量子遗传算法流程图

合集下载

量子进化算法原理_智能控制简明教程_[共3页]

量子进化算法原理_智能控制简明教程_[共3页]

第6章 计算智能 163(5)随着迭代次数的增加,适应度函数变化即函数()10sin(5)7cos(4)f x x x x =++取得最大值的过程如图6.7所示。

图6.7 粒子群算法的适应度函数曲线变化通过上述粒子群优化计算,最终获得式6.35目标函数的最优解为7.8569x =,()24.8554f x =。

6.3 量子进化算法6.3.1 量子进化算法量子进化算法建立在量子态矢量表达基础上,将量子比特的概率矢量表示应用于染色体的编码,使得一条量子染色体可以表达多个态的叠加,并利用各种量子门实现染色体的更新操作,从而实现目标求解。

2000年,Kuk-Hyun Han 将量子态矢量表达引入染色体编码中,通过量子门旋转实现染色体更新,提出了遗传量子算法(Genetic Quantum Algorithm ,GQA ),并通过对背包问题的优化计算,取得了比常规遗传算法更好的效果。

针对GQA 的不足,Han 在2002年通过改进量子门旋转角度策略和引入移民策略,提出了量子进化算法(Quantum Evolutionary Algorithm ,QEA )。

由于量子进化算法具有多样性特征,在参数优化计算的过程中可以获得更好的结果,目前已经应用到数值优化、组合优化、图形图像处理、电路设计、通信、多目标优化等领域。

6.3.2 量子进化算法原理量子进化算法采用量子位编码来表示染色体,通过量子门更新种群完成进化搜索。

与传统进化算法相比,它具有种群规模小、收敛速度较快、全局寻优能力强的特点。

下面介绍量子进化算法的原理。

1.QEA 算法基本操作(1)量子染色体编码在量子计算中,采用量子位表示最小的信息单元,一个量子位可以处于“1”态、“0”态。

遗传算法(GeneticAlgorithm)PPT课件

遗传算法(GeneticAlgorithm)PPT课件

2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座

量子遗传算法

量子遗传算法

量子遗传算法 1.遗传算法 遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。

这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。

但一般遗传算法存在一定得局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。

2.量子计算量子计算为量子力学与信息科学的综合交叉学科。

量子计算具有量子力学的并行性,计算速度更快;同时,量子状态多种多样,在进行最优解的搜索时极少陷入局部的极值。

3.量子遗传算法量子遗传算法将量子的态矢量引入遗传算法,利用量子比特的概率幅应用于染色体的编码。

一条染色体是多个量子状态的叠加。

并使用量子旋转门实现染色体的变异更新。

因此量子遗传算法具有迭代次数少,运行速度快,能以较少种群进行遗传变异,搜索范围广,难以陷入局部的极值等优点。

4.操作步骤1)运用量子比特初始化父代染色体2)在量子遗传算法中,染色体采用量子位的概率幅进行编码,编码方案如下:1212cos()cos()cos()sin()sin()sin()i i ik i i i ik P θθθθθθ⎡⎤=⎢⎥⎣⎦ k j n i rand ij ,...,2,1,,...,2,1,2==⨯=πθ3)对初始化种群中的每一个个体进行测量。

4)对每个测量值进行适应度的评估,以适应度来选择最优个体,进行遗传变异。

5)使用量子旋转门进行下一代个体的更新,量子旋转门为逻辑门中一种较为常用的方法,具体表示为:⎪⎪⎭⎫ ⎝⎛-=i i i i u θθθθθcos sin sin cos )( 6)进行迭代1+=y y7)达到终止设定条件,输出最佳个体,得到最优解。

