纯形法的灵敏度分析与对偶

合集下载

第6章单纯形法的灵敏度分析与对偶

第6章单纯形法的灵敏度分析与对偶

这个约束条件的对偶价格就和这个剩余变量的
z
有关了。这将使得最优目
j
标值特别“恶化”而不是改进,故这时约束条件的对偶价格应取 z j 值的相反
数- z j。
对于含有等于号的约束条件,其约束条件的对偶价格就和该约束方
程的人工变量有关了。其约束条件的对偶价格就等于此约束方程的人工变
量的 z j值。
管理运筹学
XB
bb12
5
5
,
X
B
5
5
b3 15
15
对于b1:比值的分母取B-1的第一列,这里只有β11=1,而β21=β31=0,则
1
max
b1
11
5 1
5
Δb1无上界,即Δb1≥-5,因而b1在[35,+∞) 内变化时对偶价格不变。
管理运筹学
18
§1 单纯形表的灵敏度分析
对于b2:比值的分母取B-1的第二列,β12<0,β22>0,则
§1 单纯形表的灵敏度分析
一、目标函数中变量Ck系数灵敏度分析
1.在最终的单纯形表里,X k是非基变量 由于约束方程系数增广矩阵在迭代中只是其本身的行的初等变换与Ck没有任何关系, 所以当Ck变成Ck+ Ck时,在最终单纯形表中其系数的增广矩阵不变,又因为Xk是非 基变量,所以基变量的目标函数的系数不变,即CB不变,可知Zk也不变,只是Ck变
xBi di1
|
d 'i1
0
50
而Min
xBi di1
|
d 'i1
0
25,故有当 50
b1
25,即250
b
b
325第一个
约束条件的对偶价格不变。

运筹学-单纯形法灵敏度对偶

运筹学-单纯形法灵敏度对偶

若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0

韩伯棠管理运筹学(第三版)_第六章_单纯形法的灵敏度分析与对偶

韩伯棠管理运筹学(第三版)_第六章_单纯形法的灵敏度分析与对偶

迭代 基
次数 变 量
CB
x1 x2 。 s1 50 100 0
s2
s3
0 0b
x1 50 1 0 1
0 -1 50
S2 0 0 0 -2
1 1 50
2
x2 100 0 1 0
0 1 250
zj
50 100 50 0 50
σj=cj-zj
0 0 -50
0 -50 2750 0

从上表可以发现设备台时数的约束方程中的松弛变量S1
j ck akj 0, ck akj j ,
当a kj
0, ck
j
akj
,这里 j
akj
0;
当a kj
0, ck
j
akj
,这里 j
akj
0;
而当j k时, k ck ck zk ck ck zk ckaKK ,
因为xk是基变量,知 k 0, akk 1,故知 k 0.
x1 x2 s1 50 100 0 1 01 0 0 -2 0 10
s2
s3
00
b
0 -1 50
1 1 50
0 1 250
zj σj=cj-zj
50 100 50 0 0 -50
0 50 0 -50
Z= 27500
先对非基变量s1的目标函数的系数C3进行灵敏度 分析。这里σ3=-50,所以当C3 的增量ΔC3≤-(-50)即 ΔC3≤50时,最优解不变,也就是说S1的目标函数的系 数C′3=C3+△C3≤0+50=50时,最优解不变。
规划问题的对偶价格就不变。而要使所有的基变量仍然
是基变量只要当bj 变化成b′j =bj+△bj时,原来的基不变所 得到的基本解仍然是可行解,也就是所求得的基变量的

第六章单纯形法灵敏度分析与对偶

第六章单纯形法灵敏度分析与对偶
X4 19 2 4/3 0 X3 50 -1/2 -1/3 1 σj= cj - zj -4 -2/3 0
X4 X5 X6 19 0 0 1 2/3 -10/3 0 -1/6 4/3 0 -13/3 -10/3

2 1 Z = 88
∴ 最优生产计划是:生产1个单位产品C,生产2个单位产 品D,不生产A、B产品。可得最大总利润 88 个单位。
可能改变 C – CBB-1A ≤ 0 变
求出使该表达式仍然成立的 C 的变化范围
若 C 的变化超出该范围,则原最优解将改变
例1:某工厂用甲、乙两种原料生产A、B、C、 D
四种产品,要求确定总利润最大的最优生产 计划。该问题的线性规划模型如下:
Max Z = 9 x1 +8x2 + 50x3 + 19x4
则:在原最终单纯形表上,新变量对应的系数列为Pj '= B-1Pj,
检验数为 σj= Cj – CBB-1 Pj
若 σj= Cj – CBB-1 Pj ≤ 0,则原最优解不变;
若 σj= Cj – CBB-1 Pj ≥ 0,则继续迭代以求出新的最优解。
例3: 沿用例1 ►
如果该工厂考虑引进新产品E ,已知生产 E 产品1 个单位要消耗甲材料3个单位和乙材料1个单位。
要求:⑶产品E 的利润达到多少时才值得投产?
解: 设生产 E 产品X7个单位,单位产品的利润为C7,
则模型变为:
Max Z = 9 x1 +8x2 + 50x3 + 19x4 + 0x5 + 0x6+ C7x7 3x1+ 2 x2 + 10 x3 + 4 x4 + x5 + 3 x7 = 18(甲材料) 2x3+ 1/2x4 + x6 + x7 = 3 (乙材料)

