高性能环氧树脂基复合材料的研究现状及应用进展

合集下载

环氧树脂基复合材料的最新应用

环氧树脂基复合材料的最新应用
电机、电器的绝缘结构件
高性能环氧树脂复 飞机、卫星、航天器等结构件, 合材料
固体火箭壳体,以及高级体育 用品如球拍、球棒等
环氧树脂复合材料在航空工业中应用
/watch/8166777730538212959.html?page=videoMultiNeed
环氧树脂复合材料在玻璃钢中的应用
• 使用寿命长 • 尺寸稳定性好 • 模具强度高

环氧树脂基复合材料的最新应用
主要内容
复合材料
环氧树脂复 环氧树脂复
合材料
合材料的应

01
03
05
02
04
复合材料
基体材料
为复合材料中起到粘接增强体 成为整体并转递载荷到增强体 的主要组分之一
增强材料
结合在基体内、用以改进其力学 等综合性能的高强度材料,称为 增强材料,也称为增强体、增强 相、增强剂等。
复合材料的应用领域
复合材料时代
轻量化复合材料制造汽车零部件成为主流
环氧树脂
• 凡分子结构中含有环氧基团的高分子化合物统称为环氧树 脂。固化后的环氧树脂具有良好的物理、化学性能,它对 金属和非金属材料的表面具有优异的粘接强度,介电性能 良好,变定收缩率小,制品尺寸稳定性好,硬度高,柔韧 性较好,对碱及大部分溶剂稳定,因而广泛应用于国防、 国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料 等用 比模量高
耐腐蚀性 能、透性 磁电性能 及综合性 能好
优点
减振性能 好
疲劳强度 好、破损 安全性好
各向异性 及材料性 能的可设 计性
节点性能、 耐热性亦 较好
环氧树脂复合材料的特性
缺点
环氧树脂基复合材料的主要应用
主要 应用

环氧树脂复合材料工艺研究及其应用

环氧树脂复合材料工艺研究及其应用

环氧树脂复合材料工艺研究及其应用摘要:本文从环氧树脂的特性出发,分析了以环氧树为基体的复合材料的常用生产技术,典型产品,并介绍了国内外的有关情况。

一、前言相比传统材料,复合材料具有一系列不可替代的特性,自二次大占以来发展很快。

尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨,但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。

美、日、西欧水平较高。

北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省、日本为主的亚洲占30%。

中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨。

复合材料主要由增强材料与基体材料两大部分组成:增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料中的碳纤维素就是增强材料。

基体:构成复合材料连续相的单一材料如玻璃钢(GRP中的树脂(本文谈到的环氧树脂就是基体。

按基体材料不同,复合材料可分为三大类:树脂复合材料金属基复合材料无机非金属基复合材料,如陶瓷基复合材料。

本文讨论环氧树脂基复合材料。

1、为什么采用环氧树脂做基体?固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%;粘结力强;有B阶段,有利于生产工艺;可低压固化,挥发份甚低;固化后力学性能、耐化学性佳,电绝缘性能良好。

