2012数学建模大作业题目

合集下载

2012年全国大学生数学建模竞赛A题国一

2012年全国大学生数学建模竞赛A题国一
葡萄酒的评价模型
摘要
在问题一中,首先根据 T 检验、方差显著性检验和 Wilcoxon 秩和检验对两组评酒 员给葡萄酒的评价结果的差异的显著性检验。在大多数评酒员评分可靠的假设下,分别 利用评分方差比较模型,说明第二组结果可靠。在此基础上引入了评酒员“失误度”概 念来衡量每位评酒员与所有评酒员总体评价的差异, 对各组失误度求和得到第二组结果 更可靠。为了进一步优化评酒员评分,利用根据失误度对评酒员排序,跨组选取失误度 最小的 10 位评酒员组成新的评分组,其平均值认为比第二组更可靠,作为整个文章中 评价葡萄酒质量的标准指标。 在问题二中,由于红、白葡萄的理化指标有较大差异,分开考虑红白两种葡萄酒: 对于红葡萄酒,对应问题一得出的葡萄酒质量指标,从三个角度,即外观分析(又分为 由大分子因子决定的澄清度和基于 LAB 色彩模型的色调考虑到指标间存在的竞争关系 采用非线性回归分析和逐步回归分析) 、香气分析(Fisher 线性判别分析)和口感分析 (主成分分析和因子分析) ,后进行异常点检验,逐一剔除异常点来求解酿酒葡萄的量 化指标。对于白葡萄酒的三个指标采用 Fisher 判别分析求解。最后将三个方面得分加权 平均得到酿酒葡萄量化的总分,进行聚类分析,根据聚类分析结果将红葡萄和白葡萄各 分为四级。 在问题三中,为研究酿酒葡萄与葡萄酒的理化指标之间的联系,将葡萄酒的理化指 标用酿酒葡萄的理化指标来表示。根据指标间的相关性,剔除部分相关性不强的指标, 选择部分相关性较好的酿酒葡萄的指标作为自变量, 对不同的葡萄酒指标分别进行多元 线性回归、逐步回归和回归检验。根据指标本身的特点及 AIC 信息统计量,剔除不显著 的自变量,而达到用尽量少的葡萄的理化指标来表示葡萄酒的理化指标的目的。在求解 过程中,建立典型相关分析模型来分析红葡萄酒色泽指标间的关系,利用主成分分析将 白葡萄的多个指标综合为少数几个主成分,再进行回归分析。模型求解结果显示,葡萄 酒的每个指标都能用部分葡萄的指标来线性表示,且具有较好的拟合效果。 在问题四中,为了分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,结合问 题一、二、三的结果以及理化指标和芳香物质的化学意义,综合评估各个广义上的理化 指标(附件二和附件三) ,针对红葡萄酒和白葡萄酒的区别分别在酿酒葡萄和葡萄酒的 理化指标中选取对葡萄酒质量影响较大的指标, 通过线性回归分析将理化指标和葡萄酒 质量进行拟合,从而得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。为进一步 论证结果,首先,对模型进行残差分析以及拟合情况分析;其次,用分组样本检验方法, 将白葡萄酒的 28 个样本数据分成两组,采用用一组进行拟合,另一组进行结果回带分 析的方式,进一步论证用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的可靠性。通过 论证分析得出结论:葡萄和葡萄酒的理化指标可以用来评价葡萄酒的质量,但也有其不 足之处,如当从葡萄酒食用性方便角度考虑,用评酒员评价方法就更直接。 关键词:葡萄酒质量 识别聚类 失误度 非线性回归 逐步回归 Fisher 判别分析 主成 分分析 因子分析 显著性检验 残差分析 异常点检测

数学建模2012a题

数学建模2012a题

数学建模2012a题(实用版)目录一、数学建模 2012a 题概述二、题目背景及要求三、解题思路与方法四、具体解题过程五、答案与解析正文一、数学建模 2012a 题概述数学建模 2012a 题是一道经典的数学建模题目,主要考察学生运用数学知识解决实际问题的能力。

题目内容丰富,涉及多个学科领域,包括数学、物理、化学、生物等。

此题对学生的综合素质和创新能力有很高的要求,需要学生具备较强的分析问题和解决问题的能力。

二、题目背景及要求数学建模 2012a 题的背景是一个实际的生态问题,具体涉及到某种动植物的数量增长与环境因素之间的关系。

题目要求参赛者建立一个数学模型,描述这种关系,并利用模型分析和预测动植物数量的变化趋势。

三、解题思路与方法针对这道题目,首先要明确题目所给出的背景和要求,然后根据题目的特点,选择合适的数学模型进行建立。

一般来说,数学建模的解题思路包括以下几个步骤:1.充分理解题目,明确题目要求。

2.提炼题目中的关键信息,建立数学模型。

3.求解数学模型,得到问题的解。

4.分析解的合理性,并根据实际情况进行调整。

四、具体解题过程以某种动植物的数量增长为例,假设其数量与时间、环境因素(如温度、湿度等)有关,可以建立如下的数学模型:设动植物数量为 N(t),t 表示时间,环境因素为 E,可以得到如下的数量增长方程:dN(t)/dt = f(N(t), E)其中,f(N(t), E) 表示动植物数量的增长率,根据实际情况和生物学知识可以进行具体设定。

