遗传算法简介及sga流程
使用遗传算法进行优化问题求解

使用遗传算法进行优化问题求解遗传算法(Genetic Algorithm, GA)是一种基于自然界生物进化思想的优化算法,广泛应用于求解复杂的优化问题。
本文将介绍遗传算法的基本原理、流程以及在实际问题中的应用,并深入探讨其优势和局限性。
一、遗传算法基本原理遗传算法模拟了生物演化的过程,核心思想是通过模拟生物的遗传、变异和选择过程来搜索问题的最优解。
遗传算法的基本原理如下:1.个体编码:将问题的解表示为某种形式的编码,常用的编码方式包括二进制编码、实数编码和排列编码等。
2.初始种群的生成:随机生成一组个体作为初始种群。
3.适应度评估:根据问题的要求,设计适应度函数来评估每个个体的优劣。
4.选择操作:根据适应度函数的结果,选择适应度较高的个体作为下一代的父代。
5.交叉操作:通过交叉操作产生新个体,实现信息的交流和融合。
6.变异操作:对新个体进行随机的变异操作,增加搜索空间的多样性。
7.新种群的生成:依据选择、交叉和变异操作,生成新的种群作为下一代。
8.终止条件的判断:判断是否满足终止条件,如果满足则算法终止,否则返回第4步。
二、遗传算法的流程遗传算法的流程如下:1.初始化:确定种群大小、编码方式、变异概率、交叉概率等参数。
2.生成初始种群:随机生成一组个体作为初始种群。
3.适应度评估:计算每个个体的适应度。
4.选择操作:根据适应度函数的结果,选择适应度较高的个体作为下一代的父代。
5.交叉操作:从父代中选择两个个体进行交叉以产生新个体。
6.变异操作:对新个体进行变异操作,增加种群中的多样性。
7.生成新种群:依据选择、交叉和变异操作,生成新的种群作为下一代。
8.终止条件的判断:判断是否满足终止条件,如果满足则算法终止,否则返回第4步。
三、遗传算法的应用遗传算法在许多领域中得到了广泛的应用,包括组合优化问题、机器学习、数据挖掘、图像处理等。
以下是几个具体的应用案例:1.旅行商问题(Traveling Salesman Problem, TSP):TSP是一个经典的组合优化问题,在遗传算法中,可以将城市序列作为个体的编码,通过交叉和变异操作不断优化路径,求解最短路径问题。
遗传算法的基本原理与流程

遗传算法的基本原理与流程遗传算法是一种模拟生物进化过程的优化算法,它通过模拟自然选择、交叉和变异等过程,逐步搜索最优解。
本文将介绍遗传算法的基本原理与流程。
一、基本原理遗传算法的基本原理是基于达尔文的进化论和孟德尔的遗传学理论。
它将问题的解表示为一个个体的染色体,染色体由基因组成。
每个基因代表问题的一个变量或决策。
通过改变基因的组合,可以得到不同的解。
而适应度函数则用来评估每个个体的适应程度,即解的优劣程度。
遗传算法的核心思想是通过模拟自然选择、交叉和变异等过程,逐步优化解的质量。
在自然选择中,适应度高的个体有更大的概率被选择为父代,而适应度低的个体则有较小的概率被选择。
交叉操作模拟了生物的基因交换过程,将两个父代个体的染色体片段进行交叉,生成新的个体。
变异操作则模拟了基因突变的过程,通过改变染色体中的基因值,引入新的解。
二、流程遗传算法的流程一般包括初始化、选择、交叉、变异和更新等步骤。
1. 初始化:首先,需要确定问题的解空间和染色体编码方式。
然后,随机生成一组初始个体作为种群。
2. 选择:根据适应度函数,选择适应度较高的个体作为父代。
常见的选择方法有轮盘赌选择、锦标赛选择等。
3. 交叉:从父代中选取两个个体进行交叉操作,生成新的个体。
交叉操作可以是单点交叉、多点交叉或均匀交叉等。
4. 变异:对新生成的个体进行变异操作,引入新的解。
变异操作可以是位变异、插入变异或交换变异等。
5. 更新:根据适应度函数,选择新生成的个体和原始个体中适应度较高的个体,更新种群。
以上步骤可以迭代执行,直到满足终止条件,例如达到最大迭代次数或找到满意的解。
三、应用与优势遗传算法广泛应用于组合优化、函数优化、机器学习等领域。
它具有以下优势:1. 全局搜索能力:遗传算法能够在解空间中进行全局搜索,避免陷入局部最优解。
2. 并行性:由于遗传算法的并行性,可以同时处理多个个体,加快搜索速度。
3. 适应性:遗传算法能够自适应地调整搜索策略,根据不同问题的特点进行优化。
遗传算法流程图

