遗传算法的流程图

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)

改善 (独立于问题的) 否
终止?
终止? 是 结束

结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。

传统BP与遗传算法简介

传统BP与遗传算法简介

计算损失函数: Etotal
1 2
(ta rg et

output)2

Eo1

Eo2

1 2
(ta
rg
eto1

ao1 ) 2

1 2
(ta
rg
eto2

ao2
)2
权值与阈值更新(以w5、b2与w1、b1为例):
输出层 隐含层:
w5对整体损失产生的影响:
Etotal w5
Etotal * ao1 * zo1 ao1 zo1 w5
6. 变异运算 变异的作用,指的是染色体的某个基因片段或者某个
基因点发生突变。例如单点突变可以通过下图进行表示:
突变的作用,是希望能够摆脱局部最优点,往更好的 地方去。但是效果具有很大的随机性。 7. 个体解码
将个体解码为十进制公式为:
xi

1
xt
3 29 1
遗传算法流程图:
效果图:
第一代适应度的平均值为2.025,最大适应度值为3.483,经过97 代遗传选择后适应度平均值达到3.811,最大适应度值为3.843, 可见得到了很好的收敛,并最终稳定在最右侧顶峰。
wi2
n
Neti wij x j si i
w in
j =1
yi ui f (Neti )
其中 f 为激活函数(进行非线性化)
2 传统BP神经网络 BP算法又称为误差反向传播算法,它是一个迭代
算法,其基本思想是梯度下降法。采用梯度搜索技术, 使网络的实际输出值与期望输出值的误差均方值为最 小。
离散点-1到离散点2 ,分别对应于从000000000(0)到111111111 (512)之间的二进制编码

遗传算法总结

遗传算法总结

遗传算法总结遗传算法概念遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。

其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它既能在搜索中⾃动获取和积累有关空间知识,并⾃适应地控制搜索过程以求得最优解遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近视最优⽅案。

在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近视解。

这个过程导致种群中个体的进化,得到的新个体⽐原个体更适应环境,就像⾃然界中的改造⼀样。

应⽤遗传算法在⼈⼯智能的众多领域具有⼴泛应⽤。

例如,机器学习、聚类、控制(如煤⽓管道控制)、规划(如⽣产任务规划)、设计(如通信⽹络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如TSP、背包问题)、函数的最⼤值以及图像处理和信号处理等等。

遗传算法多⽤应与复杂函数的优化问题中。

原理遗传算法模拟了⾃然选择和遗传中发⽣的复制、交叉、和变异等现象,从任⼀初始种群出发,通过随机选择、交叉、变异操作,产⽣⼀群更适合环境的个体,使群体进⾏到搜索空间中越来越好的区域,这样⼀代⼀代地不断繁衍进化,最后收敛到⼀群最适合环境的个体求得问题的最优解。

算法流程1.编码:解空间中的解数据x,作为作为遗传算法的表现型形式。

从表现型到基本型的映射称为编码。

遗传算法在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。

2.初始种群的形成:随机产⽣N个初始串数据,每个串数据称为⼀个个体,N个串数据构成了⼀个群体。

遗传算法以这N个串结构作为初始点开始迭代。

设置进化代数计数器t 0;设置最⼤进⾏代数T;随机⽣成M个个体作为初始群体P(0)。

3.适应度检测:适应度就是借鉴⽣物个体对环境的适应程度,适应度函数就是对问题中的个体对象所设计的表征其优劣的⼀种测度。

遗传算法的实例ppt课件.ppt

遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2

遗传算法流程图

遗传算法流程图

遗传算法流程图遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法,通过模拟生物遗传的过程来寻找最优解。

下面是遗传算法的流程图:1. 初始化群体:设定问题的适应度函数,定义染色体编码方式,并随机生成初始种群。

2. 评估适应度:根据设定的适应度函数,对每个个体进行评估,并计算适应度值。

3. 选择操作:根据适应度值,使用选择算子选择一定数量的个体作为父代。

4. 交叉操作:对选择出的父代,使用交叉算子进行交叉操作,生成新的子代。

5. 变异操作:对交叉产生的子代,使用变异算子进行变异操作,生成新的子代。

6. 更新种群:根据选择、交叉和变异的结果,更新种群中的个体。

7. 判断终止条件:判断是否满足终止条件,如达到指定的迭代次数或找到最优解。

8. 返回最优解:如果满足终止条件,则返回找到的最优解;否则,返回第3步。

遗传算法的核心思想是通过模拟自然选择、遗传和变异的过程,从大量的可能解空间中寻找到最优解。

下面详细介绍遗传算法的流程:首先,需要定义问题的适应度函数,即问题的目标函数。

适应度函数用于评估染色体的好坏程度,从而进行选择操作。

适应度函数越好的个体,被选中的概率越高。

然后,通过染色体编码方式,将问题的解表示为染色体。

染色体可以是二进制编码、整数编码或实数编码,具体根据问题的特点进行选择。

接下来,初始化种群,即随机生成一定数量的初始个体。

种群中的每个个体都表示一个可能解。

然后,对每个个体计算适应度值,并根据适应度值进行选择操作。

选择操作根据设定的选择算子,选择一定数量的个体作为父代。

通常使用轮盘赌选择或锦标赛选择来进行选择操作。

对选择出的父代,进行交叉操作。

交叉操作通过交换染色体的部分基因片段,生成新的子代。

交叉操作有单点交叉、多点交叉、均匀交叉等形式。

接着,对交叉产生的子代进行变异操作。

变异操作通过改变个体染色体中的一些基因值,引入一定的随机性。

再次,根据选择、交叉和变异的结果,更新种群中的个体。

遗传算法

遗传算法

j=0 选择两个交叉个体 执行交叉 将交叉后的两个新个体 添入新群体中 j = j+2
将复制的个体添入 新群体中
j = j+1
N
j = M? Y
N
j = pc· M? Y
Gen=Gen+1
N
j = pm· M? L· Y
遗传算法应用举例 ——在函数优化中的应用
[例] Rosenbrock函数的全局最大值计算。
bi 2i1 )
i 1