运行结果:。

Geatpy进化算法遗传算法

Geatpy进化算法遗传算法
第二次是常被称为“重插入”或“环境选择”的选择,它是指在个体经过交叉、变 异等进化操作所形成的子代(或称“育种个体”)后用某种方法来保留到下一代从而形 成新一代种群的过程。这个选择过程对应的是生物学中的” 自然选择”。它可以是显性地 根据适应度(再次注意:适应度并不等价于目标函数值)来进行选择的,也可以是隐性 地根据适应度(即不刻意去计算个体适应度)来选择。例如在多目标优化的 NSGA-II 算 法 [1] 中,父代与子代合并后,处于帕累托分层中第一层级的个体以及处于临界层中的 且拥挤距离最大的若干个个体被保留到下一代。这个过程就没有显性地去计算每个个体 的适应度。
算如下:
i−1 F itnessi = 2 − SP + 2 (SP − 1) N ind − 1
线性排序中选择压力SP 的值必须在 [1.0,2.0] 之间。
文献 [1] 中有这种线性排序的详细分析。其选择强度、多样性损失、选择方差 (这些
概念详见下一节) 的计算如下:
选择强度:
SelInt (SP ) = SP√− 1 π
进化算法
序言 进化算法 (Evolutionary Algorithm, EA) 是一类通过模拟自然界生物自然选择和自然
进化的随机搜索算法。与传统搜索算法如二分法、斐波那契法、牛顿法、抛物线法等相 比,进化算法有着高鲁棒性和求解高度复杂的非线性问题 (如 NP 完全问题) 的能力。
在过去的 40 年中,进化算法得到了不同的发展,现主要有三类: 1) 主要由美国 J. H. Holland 提出的的遗传算法 (Genetic Algorithm, GA); 2) 主要由德国 I. Rechenberg 提出的进化策略 (Evolution strategies, ES); 3) 主要由美国的 L. J. Fogel 提出的进化规划 (Evolutionary Programming, EP)。 三种进化算法都是受相同的自然进化原则的启发下创立的,文献 [1] 以及国内的诸 多资料也有详细的介绍。除此之外,进化算法还有差分进化 (Differential Evolution)、基 因表达式编程 (Gene Expression Programming) 等众多分支。本文档只介绍经典的遗传算 法、差分进化算法和多目标进化优化算法,不对众多改进的进化算法以及其他分支作详 细介绍,如有需要进行相关研究的可以参考相关的专业和权威的文献。 文档第一章是有关遗传算法的概述和基本框架;第二章介绍了编码;第三章是关于 适应度的计算;第四章讲述了选择算法;在第五章中,介绍了不同的重组算法;第六章 解释了如何变异;第七章详细讲解了与多目标优化有关的概念。 最后值得一提的是,虽然进化算法在近 20 年来已经得到了快速的发展,在当今已 经比较成熟,在金融、工程、信息学、数学等领域已经有广泛的应用,但是,众多新兴 的进化算法 (如差分进化算法等) 以及不断改进和完善的拥有高维、多目标问题求解能 力的进化优化算法等等,正给进化算法注入源源不断的新活力。与此同时,深度神经网 络的蓬勃发展让进化算法有了一个更加前沿和广阔的前景——神经进化。量子计算机的 出现,也使得拥有高度并行能力的进化算法有着更大的潜能。

