等数学中的一个重要分支,它研究的是描述自然现象或数学模型的一类方程,同时也被广泛应用于物理、化学、生物、经济等领域。

本文将从定义、分类、解法及应用等多个方面深入探讨高数微分方程这一课题。

一、定义微分方程是一类用导数描述的方程,通常表示为y'=f(x,y)(一阶)或y''=f(x,y,y')(二阶)等形式。

其中x为自变量,y为因变量。

微分方程分为一阶和高阶两种,解析式解不容易求出,通常需要借助某些数学工具来解决。

二、分类微分方程分为常微分方程和偏微分方程两种。

常微分方程中,只含有一个自变量,其导数只包含一阶或高阶导数,方程中未出现偏导数。

常微分方程又分为:1)可以直接通过初值求解的常微分方程。

y' = f(x, y),y(x0) = y0这种常微分方程称作初值问题,因为y(x0) = y0称作初值。

2)可以直接通过边值求解的常微分方程。

y'' = f(x, y),y(a) = α, y(b) = β这种常微分方程称作边值问题,因为y(a) = α,y(b) = β称作边值。

偏微分方程中,含有两个或两个以上自变量的导数关系方程,方程中出现偏导数, 通常用来描述空间或时间上的变化过程。

三、解法常微分方程的求解方法分为以下三种:1)分离变量法对于方程y=f(x)+g(y), 其中f(x)仅是自变量x的函数,g(y)仅是因变量y的函数。

这种形式的方程,我们可以采用分离变量法来求解。

具体来说,就是将方程两边联合,然后分离出x和y的部分,将其进行积分,最后得到通解。

实际上,分离变量法就是一种利用变量分离来求解微分方程的方法。

2)齐次微分方程法对于方程y'=f(x,y), 其中f(x,y)是x,y的线性组合,若对于任意实数a,b,都有f(ax,by)=f(x,y)两边等式成立,则称其为齐次微分方程。

此时,我们可以引入新的变量z=y/x,将原方程化为z'=f(z)-x/z,这是一个齐次微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考与练习
判别下列方程类型:
(1) x dy y xy dy
dx
dx
(2) x dy y (ln y ln x) dx
(3) ( y x3) dx 2x dy 0
(4) 2 y dx ( y3 x) dy 0
(5) ( y ln x 2) y dx x dy
提示:
y 1dy dx
f (x) f (x) cos x
则有
f (0) 0
利用公式可求出
f (x) 1 (cos x sin x ex ) 2
2. 设有微分方程 y y f (x), 其中
2, 0 x 1 f (x) 0 , x 1
试求此方程满足初始条件
的连续解.
解: 1) 先解定解问题 利用通解公式, 得
dx
令 z y1n , 则 dz (1 n)yn dy
dz
(1
n)
P(
x)
z
dx (1
n)
Q(x)
dx
(线性方程)
dx
求出此方程通解后, 换回原变量即得伯努利方程的通解.
例6. 求方程
的通解.
解: 令 z y1, 则方程变形为
dz z a ln x dx x
其通解为
z
e
1 x
dx
(a
e
1 dx
x(
3
x
2e
1 dx
x dx
C
)
3x2 x( C)
2
由 y x1 1,代入得
C 1 2
y 3x3 1 x 22
例4.求(2x y2 )dy ydx 0的解.
解 : dx 2 x y dy y
通解
:
x
e
2dy
y(
ye
2 y
dy
dy
C
)
1 y2 (
y3dy C )
ln
x)
e
1 x
dx
dx
C
x C a ( ln x)2
将 z y1代入, 得原方2程通解:
内容小结
1. 一阶线性方程 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式
y e P(x)dx Q(x) e P(x)dx dx C
2. 伯努利方程
令 u y1n , 化为线性方程求解.
x2
x2
x2
x2
e 2 (2 xe 2 dx C ) e 2 (2e 2 C )
x2
Ce 2 2
x2
f (0) 0 C 2 f ( x) 2e 2 2
二、伯努利 ( Bernoulli )方程
伯努利方程的标准形式:
解法:
除方程两边 , 得
yn d y P(x)y1n Q(x)
1 y2
(1 4
y4
C
)
y2 4
Cy2
例5.设f ( x)连续,满足方程
x
tf (t)dt
x2
f ( x),求f ( x).
0
分析:等式两Biblioteka 对x求导解 : xf ( x) 2x f ( x)
即 f ( x) xf ( x) 2x (一阶线性方程)
f ( x) e xdx(2 xe xdxdx C )
e 2 xdx ( xe x2e 2 xdxdx C )
e x2 ( xdx C )
ex2 (1 x2 C) 2
例2. 求 dy 1 y ex 的解. dx x x
解 : 令P 1 x
ex Q
x
y
e
1 dx x
(
e
x
e
1 x
dx
dx
C
)
x
1 x
(
e
xdx
C)
1 (ex C) x
y
x
可分离 变量方程
dy y ln y
齐次方程
dx x x
dy 1 y x2 线性方程
dx 2x
2
dx 1 x y2
dy 2y
2
线性方程
dy 2 y sin x y2 dx x x
伯努利 方程
备用题
1. 求一连续可导函数
使其满足下列方程:
令 u xt
提示:
x
f (x) sin x 0 f (u)d u
故通解为
y C e P(x)dx
2. 解非齐次方程 dy P(x) y Q(x) dx
用常数变易法: 作变换 y(x) u(x) e P(x)d x , 则
ue P(x)d x P(x)u e P(x)d x P(x) u e P(x)d x Q(x)

两端积分得对应齐u 次 方Q程(x通) e解 P(x)ydx dCxeC P(x)dx
第四节
第十二章
一阶线性微分方程
一、一阶线性微分方程 二、伯努利方程
一、一阶线性微分方程
一阶线性微分方程标准形式: dy P(x) y Q(x) dx
若 Q(x) 0, 称为齐次方程 ;
若 Q(x) 0, 称为非齐次方程 .
1. 解齐次方程 dy P(x) y 0 dx
分离变量
两边积分得 ln y P(x)dx ln C
故原方程的通解
y
e
P(x)d
x
Q(
x)
e
P(
x)
d
x
dx
C

y Ce P(x)d x e P(x)d x Q(x) e P(x)d xdx
齐次方程通解
非齐次方程特解
例1.求y 2x y xex2的通解.
解 : 令P 2x Q xex2
通解 : y e P( x)dx ( Q( x)e P( x)dxdx C )
例3.求 xy y x 的解. ln x
解 : y 1 y 1
x ln x
y
e
1 dx
x(
1
e
1 x
dx
dx
C
)
ln x
eln x ( 1 eln xdx C ) ln x
x
(
x
1 ln
dx x
C
)
x(lnln x C)
ex
: 求y
1 x
y
3x2
,
y
|x1
1的特解.

:
y
y y 2, 0 x 1 y x0 0
y e dx 2e dx dx C1
ex ( 2 ex C1) 2 C1ex
利用 y x 0 0 得 C1 2
故有
y 2 2ex (0 x 1)
2) 再解定解问题
y y 0 , x 1 y x 1 y(1) 2 2e1
此齐次线性方程的通解为 y C2ex (x 1)
利用衔接条件得 C2 2(e 1)
因此有
y 2(e 1) ex (x 1)
3) 原问题的解为
y
2(1ex ), 2(e 1) ex
0 ,
x
x 1
1
相关文档
最新文档