根据题目要求,需要利用该模型分析和预测动植物数量的变化趋势。

可以利用数值方法(如有限差分法、龙格库塔法等)对上述微分方程进行求解,得到动植物数量随时间的变化情况。

同时,可以根据实际情况对模型进行调整和优化,以提高预测的准确性。

五、答案与解析数学建模 2012a 题的答案并不唯一,关键在于参赛者能否根据题目要求建立合适的数学模型,并利用模型得出合理的结论。

2012年数学建模大赛B组题

2012年数学建模大赛B组题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):贵州师范大学参赛队员 (打印并签名) :1. 宋家贵2. 樊佐举3. 李红指导教师或指导教师组负责人 (打印并签名):教练组日期: 2012 年 09 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的设计摘要随着太阳能在日常生活中的普及,研究太阳能光伏发电系统也因此具有重要的意义。

为了解决问题一,首先对太阳能电池进行筛选,这是一个最优化问题,通过对小屋最大经济效率的计算,进而得到太阳能电池板的最优组合。

为了使小屋的发电总量、经济效益最大,从而决定了各电池组件之间的数量及连接方式,选择逆变器的数量和容量。

对于问题二,为了实现太阳能光伏电池板最佳倾角的设计及优化[1],通过MATLAB 建立倾斜放置的电池组件接收太阳辐射模型,计算得到光伏板上的辐射能,进而建立倾斜面上总辐射的函数,该函数是关于斜面倾斜角的一个函数,通过求解该函数的极大值,从而得到光伏太阳能电池板的最佳倾角。

2012数学建模题目

2012数学建模题目

2012数学建模题目一、题目描述我们要研究如何让快递员在繁忙的城市中快速地交付每个快递。

城市中有许多道路和交通工具,也有许多商铺和住宅小区,城市规划和人口密度不同,道路交通情况也有所不同。

我们的目标是在保证交付时间的前提下,设计最优的配送路线,使得每个快递员在短时间内完成更多的配送任务。

二、问题分析1. 建立模型首先,我们需要建立一个数学模型来描述配送路线和任务量的关系。

我们可以用图论模型来表示城市的路网,用顶点表示城市中的交叉路口,用边表示两个交叉路口之间的道路。

我们还可以用图论中的最短路径算法来计算两个顶点之间的最短路径。

其次,我们需要考虑如何描述每个快递员的配送任务量。

我们可以设计一个算法来计算每个快递员要配送的快递数量和每个配送点的交通状况,然后根据这些信息来给每个快递员安排任务量。

最后,我们需要考虑如何设计一个最优化算法来解决问题。

我们可以利用模拟退火、遗传算法等优化算法,来寻找最优的配送路线和任务量分配方案。

2. 收集数据我们需要收集城市地形、道路交通情况、商铺和住宅小区分布等信息,并对这些信息进行处理和分析,以确定城市的规划和人口密度。

我们还需要收集快递业务的相关数据,包括快递递送和配送任务量、配送时限,以及快递员的工作时间和工作效率等信息。

3. 验证模型我们需要对模型进行验证和测试,以确定模型的可行性和准确性。

我们可以用现有的数据进行模拟实验,对模型的输出结果进行分析和比对。

四、模型求解1. 根据模型和数据,我们可以设计一个软件系统来实现快递配送路线和任务量分配的优化问题。

该系统需要包括以下模块:城市地图模块:用来绘制城市地图、路网和配送点。

路径规划模块:用来计算最短路径和最短时间的算法。

任务分配模块:用来计算每个快递员的配送任务量和时间分配方案。

优化算法模块:用来寻找最优的配送路线和任务量分配方案,包括模拟退火算法、遗传算法等。

2. 对该系统进行模拟实验,验证其可行性和准确性。

2012年数学建模C题

2012年数学建模C题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):脑卒中发病环境因素分析及干预摘要:脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,为了让脑卒中高危人群能够及时采取干预措施,需要进行疾病的风险评估。