量子遗传算法matlab

量子遗传算法matlab

量子遗传算法matlab量子遗传算法是一种结合了量子计算和遗传算法的优化方法。

它利用量子比特的特性,如叠加和纠缠,来提高搜索效率。

下面是一个简单的Matlab代码示例,用于演示如何实现一个基本的量子遗传算法。

请注意,这只是一个示例代码,可能需要根据您的具体需求进行修改和优化。

```matlab% 参数设置pop_size = 100; % 种群大小chrom_length = 5; % 染色体长度max_gen = 100; % 最大迭代次数cross_rate = 0.7; % 交叉概率mutate_rate = 0.01; % 变异概率bit_flip_probability = 0.01; % 量子比特翻转概率% 初始化种群pop = round(rand(pop_size, chrom_length));% 主循环for gen = 1:max_gen% 量子遗传算法操作for i = 1:pop_size% 量子比特编码qubit_state = pop(i, :);qubit_state = qubit_state / norm(qubit_state); % 归一化qubit_state = qubit_state(:, [2 3]); % 取第二个和第三个量子比特作为编码的二进制数bit_state = reshape(qubit_state, 2^length(qubit_state), []);bit_state = bit_state / norm(bit_state); % 归一化bit_state = bit_state(:); % 展平bit_state = bit_state(bit_flip_probability > rand); % 量子比特翻转bit_state = reshape(bit_state, [2^length(bit_state) length(bit_state)]); % 重塑为矩阵形式qubit_state = bit2qubit(bit_state); % 二进制数转量子比特态% 量子旋转门操作theta = -10*pi + 2*pi*rand; % -10 到10之间的随机角度U = exp(-i*theta*(2/pi)*X); % X是X门,根据角度计算旋转门矩阵qubit_state = U*qubit_state; % 应用旋转门操作% 量子测量操作,得到适应度值measurement = expval(Z); % Z是Z门,测量结果为适应度值end% 选择操作,根据适应度值选择个体进行交叉和变异操作% ...% 交叉操作,根据交叉概率进行交叉操作,生成新的个体% ...% 变异操作,根据变异概率进行变异操作,生成新的个体% ...end```请注意,这个代码只是一个基本示例,实际上实现量子遗传算法还需要更多的细节和步骤,如选择操作、交叉操作和变异操作等。

量子遗传算法基本过程-定义说明解析

量子遗传算法基本过程-定义说明解析

量子遗传算法基本过程-概述说明以及解释1.引言1.1 概述量子遗传算法是一种结合了量子计算与遗传算法的新型优化算法。

遗传算法是一种模仿生物进化原理的搜索算法,而量子计算则是基于量子比特的计算方式。

量子遗传算法的基本原理是利用量子比特的叠加和纠缠特性来增强搜索的能力,从而提高优化问题的求解效率。

本文将对量子遗传算法的基本过程进行详细介绍,包括量子计算的简介、遗传算法的概述以及量子遗传算法的基本过程。

通过对这些内容的讲解,读者可以深入了解量子遗传算法的工作原理,并且了解其在优化问题中的应用前景和未来发展方向。

1.2 文章结构文章结构部分:本文将首先介绍量子计算的基本概念和原理,然后对遗传算法进行概述,介绍其基本运行过程。

最后,着重详细探讨量子遗传算法的基本过程,包括其具体的实现步骤和核心原理。

通过对这些内容的深入阐述,读者将能够全面了解量子遗传算法的基本运行机制和实际应用价值。

内容1.3 目的目的部分的内容:本文旨在深入探讨量子遗传算法的基本过程,通过介绍量子计算和遗传算法的基本概念,以及它们在量子遗传算法中的应用,帮助读者理解量子遗传算法的原理和运行机制。

同时,我们将分析量子遗传算法在实际问题中的应用前景,展望其在优化、搜索和机器学习等领域的发展方向,以期为相关研究和应用提供理论支持和启发。

2.正文2.1 量子计算简介量子计算是利用量子力学原理来进行计算的一种新型计算方式。

与传统计算不同的是,量子计算利用量子比特(Qubit)来存储信息,而不是传统计算中的比特(Bit)。

在量子计算中,量子比特可以同时处于多种状态,这种特性被称为叠加态。

另外,量子计算还利用了纠缠和量子隐形传态等量子效应来进行计算,使得量子计算机具有远超经典计算机的计算速度和效率。