值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯权势脂为佳,然耐酸性差;固化后一般较脆,韧性较差。

2、环氧玻璃钢性能(按ASTM以FW(纤维缠绕法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。

表1 GF/EPR与钢的性能比较玻璃含量GF/EPR(玻纤含量80wt%AISI1008 冷轧钢相对密度 2.08 7.86拉伸强度551.6Mpa 331.0MPa拉伸模量27.58GPa 206.7GPa伸长率 1.6% 37.0%弯曲强度689.5MPa弯曲模量34.48GPa压缩强度310.3MPa 331.0MPa悬臂冲击强度2385J/m燃烧性(UL-94 V-O比热容535J/kg·k 233J/kg·k膨胀系数 4.0×10-6k-1 6.7×10-6k-1热变形温度204ºC(1.82MPa热导率 1.85W/m·k 33.7W/m·k介电强度11.8×106V/m吸水率0.5%(24h表2 几种常用材料与复合材料的比强度和比模量材料名称密度g/cm3拉伸强度×104MPa弹性模量×106MPa比强度×106cm比模量×109cm钢7.8 10.10 20.59 0.13 0.27 铝 2.8 4.61 7.35 0.17 0.26 钛 4.5 9.41 11.18 0.21 0.25 玻璃钢 2.0 10.40 3.92 0.53 0.21碳纤维/环氧树脂1.45 14.71 13.73 0.21碳纤维/环氧树脂1.6 1049 23.54 1.5芳纶纤维/环氧树脂1.4 13.73 7.85 0.57硼纤维/环氧树脂2.1 13.53 20.59 1.0硼纤维/铝 2.65 9.81 19.61 0.75图1 复合材料的比强度与比刚性二、纤维增强环氧树脂复合材料成型工艺简介1、手糊成型(hand lay up图2 手糊成型示意图(1概要依次在模具表面上施加脱模剂胶衣一层粘度为0.3-0.4PaS的中等活性液体热固性树脂(须待胶衣凝结后一层纤维增强材料(玻纤、芳纶、碳纤维......,纤维增强材料有表面毡、无捻粗纱布(方格布等几种。

环氧树脂基复合材料

环氧树脂基复合材料

环氧树脂基复合材料环氧树脂基复合材料是一种由环氧树脂作为基体,通过填充材料和增强材料的复合而成的材料。

环氧树脂基复合材料具有优异的性能,被广泛应用于航空航天、汽车、建筑、电子、军工等领域。

本文将介绍环氧树脂基复合材料的特点、制备工艺和应用领域。

首先,环氧树脂基复合材料具有优异的力学性能和耐腐蚀性能。

由于环氧树脂本身具有较高的强度和硬度,加入填充材料和增强材料后,复合材料的力学性能得到进一步提升。

同时,环氧树脂基复合材料具有优良的耐腐蚀性能,能够在恶劣环境下长期稳定使用。

其次,环氧树脂基复合材料的制备工艺多样,适应性强。

制备环氧树脂基复合材料的工艺包括预浸料成型、热固成型、注塑成型等多种方法,可以根据不同的需求选择合适的工艺。

同时,环氧树脂基复合材料的成型方式灵活多样,可以制备成板材、型材、管材等各种形状,满足不同领域的需求。

环氧树脂基复合材料在航空航天、汽车、建筑、电子、军工等领域有着广泛的应用。

在航空航天领域,环氧树脂基复合材料被用于制造飞机结构件、航天器外壳等部件,具有重量轻、强度高的优势。

在汽车领域,环氧树脂基复合材料被用于制造车身结构、发动机零部件等,能够减轻车辆重量,提高燃油经济性。

在建筑领域,环氧树脂基复合材料被用于制造装饰板材、管道等,具有防腐蚀、耐磨损的特点。

在电子领域,环氧树脂基复合材料被用于制造电路板、封装材料等,具有优异的绝缘性能。

在军工领域,环氧树脂基复合材料被用于制造军用装备、防护材料等,具有轻质高强的特点。

总的来说,环氧树脂基复合材料具有优异的性能和广泛的应用前景,是一种具有发展潜力的新型材料。

随着科技的不断进步和应用领域的不断拓展,相信环氧树脂基复合材料将会在更多领域得到应用,并取得更大的发展。

环氧树脂导热复合材料的研究及其应用

环氧树脂导热复合材料的研究及其应用

环氧树脂导热复合材料的研究及其应用摘要介绍了提高聚合物导热性能的两种基本途径,环氧树脂基导热复合材料的导热机理和导热模型, 概述了国内外近年来在环氧树脂复合材料导热方面的研究开发和应用情况。

关键词:环氧树脂;导热性;复合材料;研究;应用;从20世纪90年代开始,导热高分子复合材料的研究与开发成为功能性复合材料的研究热点之一,受到各国科学家的关注。

近年来, 随着工业生产和科学技术的发展,人们逐渐开发出以环氧树脂为基体的导热粘合剂、涂料和灌封材料等导热材料,来代替传统的金属材料, 解决了金属材料不耐腐蚀、导电等缺点。

但由于环氧树脂是热的不良导体,因此导热高分子材料从基础理论到产品开发,都是高分子材料研究的重要内容[1]。

一、提高聚合物导热性能的途径导热性能是聚合物重要的物理性能之一,对于热流平衡计算,研究聚合物结构与性能的关系,聚合物加工工艺条件的选择和确定及聚合物材料应用的选择和对比等有重要意义,所以受到广泛关注。

