人教版七年级上册几何图形初步本意综合
人教版七年级数学上册 几何图形初步 知识点归纳

4.1几何图形知识点归纳从实物中抽象出来的各种图形叫做几何图形。
几何图形包括立体几何图形和平面几何图形。
各部分不都在同一平面内的几何图形叫做立体几何图形。
认识立体几何图形:长方体正方体球圆柱圆锥三棱柱三棱锥上下底面的形状大小相同且互相平行,侧棱平行且相等的封闭几何体叫做棱柱。
在棱柱中:①互相平行的两个面叫做棱柱的底面,其它面都是棱柱的侧面。
②两个面的公共边叫做棱柱的棱,两个相邻侧面的公共边叫做棱柱的侧棱。
③侧面与两个底面的公共顶点叫做棱柱的顶点。
④两个底面之间的距离叫做棱柱的高。
如果一个棱柱的底面是n边形,那么这个棱柱叫做n棱柱。
有一个面是多边形,其它面都是三角形且有一个公共顶点,这样的封闭几何体叫做棱锥。
在棱锥中:①形状是多边形的那个面叫做棱锥的底面,其它面都是棱锥的侧面。
②两个面的公共边叫做棱锥的棱,两个相邻侧面的公共边叫做棱锥的侧棱。
③相邻两个面的公共顶点叫做棱锥的顶点。
*在口头表述中,有时候说棱锥的顶点,可能指的是各个侧面的公共点。
下面④所说的顶点就是这个点。
④顶点到底面的距离叫做棱锥的高。
如果一个棱锥的底面是n边形,那么这个棱柱叫做n棱锥。
各部分都在同一平面内的几何图形叫做平面几何图形。
认识平面几何图形:线段角三角形长方形正方形平行四边形圆平面几何图形和立体几何图形是互相联系的,立体几何图形中的一部分可能是平面几何图形。
例子:圆柱的上底和下底都是圆,长方体的侧面可能是长方形,正方体的每个面都是正方形。
要观察立体几何图形,我们一般可以从三个方向来看:从正面看、从左面看、从上面看。
有一些立体几何图形是由一些平面几何图形围成的,如果将它们的表面用适当的方法剪开,就可以展开成平面几何图形。
这样的平面几何图形就是它们对应的立体几何图形的展开图。
几何体可以简称为体,包围着体的是面,面面相交的地方是线,线线相交的地方是点。
点动成线,线动成面,面动成体。
几何图形都是由点、线、面、体组合而构成的。
其中点是构成几何图形的基本元素。
初一(七年级)上册数学几何图形初步知识点总结

初一(七年级)上册数学几何图形初步知识点总结除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初一(七年级)上册数学几何图形初步知识点总结,希望对大家的学习有一定帮助。
五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。
此外,还有密位制、弧度制等。
锐角:大于0,小于90的角叫做锐角。
直角:等于90的角叫做直角。
钝角:大于90而小于180的角叫做钝角。
平角:等于180的角叫做平角。
优角:大于180小于360叫优角。
劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。
等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!14.几何图形分类(1)立体几何图形可以分为以下几类:第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:球体;此分类只包含球一种几何体,体积公式V=4R3/3,其他不常用分类:圆台、棱台、球冠等很少接触到。
人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
人教版初一数学上册知识点归纳总结 图形初步认识

⎧⎨⎩⎧⎨⎩图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等.主视图---------从正面看 2、几何体的三视图 左视图---------从左边看俯视图---------从上面看(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体.(2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念名称 直线 射线 线段 图形端点个数 无 一个 两个 表示法 直线a直线AB (BA ) 射线a 射线AB 线段a 线段AB (BA ) 作法叙述 作直线a 作直线AB ; 作射线a 作射线AB 作线段a ; 作线段AB ; 连接AB 延长向两端无限延长向一端无限延长不可延长2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法(2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点.A B a A B a A B a图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB ,AB=2AM=2BM. 6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身). 8、点与直线的位置关系(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角1、角:有公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):表示方法 图例 记法 适用范围用三个大写字母表示 ∠AOB 或∠BOA任何情况下都适应。
人教版七年级上册 第四章 《几何图形初步》教材分析 课件(共48张PPT)