量子计算的基本原理是量子叠加态和量子纠缠,利用这些特性可以在同一时刻处理多种可能性,从而大大加快计算速度。

量子计算机在处理一些传统计算机难以解决的问题时显示出了强大的优势,比如在大数据处理、密码学、化学模拟等方面均有潜在的运用前景。

三分钟学会遗传算法

三分钟学会遗传算法

三分钟学会遗传算法遗传算法此节介绍最著名的遗传算法(GA)。

遗传算法属于进化算法,基本思想是取自“物竞天泽、适者生存”的进化法则。

简单来说,遗传算法就是将问题编码成为染色体,然后经过不断选择、交叉、变异等操作来更新染色体的编码并进行迭代,每次迭代保留上一代好的染色体,丢弃差的染色体,最终达到满足目标的最终染色体。

整个流程由下图构成(手写,见谅 -_-!!)流程图步骤由以下几步构成:编码(coding)——首先初始化及编码。

在此步,根据问题或者目标函数(objective function)构成解数据(solutions),在遗传算法中,该解数据就被称为染色体(chromosome)。

值得一提的是,遗传算法为多解(population based)算法,所以会有多条染色体。

初始化中会随机生成N条染色体,, 这里表示染色体包含了n条。

其中,这里表示第i条染色体由d维数值构成。

GA会以这个N个数据作为初始点开始进行进化。

评估适应度(evaluate fitness)——这一步用染色体来进行目标函数运算,染色体的好坏将被指明。

选择(selection)——从当前染色体中挑选出优良的个体,以一定概率使他们成为父代进行交叉或者变异操作,他们的优秀基因后代得到保留。

物竞天择这里得以体现。

交叉(crossover)——父代的两个两个染色体,通过互换染色体构成新的染色体。

例如下图,父亲母亲各提供两个基因给我。

这样我既保留了父母的基于,同时又有自己的特性。

交叉变异(mutation)——以一定概率使基因发生突变。

该算子一般以较低概率发生。

如下图所示:变异下面我们将一步一步为各位呈现如何用matlab编写一个简单的GA算法。

本问题为实数最小化minimization问题。

我们需要在解空间内找到最小值或近似最小值,此处我们使用sphere函数作为目标函数(读者可以自行修改为其他的目标函数)。

sphere function•初始化:在这一步中,我们将在给定问题空间内生成随机解,代码如下:% %% 初始化% % 输入:chromes_size,dim维数,lb下界,ub 上界% % 输出:chromes新种群function chromes=init_chromes(chromes_size,dim,lb,ub) % 上下界中随机生成染色体 chromes = rand(chromes_size,dim)*(ub-lb)+lb;end•选择:选择是从当前代中挑选优秀的染色体保留以繁殖下一代。

遗传算法PPT课件

遗传算法PPT课件

4.1 基本概念
1. 个体与种群
● 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼,一个个 体也就是搜索空间中的一个点。
● 种群(population)就是模拟生物种群而由若 干个体组成的群体, 它一般是整个搜索空间 的一个很小的子集。
2.
● 适应度(fitness)就是借鉴生物个体对环境的 适应程度,而对问题中的个体对象所设计的 表征其优劣的一种测度。
根据交叉原则产生的一组新解
பைடு நூலகம்
染色体对应基因段交换的概率(可能性大小) 闭区间[0,1]上的一个值,一般为0.65~0.90
染色体水平上基因变化
编码的某些元素被改变
染色体上基因变化的概率(可能性大小)
开区间(0,1)内的一个值, 一般为 0.001~0.01
个体进行优胜劣汰的进化,一代又一代地优 化
目标函数取到最大值,最优的可行解
选择-复制 通常做法是:对于一个规模为N 的种群S,按每个染色体xi∈S的选择概率P(xi)所决 定的选中机会, 分N次从S中随机选定N个染色体, 并进行复制。
这里的选择概率P(xi)的计算公式为
P(xi )
f (xi )
N
f (xj)
j 1
交叉 就是互换两个染色体某些位上的基因。 例如, 设染色体 s1=01001011, s2=10010101, 交换其后4位基因, 即
第 4 章 基于遗传算法的随机优化搜索
❖ 群体的染色体都将逐渐适应环境,不断进化, 最后收敛到一族最适应环境的类似个体,即 得到问题最优的解.值得注意的一点是,现 在的遗传算法是受生物进化论学说的启发提 出的,这种学说对我们用计算机解决复杂问 题很有用,而它本身是否完全正确并不重要 (目前生物界对此学说尚有争议).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档