提高聚合物导热性能的途径有两种:第一,合成具有高导热系数的结构聚合物。

如具有良好导热性能的聚乙炔、聚苯胺、聚吡咯等,主要通过电子导热机制实现导热;或具有完整结晶性,通过声子实现导热的聚合物,如平行拉伸HDPE ,在室温下,拉伸倍数为25倍时,平行于分子链的导热系数可达13. 4W/ m·K[2]。

第二,高导热无机物对聚合物进行填充复合制备聚合物/ 无机物导热复合材料,如四川大学高分子研究所王琪等研究了石墨填充高密度聚乙烯基导热复合材料[3] 。

二、填充型高分子复合材料导热机理填充材料自身的导热性能及其在基体中的分布情况以及与基体的相互作用,决定了聚合物基材料的导热性能[4]。

填料用量较小时,填料虽均匀分散于树脂中,但彼此间未能形成相互接触和相互作用,导热性提高不大;填料用量提高到某一临界值时,填料间形成接触和相互作用,体系内形成了类似网状或链状的结构形态,即形成导热网链。

当导热网链的取向与热流方向一致时,材料导热性能提高很快;体系中在热流方向上未形成导热网链时,会造成热流方向上热阻很大,导致材料导热性能很差[5]。

高性能环氧树脂基复合材料的研究进展_余劢拓

高性能环氧树脂基复合材料的研究进展_余劢拓

提高EP韧性的方法有橡胶弹性体增韧、热塑性树脂增韧、超支化聚合物增韧、含柔性链段固化剂增韧、互穿网络聚合物增韧、纳米粒子增韧、热致液晶聚合物增韧等。

1.1 橡胶增韧用橡胶对EP改性,可以降低内应力,提高耐水、耐候性,其主要通过调节两者的溶解度参数,控制凝胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高环氧树脂的韧性[2]。

Shukla等[3]将不同浓度的液体端羧基聚丁二烯(CTPB)与环氧树脂进行共混,对环氧树脂进行增韧改性。

二者共混后的SEM图如图1所示,可以看到橡胶颗粒分散于树脂基体。

研究结果表明:不同浓度的CTPB均可显著改善环氧树脂体系的冲击强度;当w(CTPB)=15%时,改性环氧树脂体系的冲击强度达到最大值。

1.2 热塑性树脂增韧在航空航天等某些领域中,除了对环氧树脂韧性上有一定的要求以外,对于环氧树脂的耐温性和模量的要求也是极高的。

热塑性树脂具有韧性高、强度高和耐热性好的特点,以此作为增韧剂可以在增韧环氧树脂的同时保持树脂的模量与耐热性能不降低。

目前,采用较多的热塑性树脂主要有聚醚砜(PES)、聚碳酸酯(PC)、聚砜(PSF)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)、聚醚酮(PEK)和聚苯醚(PPE)等。

Mimura等[4]研究了EP/PES体系的相态对热力学和机械性能的影响,发现当加入10%的PES,体系呈均匀的相态,在图2中可以看出断裂强度比未改性的环氧树脂增加了60%,断裂伸长率比未改性树脂提高了1.7倍,改性后图1 (a):纯CTPB与EP共混;(b):w(CTPB)=5%;(c):w(CTPB)=15%;(d):w(CTPB)=25%[3] 的SEM图○140℃固化体系; ●180℃固化体系[4]图2 PES增韧EP的断裂强度树脂的的Tg为170℃,比未改性树脂提高了约20℃。

Francis[5]利用自制的侧甲基取代聚醚醚酮(PEEKM)对DGEBA/DDS体系进行增韧。

论文——树脂基复合材料的发展和应用现状

论文——树脂基复合材料的发展和应用现状

论文——树脂基复合材料的发展和应用现状摘要:树脂基复合材料是近年来受到越来越多关注的新型材料,它具
有良好的力学性能和耐热性能,可以广泛用于航天、航空、汽车、建筑、
索具等领域。