运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析

运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析
从满足条件(2)的基出发去找原问题的最优解→ 对偶单纯形法思想: 从满足条件(2) 的基(一般称为正则基)B出发,经 过换基运算到另一个正则基,即一直保证条件 (2)成立, 直到找到一个满足条件(1)的正则基。
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
注:当模型的数据发生变化后,不必对线性规划问题
重新求解,而用灵敏度分析方法直接在原线性规划取
得的最优结果的基础上进行分析或求解 . 线性规划的参数分析(Parametric Analysis)是研究和分
析目标函数或约束中含有的参数μ在不同的波动范围内 最优解和最优值的变化情况.这种含有参数的线性规划
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
X XB σ
b
B-1A B-1b C-CBB-1A -CBB-1b 若上表为最优单纯形表,则下列两个式子同时成立:
(1) B1b 0 (可行性条件,又叫对偶最优性条件)
(2) C CB B 1 A 0 (最优性条件,又叫对偶可行性条件)
4.最优解、无可行解的判断。
作业:教材P81 1.12 (2)
下一节:灵敏度分析与参数分析
3.4 灵敏度与参数分析
Sensitivity and Parametric Analysis
3.4 灵敏度与参数分析 Sensitivity and Parametric Analysis
Chapter3 对偶理论 Dual Theory
3.3 对偶单纯形法 Dual Simplex Method
max z 7 x1 3x 2

《管理运筹学》第四版 第6章 单纯形法的灵敏度分析与对偶 课后习题解析

《管理运筹学》第四版 第6章 单纯形法的灵敏度分析与对偶 课后习题解析

《管理运筹学》第四版课后习题解析第6章单纯形法的灵敏度分析与对偶1.解: (1)c 1≤24 (2)c 2≥6 (3)c s 2≤82.解:(1)c 1≥−0.5 (2)−2≤c 3≤0 (3)c s 2≤0.53.解:(1)b 1≥250 (2)0≤b 2≤50 (3)0≤b 3≤1504.解: (1)b 1≥−4 (2)0≤b 2≤10 (3)b 3≥45. 解:最优基矩阵和其逆矩阵分别为:⎪⎪⎭⎫ ⎝⎛=1401B ,⎪⎪⎭⎫ ⎝⎛-=-14011B ; 最优解变为130321===x x x ,,最小值变为-78; 最优解没有变化; 最优解变为2140321===x x x ,,,最小值变为-96;6.解:(1)利润变动范围c 1≤3,故当c 1=2时最优解不变。

(2)根据材料的对偶价格为1判断,此做法有利。

(3)0≤b 2≤45。

(4)最优解不变,故不需要修改生产计划。

(5)此时生产计划不需要修改,因为新的产品计算的检验数为−3小于零,对原生产计划没有影响。

7. 解:(1)设321,,x x x 为三种食品的实际产量,则该问题的线性规划模型为,, 4005132 4505510 35010168 325.2max 321321321321321≥≤++≤++≤++++=x x x x x x x x x x x x x x x z 约束条件:解得三种食品产量分别为0,75.43321===x x x ,这时厂家获利最大为109.375万元。

(2)如表中所示,工序1对于的对偶价格为0.313万元,由题意每增加10工时可以多获利3.13万元,但是消耗成本为10万元,所以厂家这样做不合算。

(3)B 食品的加工工序改良之后,仍不投产B ,最大利润不变;若是考虑生产甲产品,则厂家最大获利变为169.7519万元,其中667.31110,167.144321====x x x x ,,;(4)若是考虑生产乙产品,则厂家最大获利变为163.1万元,其中382.70,114321====x x x x ,,;所以建议生产乙产品。