U max U min 2 1
0.3 70352 (12.1 3) /(218 1) 1.052426
二)个体适应度评价
如前所述,要求所有个体的适应度必须为正数或零,不能是负数。
(1) 当优化目标是求函数最大值,并且目标函数总取正值时,可以直接设定
max s.t. 如图所示: 该函数有两个局部极大点, 分别是: f(2.048, -2048) =3897.7342 f(-2.048,-2.0048) =3905.9262 其中后者为全局最大点。 f(x1,x2) = 100 (x12-x22)2 + (1-x1)2 -2.048 ≤ xi ≤ 2.048 (xi=1,2)
变异操作示例
变异字符的位置是随机确定的,如下表所示。某群体有3个个体,每个体含4 个基因。针对每个个体的每个基因产生一个[0, 1] 区间具有3位有效数字的值产生变异。表 中3号个体的第4位的随机数为0.001,小于0.01,该基因产生变异,使3号个体由
下面介绍求解该问题的遗传算法的构造过程:
第一步:确定决策变量及其约束条件。 s.t. 第二步:建立优化模型。 max 第三步:确定编码方法。 用长度为l0位的二进制编码串来分别表示二个决策变量x1,x2。 lO位二进制编码串可以表示从0到1023之间的1024个不同的数,故将x1,x2的 定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。 从离散点-2.048到离散点2.048,依次让它们分别对应于从0000000000(0)到 f(x1,x2) = 100 (x12-x22)2 + (1-x1)2 -2.048 ≤ xi ≤ 2.048 (xi=1,2)

遗传算法简介及sga流程【精品毕业设计】(完整版)

遗传算法简介及sga流程【精品毕业设计】(完整版)

遗传算法:遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。

遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。

它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。

遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。

John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。

标准遗传算法流程如下:1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。

2)计算种群中每个个体的适应度,个体的适应度反映了其优劣程度。

3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。

4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。

5)按照一定的变异概率,对产生的子代个体进行变异操作。

6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。

7)再次计算种群的适应度,找出当前的最优个体。

8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。

早熟收敛:一般称之为“早熟”,是遗传算法中的一种现象。

指在遗传算法早期,在种群中出现了超级个体,该个体的适应值大大超过当前种群的平均个体适应值。

从而使得该个体很快在种群中占有绝对的比例,种群的多样性迅速降低,群体进化能力基本丧失,从而使得算法较早收敛于局部最优解的现象。

早熟收敛的本质特征是指群体中的各个个体非常相似,群体的多样性急剧减少,当前群体缺乏有效等位基因(最优解位串上的等位基因),在遗传算子作用下不能生成高阶竞争模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一需求分析
1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数
2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。

3.测试数据
输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值
二概要设计
1.程序流程图
2.类型定义
int popsize; //种群大小
int maxgeneration; //最大世代数
double pc; //交叉率
double pm; //变异率
struct individual
{
char chrom[chromlength+1];
double value;
double fitness; //适应度
};
int generation; //世代数
int best_index;
int worst_index;
struct individual bestindividual; //最佳个体
struct individual worstindividual; //最差个体
struct individual currentbest;
struct individual population[POPSIZE];
3.函数声明
void generateinitialpopulation();
void generatenextpopulation();
void evaluatepopulation();
long decodechromosome(char *,int,int);
void calculateobjectvalue();
void calculatefitnessvalue();
void findbestandworstindividual();
void performevolution();
void selectoperator();
void crossoveroperator();
void mutationoperator();
void input();
void outputtextreport();
4.程序的各函数的简单算法说明如下:
(1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。

input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。

(2)void calculateobjectvalue();计算适应度函数值。

根据给定的变量用适应度函数计算然后返回适度值。

(3)选择函数selectoperator()
在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在;
显然,个体适应度愈高,被选中的概率愈大。

但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。

(4)染色体交叉函数crossoveroperator()
这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。

首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。

这时又要用rand()函数随机产生一位交叉位,把染色
体的交叉位的后面部分交叉即可;若大于交叉概率,则进行简单的染色体复制即可。

(5)染色体变异函数mutation()
变异是针对染色体字符变异的,而不是对个体而言,即个体变异的概率是一样。

随机产生比较概率,若小于变异概率,则1变为0,0变为1,同时变异次数加1。

(6)long decodechromosome(char *,int,int)
本函数是染色体解码函数,它将以数组形式存储的二进制数转成十进制数,然后才能用适应度函数计算。

(7)void findbestandworstindividual()本函数是求最大适应度个体的,每一代的所有个体都要和初始的最佳比较,如果大于就赋给最佳。

(8)void outputtextreport () 输出种群统计结果
输出每一代的种群的最大适应度和平均适应度,最后输出全局最大值
三运行环境
本程序的开发工具是VC++,在VC++下运行。

Conventional Method。

相关文档
最新文档