本文从历史发展角度出发,分析了树脂基复合材料的发展历
史及其现状,并从不同角度探讨了它们的特性、应用前景及发展趋势。

一、树脂基复合材料的发展历史
树脂基复合材料可追溯至20世纪50年代,当时,美国空军和NASA
科研机构首先提出了树脂基复合材料的应用设想,并在实际工程中开发出
了多种树脂基复合材料。

20世纪70年代,随着航空及航天技术的发展,
树脂基复合材料也迅速得到了应用。

此后,随着机械、电子等领域的发展,树脂基复合材料的应用越来越广泛,甚至可以说树脂基复合材料成为了目
前一种重要的新材料。

二、树脂基复合材料的特性
1、质轻:树脂基复合材料具有极低的密度,可以显著降低材料的重量,相比于钢材、铝材等金属材料,树脂基复合材料的重量更轻;
2、耐热性能好:树脂基复合材料具有优异的耐热性能,可以在极高
温度条件下正常使用,这使得树脂基复合材料可以用于航空航天等领域;
3、结构坚固:树脂基复合材料具有良好的力学性能。

环氧树脂的发展现状

环氧树脂的发展现状

环氧树脂的发展现状目前,环氧树脂在全球范围内广泛应用于电子、化工、建筑、航空航天和汽车等领域。

其发展现状主要表现在以下几个方面:第一,技术研发水平不断提高。

随着科学技术的不断进步,环氧树脂的研发技术也在不断提高。

通过改进原材料、优化生产工艺以及提高产品性能,使得环氧树脂的性能得到了大幅度的提升。

例如,高性能环氧树脂的研发,使得其耐热性、耐腐蚀性和耐冲击性等性能得到了显著提升,满足了高温、腐蚀等特殊工况下的需求。

第二,应用领域逐渐扩大。

传统上,环氧树脂主要应用于电子封装、建筑涂料和复合材料等领域。

然而,随着技术的进步和应用需求的增加,环氧树脂的应用领域正在不断扩大。

例如,环氧树脂在3D打印、光学材料、航空航天和汽车领域的应用也在不断增加。

第三,环保和可持续发展趋势明显。

在环保和可持续发展的背景下,对环氧树脂的环保特性的要求也越来越高。

因此,研发环保型环氧树脂和开发循环利用技术已经成为环氧树脂行业的一个重要方向。

例如,引入可再生原料和生物基原料来替代传统的石化原料,减少对环境的负面影响。

第四,国际竞争加剧。

随着全球化的进程,环氧树脂行业面临着来自国内外同行的激烈竞争。

在国际市场上,欧美等发达国家的环氧树脂企业具有较强的技术实力和市场份额,而中国等新兴国家的环氧树脂企业在技术研发和市场拓展方面也取得了一定的成果。

因此,环氧树脂企业需要提高自身技术水平和创新能力,以在竞争中立于不败之地。

综上所述,环氧树脂的发展现状在技术水平提高、应用领域扩大、环保可持续发展和国际竞争加剧等方面都取得了一定的进展。

随着科学技术的不断进步和市场需求的不断变化,相信环氧树脂在未来的发展中会有更加广阔的前景。

环氧树脂改性方法的研究现状及进展

环氧树脂改性方法的研究现状及进展

环氧树脂改性方法的研究现状及进展环氧树脂是一种重要的工程塑料,在航空航天、汽车、船舶、建筑和家具等领域有着广泛的应用。

由于环氧树脂本身的一些缺陷,如脆性、低耐热性和低耐老化性等,限制了其在一些高端领域的应用。

对环氧树脂进行改性成为了当前研究的热点之一。

本文将对环氧树脂改性方法的研究现状及进展进行探讨。

一、环氧树脂的主要缺陷环氧树脂是由环氧基团和酚醛树脂组成的热固性树脂,具有优良的绝缘性能、耐化学腐蚀性、机械性能和加工性能。

环氧树脂本身也存在一些缺陷:1、脆性:环氧树脂在低温下易变脆,影响了其使用范围;2、低耐热性:环氧树脂在高温下容易软化,影响了其在高温环境下的应用;3、低耐老化性:环氧树脂在紫外线和氧气等长期作用下容易老化,降低了其使用寿命。