单纯形法的灵敏度分析与对偶

单纯形法的灵敏度分析与对偶

目标函数: max z=50x1+100x2
x1+ x2≤300 s.t. 2x1+x2≤400
x2≤250 x1 ≥0, x2≥0
max z=50x1+100x2
x1+ x2+s1=300
s.t.
2x1+x2+s2=400
x2+s3 =250
x1 ≥0, x2≥0, si≥0
一、线性规划问题解的基本概念
△C3 ≤-(-50)=50;
c’=c+△C<=0+50=50
最优解不变。
(2)再分析基变量的系数分析:
ck k
max J ak jjak j0 ckm J i ak n jjak j0
例如对基变量X1的系数C1进行灵敏度分析:
从表中获得了:
a11=1, a12=0, a13=1, a14=0, a15=-1

OBJ COEFFICIENT RANGES
❖ VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE

X1
50.000000 50.000000 50.000000

X2
100.000000 INFINITY 50.000000

RIGHTHAND SIDE RANGES
4. 对偶问题的约束条件系数矩阵A是原问题的AT
maxz c1x1 c2x2 cnxn
a11x1 a12x2 a1nxn b1
s.t.
a21x1 a22x2 a2nxn b2
am1x1 y2 bm ym

灵敏度分析与对偶理论

灵敏度分析与对偶理论
min f 300 y 1 400 y 2 250 y 3 1 y 1 2 y 2 50 y 1 y 2 y 3 100 y1 , y 2 , y 2 0
原问题:求目标函数 值最大值问题
对偶问题:求目标函数 值最小值问题
互为对偶问题
m ax z C X
m in f b Y
min f 3 x 1 9 x 2 4 x 3 x 1 2 x 2 3 x 3 180 2 x 1 3 x 2 x 3 60 5 x 1 3 x 2 240 x 1 , x 2 0 , x 3 无约束变量
max z 180 y 1 60 y 2 240 y 3
'
xB
'
0
x Bi ' x Bi ' m a x ' d ik 0 b k m in ' d ik 0 d ik d ik
例:
X5
X1
X2
X3
X4
CB 50 0
XB X1 X4
b 50 50
50 1 0
资源限制
问题2(对偶问题) 现在假设工厂准备把设 备A,B,C用于出租,确定 合理的租金?
300 400 250
设y1, y2, y3 分别为三种 设备的租金。
max z 50 x 1 100 x 2 x 1 x 2 300 2 x 1 x 2 400 x 2 250 x1 , x 2 0
j
cj CBB
1
Pj c j C B Pj
'
c j ( C B 1 ,..., C BK C K ,..., C Bm ) P j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) B-1b ≥ 0 (2) C – CBB-1A ≤ 0
2. 目标函数中变量系数 C 的灵敏度分析
C 改 变
不影响 B-1b ≥ 0
可能改变 C – CBB-1A ≤ 0 求出使该表达式仍然成立的 C 的变化范围
若 C 的变化超出该范围,则原最优解将改变
例1:某工厂用甲、乙两种原料生产A、B、C、 D
原来的基仍为最优基?
解:
原最终单纯形表为
XB
X4 X3
cB cj
19 50
X
X1 9
X2 8
X3 50
X4 19
X5 0
X6 0
b
2 1
θ
2 4/3 -1/2 -1/3
-4 -2/3
0 1
0
1 0
0
2/3 -10/3 -1/6 4/3
-13/3 -10/3
σj= cj - zj
Z = 88
设 b1 = 18 + λ,要使原来的最优解不变,因为检验数不 受影响,应有B-1b ≥ 0,即: B-1b = 2/3 -10/3
∴ 最优生产计划是:生产1个单位产品C,生产2个单位产 品D,不生产A、B产品。可得最大总利润 88 个单位。
要求: ⑴ 计算使得原最优解不变的产品 A 的
单位利润的变动范围。
解:
XB
X4 X3
设 C1 = 9 + λ
则有:
X2 X3 50 0 1 0 0 X4 19 1 0 X5 0 X6 0
cB cj
例3: 沿用例1 ►
如果该工厂考虑引进新产品E ,已知生产 E 产品1 个单位要消耗甲材料3个单位和乙材料1个单位。 要求:⑶产品E 的利润达到多少时才值得投产?
解: 设生产 E 产品X7个单位,单位产品的利润为C7,
则模型变为:
Max Z = 9 x1 +8x2 + 50x3 + 19x4 + 0x5 + 0x6+ C7x7 3x1+ 2 x2 + 10 x3 + 4 x4 + x5 + 3 x7 = 18(甲材料) 2x3+ 1/2x4 + x6 + x7 = 3 (乙材料) x1,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ≥0 其中: x1,x2 ,x3 ,x4 分别表示 A、B、 C、D 四种产品的产量。 ◄
四种产品,要求确定总利润最大的最优生产 计划。该问题的线性规划模型如下: Max Z = 9 x1 +8x2 + 50x3 + 19x4 3x1+ 2 x2 + 10 x3 + 4 x4 ≤ 18(甲材料) 2x3+ 1/2x4 ≤ 3 (乙材料) x1,x2 ,x3 ,x4 ≥0 ► ◄ 其中: x1,x2 ,x3 ,x4 分别表示 A、B、 C、D 四种产品的产量。 ◄ ►
这个线性规划问题的最终单纯形表如下:
XB
X4 X3
cB cj
19 50
X
X1 9
X2 8
X3 50 0 1 0
X4 19 1 0 0
X5 0
X6 0
b
2 1
θ
2 4/3 -1/2 -1/3 -4 -2/3
2/3 -10/3 -1/6 4/3 -13/3 -10/3
σj= cj - zj
Z = 88
2 +(2/3) λ 1 – λ/6
=(88+(13/3) λ)个单位 (其中:–3≤ λ≤ 6 )
可 见:当 λ=1,即 b1 增加1个单位时,最大利润增加(13/3) 个单位。由对偶价格的定义知,第一个约束条件的 对偶价格是13/3。