遗传算法流程图遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法,通过模拟生物遗传的过程来寻找最优解。
下面是遗传算法的流程图:1. 初始化群体:设定问题的适应度函数,定义染色体编码方式,并随机生成初始种群。
2. 评估适应度:根据设定的适应度函数,对每个个体进行评估,并计算适应度值。
3. 选择操作:根据适应度值,使用选择算子选择一定数量的个体作为父代。
4. 交叉操作:对选择出的父代,使用交叉算子进行交叉操作,生成新的子代。
5. 变异操作:对交叉产生的子代,使用变异算子进行变异操作,生成新的子代。
6. 更新种群:根据选择、交叉和变异的结果,更新种群中的个体。
7. 判断终止条件:判断是否满足终止条件,如达到指定的迭代次数或找到最优解。
8. 返回最优解:如果满足终止条件,则返回找到的最优解;否则,返回第3步。
遗传算法的核心思想是通过模拟自然选择、遗传和变异的过程,从大量的可能解空间中寻找到最优解。
下面详细介绍遗传算法的流程:首先,需要定义问题的适应度函数,即问题的目标函数。
适应度函数用于评估染色体的好坏程度,从而进行选择操作。
适应度函数越好的个体,被选中的概率越高。
然后,通过染色体编码方式,将问题的解表示为染色体。
染色体可以是二进制编码、整数编码或实数编码,具体根据问题的特点进行选择。
接下来,初始化种群,即随机生成一定数量的初始个体。
种群中的每个个体都表示一个可能解。
然后,对每个个体计算适应度值,并根据适应度值进行选择操作。
选择操作根据设定的选择算子,选择一定数量的个体作为父代。
通常使用轮盘赌选择或锦标赛选择来进行选择操作。
对选择出的父代,进行交叉操作。
交叉操作通过交换染色体的部分基因片段,生成新的子代。
交叉操作有单点交叉、多点交叉、均匀交叉等形式。
接着,对交叉产生的子代进行变异操作。
变异操作通过改变个体染色体中的一些基因值,引入一定的随机性。
再次,根据选择、交叉和变异的结果,更新种群中的个体。
遗传算法简介及sga流程【精品毕业设计】(完整版)

遗传算法:遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。
它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。
遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。
John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。
标准遗传算法流程如下:1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。
2)计算种群中每个个体的适应度,个体的适应度反映了其优劣程度。
3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。
4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。
5)按照一定的变异概率,对产生的子代个体进行变异操作。
6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。
7)再次计算种群的适应度,找出当前的最优个体。
8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。
早熟收敛:一般称之为“早熟”,是遗传算法中的一种现象。
指在遗传算法早期,在种群中出现了超级个体,该个体的适应值大大超过当前种群的平均个体适应值。
从而使得该个体很快在种群中占有绝对的比例,种群的多样性迅速降低,群体进化能力基本丧失,从而使得算法较早收敛于局部最优解的现象。
早熟收敛的本质特征是指群体中的各个个体非常相似,群体的多样性急剧减少,当前群体缺乏有效等位基因(最优解位串上的等位基因),在遗传算子作用下不能生成高阶竞争模式。
遗传算法(GeneticAlgorithm)..