本文先对数据进行统计处理,然后分析各个量之间的关系,再建立数学模型,利用数据拟合计算各个量之间的函数关系,最后求解得出结论。

在问题一中,通过对脑卒中的发病人群进行了统计和分析,分别研究了四个不同年份的患者,将他们按不同年龄、不同性别以及不同职业分别进行划分,然后通过建表和作图将他们进行统计和分析,从而判断脑卒中在不同人群中的发病情况:男性比女性的发病率偏高,且男女的平均比为1.35:1;青少年患病率较低,占29%;中老年人患病率偏高,占70%,而且患病率逐年增加,平均年龄为69.77339,发病年龄最高的为76岁;农民、退休人员、工人的患病率比其他职业的人群高,其中农民发病率最高,为67.46%。

2012年数学建模A题

2012年数学建模A题

葡萄酒质量评定模型摘要葡萄酒质量的评定长久以来都是采用聘请品酒员,通过品酒员对葡萄酒各项指标打分求和来确定葡萄酒的质量。

葡萄酒的价格因品酒员评分高低的不同有显著的差别。

然而在这样的评定方式中人的主观因素对酒质量的评定占主导地位,葡萄酒质量的评定结果存在较大的不确定性。

随着人们对葡萄酒消费的增加及高质量化的追求,建立合理、规范、客观的葡萄酒质量评定模型显得尤为重要。

根据题中给出的相关数据,通过解决以下问题建立葡萄酒质量评定模型。

对于问题一:首先,将题目附录1中的数据经Excel处理,得到每组评酒员对每种酒样品的总分。

然后,对每一种酒样品运用两配对样本的非参数检验(符号秩和检验)对数据进行显著性差异分析,运用MATLAB软件比较各酒样品的两组数据发现两组结果差异显著。

其次,通过Excel求出每一种酒的品酒员所打总分的方差,得到两组品酒员分别对两类葡萄酒的方差走势图(见图1.1、1.2),根据总体方差最小,方差波动较小,确定第二组品酒员的评分更可信。

最后,采用SPSS软件作进一步检验,结果相同即模型合理。

对于问题二,选取一级理化指标作为酿酒葡萄分级参考,对理化指标运用主成分分析法降维,通过MATLAB计算得到红葡萄的主成分有8个,白葡萄的主成分有11个。

综合评分得到的葡萄酒质量影响,红葡萄的影响因素有9个,白葡萄的影响因素有12个。

然后,利用折衷型模糊决策模型,考虑到由主成分分析方法得到的酿酒葡萄的的主成分值在反应酿酒葡萄质量好坏问题上会有一定的偏差,利用三角模糊的表达方式对主成分指标值进行表示,分别将红、白两类酿酒葡萄按隶属度大小排序,在运用聚类分析的方法,利用SPSS软件将葡萄划分为五个等级(见表格2.1)。

对于问题三,数据的庞杂是解决该问题的难点。

我们运用问题二中的主成分分析方法将理化指标转化为几个主成分,并运用MATLAB编程求出具体的主成分数值,然后建立线性回归模型,求解出酿酒葡萄与葡萄酒理化指标主成分之间的相关关系,从而反映出酿酒葡萄与葡萄酒理化指标之间的联系。

cumcm2012A

cumcm2012A

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?。

2012全国数学建模b题参考答案

2012全国数学建模b题参考答案

太阳能设计的小屋方案摘要太阳能电池板方阵安装角度怎样计算由于太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D题会议筹备
某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,并租用客车接送代表。

由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房数量有限,所以只能让与会代表分散到若干家宾馆住宿。

为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。

筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房的规格、间数、价格等数据见附表1。

根据这届会议代表回执整理出来的有关住房的信息见附表2。

从以往几届会议情况看,凡是发来回执的代表都会来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。

附表2,3都可以作为预订宾馆客房的参考。

需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。

会议期间有一天的上午会安排参加会议的代表外出参观,筹备组还要向汽车租赁公司租用客车接送代表。

现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。

要求请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租用客车和安排停车的合理方案。

具体解决如下问题:
(1)根据历年的统计数据,预测今年参加实际参加会议的人数
(2)确定客房预订的方案,即每个宾馆各预订各种类型的房间多少间?
(3)假设客车的停车点可以是附图中马路边的任意位置,根据房间安排,计算一下如果安排一个乘车点,应该安排在什么位置才能使代表达到乘车点的总距离最小,安排各种车辆各多少量?如果可以安排两个乘车点情况又如何?
说明:表头第一行中的数字1、2、3分别指每天每间120~160元、161~200元、201~300元三种不同价格的房间。

合住是指要求两人合住一间。

独住是指可安排单人间,如果单人间已住满,双人间有剩余的情况下可以单独住一个双人间。

附图(其中500等数字是两宾馆间距,单位为米)。

相关文档
最新文档