注 意: “13/3”与原最终单纯形表中某松弛变量的检验数的关系。
3. 约束方程右边常数 b 的灵敏度分析
b
改 变 不影响 C – CBB-1A ≤ 0 最优解 XB= B-1b 将改变 可能改变 B-1b ≥ 0
求出使该表达式仍然成立的 b 的变化范围
若 b 的变化未超出该范围,则原最优 基不变,对偶价格不变
例2: 沿用前例 ►
要求: ⑵ 甲原料的数量在什么范围内变动时,
原问题
对偶问题

结论或继续计算的步骤
可行解 可行解 非可行解 非可行解
可行解 非可行解 可行解 非可行解
问题的最优解或最优基不变 用单纯形法继续迭代求最优解 用对偶单纯形法继续迭代求最优解 引进人工变量,编制新的单纯形表重 新计算
一、单纯形表的灵敏度分析
1. 灵敏度分析的方法
当参数 C、b、A 中的某些数据发生变化时,通过 改变目前最优基对应的单纯形表中的局部数据,考察是 否影响以下两组数据的成立:
约束条件的对偶价格 与约束类型的关系
约束类型 对偶价格的取值 等于与这个约束条件对应的松弛变量的Zj值 等于与这个约束条件对应的剩余变量的Zj值 的相反数
≤ ≥
=
等于与这个约束条件对应的人工变量的Zj值
4. 增加一个新变量 的灵敏度分析
设:新变量对应的目标函数系数为 Cj,对应的约束条件的 系数列向量为 Pj 则:在原最终单纯形表上,新变量对应的系数列为Pj '= B-1Pj, 检验数为 σj= Cj – CBB-1 Pj 若 σj= Cj – CBB-1 Pj ≤ 0,则原最优解不变; 若 σj= Cj – CBB-1 Pj ≥ 0,则继续迭代以求出新的最优解。
19 50
X
X1
9+λ 8 2 4/3 -1/2 -1/3 λ–4 -2/3
b
2 1
θ
2/3 -10/3 -1/6 4/3 -13/3 -10/3
σj= cj - zj
Z = 88
如果要使最优解不变,根据最优判别准则,应有:
λ–4≤0
即:λ ≤ 4
∴ 当 λ ≤ 4 或 C1= 9 + λ ≤ 9 + 4 = 13 时,原最优解不变, 最大总利润仍为 88 个单位。
-1/6 4/3
18+λ 3
= 2 +(2/3) λ
1 – λ/6
≥0
求解
2 +(2/3) λ ≥ 0 1 – λ/6 ≥ 0
得:–3≤ λ≤6
结论:当15 ≤ b1(甲原料的数量)≤ 24时,原来的基仍为最优基。 但最优解和目标函数最优值都是 λ 的函数。 在本例中,工厂生产(2+(2/3) λ)个单位 D 产品, ( 1 – λ/6 )个单位 C 产品,可得最大利润为: CBB-1b =(19,50)
第六章 单纯形法的灵敏度分析与对偶
本章内容:
一、单纯形表的灵敏度分析 二、线性规划的对偶问题
三、对偶单纯形法
一、单纯形表的灵敏度分析
灵敏度分析步骤:
1.将参数的改变计算反映到最终单纯形表上; b B 1b
Pj B 1Pj

j
c j aij yi
j 1
m
2.检查原问题是否仍为可行解; 3.检查对偶问题是否仍为可行解; 4.按表上所列情况得出结论和决定继续计算的步骤
相关文档
最新文档