被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
➢选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。
等到达一定程度时,值0会从整个群体中那个位上消失,然而全局最 优解可能在染色体中那个位上为0。如果搜索范围缩小到实际包含全局 最优解的那部分搜索空间,在那个位上的值0就可能正好是到达全局最 优解所需要的。
2023/10/31
适应函数(Fitness Function)
➢ GA在搜索中不依靠外部信息,仅以适应函数为依据,利 用群体中每个染色体(个体)的适应值来进行搜索。以染 色体适应值的大小来确定该染色体被遗传到下一代群体 中的概率。染色体适应值越大,该染色体被遗传到下一 代的概率也越大;反之,染色体的适应值越小,该染色 体被遗传到下一代的概率也越小。因此适应函数的选取 至关重要,直接影响到GA的收敛速度以及能否找到最优 解。
2023/10/31
如何设计遗传算法
➢如何进行编码? ➢如何产生初始种群? ➢如何定义适应函数? ➢如何进行遗传操作(复制、交叉、变异)? ➢如何产生下一代种群? ➢如何定义停止准则?
2023/10/31
编码(Coding)
表现型空间
基因型空间 = {0,1}L
编码(Coding)
10010001
父代
111111111111
000000000000
交叉点位置
子代
2023/10/31
111100000000 000011111111
(完整版)遗传算法简介及代码详解

遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
遗传学与遗传算法中的基础术语比较染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传算法的准备工作:1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1) 编码,创建初始群体2) 群体中个体适应度计算3) 评估适应度4) 根据适应度选择个体5) 被选择个体进行交叉繁殖6) 在繁殖的过程中引入变异机制7) 繁殖出新的群体,回到第二步实例一:(建议先看实例二)求 []30,0∈x 范围内的()210-=x y 的最小值1) 编码算法选择为"将x 转化为2进制的串",串的长度为5位(串的长度根据解的精度设 定,串长度越长解得精度越高)。
遗传算法的使用方法和技巧指南

遗传算法的使用方法和技巧指南遗传算法是一种启发式优化算法,它模拟了自然界中的生物进化过程来解决问题。
它具有强大的搜索能力和全局优化能力,在各个领域都有广泛的应用。
本文将介绍遗传算法的基本原理、使用方法以及一些重要的技巧指南。
一、遗传算法的基本原理遗传算法基于生物进化的思想,通过模拟人工选择、交叉和变异等过程来生成和更新解的种群,并利用适应度函数对种群进行评估和选择,以期望通过迭代的方式找到最优解。
遗传算法的基本流程如下:1. 初始化种群:随机生成一组个体作为初始种群。
2. 适应度评估:根据问题的特定要求,计算每个个体的适应度值。
3. 选择操作:利用适应度值选择父代个体进行繁殖,常用的选择算法有轮盘赌选择和竞争选择等。
4. 交叉操作:通过交叉运算生成新的后代个体,交叉操作能够保留父代的有益特征。
5. 变异操作:对交叉后的个体进行基因的随机变异,增加种群的多样性。
6. 替换操作:根据一定的规则,用新生成的后代个体替换原始种群中的一部分个体。
7. 终止条件判断:根据迭代次数或者达到某个预定义的解的条件,判断是否终止迭代。
8. 返回最优解。
二、遗传算法的使用方法为了正确有效地使用遗传算法,我们需要遵循以下几个步骤:1. 理解问题:首先,要准确理解问题的特性和要求,包括确定问题的目标函数、约束条件等。
只有对问题有清晰的认识,才能设计合适的遗传算法。
2. 设计编码方案:将问题的解表示为染色体的编码方案,更好的编码方案可以减少解空间的搜索范围。
常用的编码方式有二进制、浮点数、整数等。
3. 确定适应度函数:根据问题的特点,设计合适的适应度函数用于度量个体的优劣。
适应度函数应能够将问题的目标转化为一个数值,使得数值越大越好或者越小越好。
4. 选择操作:选择操作决定了如何根据适应度值选择父代个体。
常用的选择算法有轮盘赌选择、竞争选择、排名选择等。
轮盘赌选择是普遍应用的一种方法,根据个体的适应度值按比例选择。
5. 交叉操作:交叉操作决定了如何生成新的后代个体。
遗传算法(精讲)