二、环氧树脂改性方法为了克服环氧树脂的缺陷,人们提出了多种改性方法,主要包括物理改性、化学改性和形貌改性。

1、物理改性物理改性是通过在环氧树脂中加入填料或增韧剂来改善其性能。

填料可以增加环氧树脂的强度、硬度和耐磨性,常用的填料有硅胶、二氧化硅、碳纤维等。

增韧剂可以提高环氧树脂的韧性,常用的增韧剂有改性橡胶、改性聚酰亚胺等。

物理改性方法简单易行,成本低,但对环氧树脂的化学性能影响较小,且填料的增加也会降低环氧树脂的耐热性。

2、化学改性化学改性是通过改变环氧树脂的分子结构来改善其性能。

常用的化学改性方法包括接枝改性、交联改性和共聚改性。

接枝改性是将环氧树脂与改性剂进行共聚反应,改变其分子链结构,提高其韧性和耐热性;交联改性是通过引入交联剂形成三维网状结构,提高环氧树脂的热稳定性和耐化学性;共聚改性是将环氧树脂与其他树脂进行共聚反应,形成共混物,提高环氧树脂的综合性能。

化学改性方法可以显著提高环氧树脂的性能,但操作复杂,成本较高。

3、形貌改性形貌改性是通过改变环氧树脂的形貌结构来改善其性能。

常用的形貌改性方法包括微波辐射处理、等离子体处理和纳米复合改性。

微波辐射处理可以使环氧树脂分子结构发生变化,提高其耐热性和耐老化性;等离子体处理可以改善环氧树脂的界面性能,提高其与填料的相容性;纳米复合改性是将纳米填料加入环氧树脂中,形成纳米复合材料,提高环氧树脂的力学性能和耐老化性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高性能环氧树脂基复合材料的研究现状及应用进展2018年8月1日星期三
Linda
中山沃瑞森
环氧树脂是一类重要的热固性树脂,具有良好的粘结性、稳定性、耐热性、力学性能、且固化收缩率小,成本低廉。

环氧树脂作为胶粘剂、涂料和复合材料等的树脂基体,被广泛应用于轻工、建筑、航天航空、电子电气及其他先进复合材料的各个领域。

本文由苏州挪恩复合材料有限公司研究人员从环氧树脂的增韧、耐热、增强方面对高性能环氧树脂基复合材料的现状进行阐述。

在航空航天等领域,对环氧树脂韧性耐温性和模量有着较高要求。

热塑性树脂具有高韧性、高强度和耐热性好的特性,用热塑性树脂作为增韧剂可以在增韧环氧树脂的同时保持耐热性能和模量。

国外将EP/CF
复合材料应用在战斗机和直升机的机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到明显减重作用,大大提高了抗疲劳耐腐蚀等性能。

在广泛的应用领域中环氧树脂除了要具备基本的力学性能要求外,还需要有良好的耐高温性能,对于提高环氧树脂体系耐热性的方法主要有改变环氧树脂、固化剂的结构或导入新结构,采用耐热性较好的材料对环氧树脂改性。

碳纤维具有十分优异的力学性能,由碳纤维增强环氧树脂所制备的复合材料性能表现优异。

而由于碳纤维表面能低、与基体浸润性差,使其与基体材料的界面粘结力较弱,因此需要提前对其进行表面处理。

玻璃纤维/环氧树脂复合材料是目前研究较成熟应用最广的一种环氧复合材料,该材料具有轻质高强、耐疲劳和绝缘等性能,在军事中可被用作防弹头盔、防弹衣等。

(图示:碳纤维安全头盔)
环氧树脂是先进复合材料中应用最广泛的树脂体系,适用于多种成型工
艺,可配制成不同配方,可调节粘度范围大,适用于不同的生产工艺,国内外对高性能环氧树脂的研究近几年已取得很大进展,很多环氧树脂复合材料集多种优异性能于一体,极大推动了高端科技产业的发展。

沃瑞森拥有自已强大的黏结数据库,有匹配各种功能黏结的推荐。

配合世界知名品牌胶粘剂材料。

给您最适合及高性价比的技术支持!。

相关文档
最新文档