适应值
三、遗传算法的基本流程(1) 遗传算法的基本流程( )
基本步骤:
确定实际问题参数集 对参数进行编码 (1)选择编码策略,把参数集合X和域转换为相应编码空间S。 选择编码策略,把参数集合X和域转换为相应编码空间S (2)定义适应值函数f(x)。 定义适应值函数f(x)。 f(x) 初始化群体P(t) 定义遗传策略,包括选择群体大小、交叉、 (3)定义遗传策略,包括选择群体大小、交叉、变异方法以及确定交 叉概率Pc、变异概率Pm等遗传参数。 叉概率P 变异概率P 等遗传参数。 评价群体 随机初始化生成群体P(t) P(t)。 (4)随机初始化生成群体P(t)。 (5)计算群体中个体的适应值f(X)。 计算群体中个体的适应值f(X)。 f(X) 群体P(t+1) 满足停止准则? 按照遗传策略,运用选择、交叉和变异操作作用于群体, (6)按照遗传策略,运用选择、交叉和变异操作作用于群体,形成下 三个基本操作: 一代群体。 一代群体。 结束 群体P(t) 1、选择 判断群体性能是否满足某一指标,或者已完成预定跌代次数, (7)判断群体性能是否满足某一指标,或者已完成预定跌代次数,不 遗传操作 2、交叉 满足则返回第6 或者修改遗传算法再返回第6 满足则返回第6步,或者修改遗传算法再返回第6步。 3、变异 其他高级操作 标准遗传算法基本流程框图 7
2
一、遗传算法概述(2) 遗传算法概述(
基本思想 使用模拟生物和人类进化的方法求 解复杂的优化问题,因而也称为模拟 解复杂的优化问题, 进化优化算法。 进化优化算法。将择优与随机信息交 换结合在一起。在每一代中, 换结合在一起。在每一代中,使用上 一代中最好的, 一代中最好的,即最适应环境的位或 片段,形成新的人工生物集。 片段,形成新的人工生物集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法:
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。
它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。
遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。
John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。
标准遗传算法流程如下:
1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。
2)计算种群中每个个体的适应度,个体的适应度反映了其优劣程度。
3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。
4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。
5)按照一定的变异概率,对产生的子代个体进行变异操作。
6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。
7)再次计算种群的适应度,找出当前的最优个体。
8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。
早熟收敛:
一般称之为“早熟”,是遗传算法中的一种现象。
指在遗传算法早期,在种群中出现了超级个体,该个体的适应值大大超过当前种群的平均个体适应值。
从而使得该个体很快在种群中占有绝对的比例,种群的多样性迅速降低,群体进化能力基本丧失,从而使得算法较早收敛于局部最优解的现象。
早熟收敛的本质特征是指群体中的各个个体非常相似,群体的多样性急剧减少,当前群体缺乏有效等位基因(最优解位串上的等位基因),在遗传算子作用下不能生成高阶竞争模式。
自适应随机搜索
适应是指处理和分析过程中,根据处理数据的数据特征自动调整处理方法、处理顺序、处理参数、边界条件或约束条件,使其与所处理数据的统计分布特征、结构特征相适应,以取得最佳的处理效果。
遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识
作为遗传算法生物背景的介绍,下面内容了解即可:
种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想
借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。
例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。
将0-1字符串作为0-1背包问题的解就属于二进制编码。
遗传算法有3个最基本的操作:选择,交叉,变异。
选择:选择一些染色体来产生下一代。
一种常用的选择策略是“比例选择”,也就是个体被选中的概率与其适应度函数值成正比。
假设群体的个体总数是M,那么那么一个体Xi 被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。
比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:
轮盘赌算法
/*
* 按设定的概率,随机选中一个个体
* P[i]表示第i个个体被选中的概率
*/
int RWS()
{
m = 0;
r =Random(0,1); //r为0至1的随机数
for(i=1;i<=N; i++)
{
/* 产生的随机数在m~m+P[i]间则认为选中了i
* 因此i被选中的概率是P[i]
*/
m = m + P[i];
if(r<=m) return i;
}
}
交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。
例如:
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。
变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。
变异发生的概率记为Pm 。
例如:
变异前:
000001110000000010000
变异后:
000001110000100010000
适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。
有时需要区分染色体的适应度函数与问题的目标函数。
例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。
适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。
三.基本遗传算法的伪代码
基本遗传算法伪代码
/*
* Pc:交叉发生的概率
* Pm:变异发生的概率
* M:种群规模
* G:终止进化的代数
* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程
*/。