三、难点突破
• 度分秒(60进制,除不开时) • 数直线、射线、线段条数 • 导角综合 • 折展问题
四、数学思想方法
• 1分类讨论:线段中点、角平分线等
线段 同一直线上有n个点,求线段的条数.
同一条直线上有 A, B,C 三个点满足
BC 1 AB ,则点 C 有两个可能位置: 2
A
C1
B
C2
角 平面内有共端点的n条射线,求角的个数.
(动手操作)
(空间想象与动手操作)
感性了解简单平面图形 具体的边、角关系等
直线、射线、线段的实例 认识概念、掌握符号表示和基
(会画、会度量、了解端 本事实;两直线位置关系;
点与延伸情况)
尺规作一条线段等于已知线段;
会比较线段大小;理解线段和
差及中点的概念(会运算)
小学阶段已经学过
初中新增内容
知道周角、平角,了解锐 了解余角、补角的概念、
二、重点:逻辑推理与几何语言
• 基本几何概念:定义、性质、判定 • 因果逻辑:因为中点/平分,所以倍半等 • 注意标图 • 注意几何语言的表述规范
文字 图形
符号
二、重点:逻辑推理与几何语言
二、重点:逻辑推理与几何语言
三、难点突破
• 度分秒(60进制,除不开时) 例如: 24°25′12′′=________° 31.34°=____°_____′ ______′′ 21°17′×5=____ 33°25′÷2=____
《几何图形初步》教材分析
几何是研究图形的形状、 大小和位置关系的一门学科
现实生活 几何图形
本章结构图
立体图形
展开图 三视图 切面
平面图形
认识立体图 形
人教版七年级数学第四章《几何图形初步》知识点汇总

人教版七年级数学第四章《几何图形初步》知识点汇总七年级数学期末复第四章《几何图形初步》知识点汇总1.几何图形①定义:几何图形是从实物中抽象出来的各种图形。
②分类:几何图形分为平面图形和立体图形。
③平面图形:图形所表示的各个部分都在同一平面内,如直线、三角形等。
④立体图形:图形所表示的各个部分不在同一平面内,如圆柱体。
2.常见的立体图形①柱体:A棱柱,B圆柱。
②椎体:A棱锥,B圆锥,球体等。
3.立体图形的三视图从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图。
②会根据三视图知道堆积的小正方体的个数。
4.立体图形的展开图①圆柱的平面展开图是矩形。
②圆锥的平面展开图是扇形。
③ n棱柱的侧面展开图是n个形,n棱柱有个底面,都是n边形,n棱柱的平面展开图是多边形。
④ n棱锥的侧面展开图是n个形,n棱锥有个底面,是n 边形,n棱锥的平面展开图是多边形。
⑤正方体的展开图共分四类。
①掌握在正方体展开图中找相对面的方法。
②会根据展开图中的图案判断是哪个图形的展开图。
5.点、线、面、体几何图形的组成:由点、线、面、体组成。
点是构成图形的基本元素,点动成线,线动成面,面动成体。
6.直线①点与直线的位置关系:第一种关系:点在直线上,或者说直线经过点;第二种关系:点在直线外,或者说直线不经过点。
②直线公理:经过两点有且只有一条直线(简称:两点确定一条直线)。
7.直线与直线的位置关系①同一平面内,两条直线的位置关系分为平行和相交。
②当两条不同的直线相交时,我们就称这两条直线相交,这个点叫做它们的交点。
8.射线①表示方法:端点字母必须写在前。
②判断两条射线是同一条射线的方法:它们有一个公共端点,并且在这个公共端点的一侧的点相同。
9.线段①基本性质:线段是有限长的直线段,有两个端点。
②两点之间的距离是线段的长度。
人教版七年级数学第四章《几何图形初步》知识点汇总
人教版七年级数学第四章《几何图形初步》知识点汇总第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。
②几何图形分为图形和图形。
③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。
④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。
02、常见的立体图形①柱体:A棱柱:B 圆柱②椎体:A棱锥B 圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。
②圆锥的平面展开图是。
③n棱柱的侧面展开图是n个形,n棱柱有个底面,都是,n 棱柱的平面展开图是。
④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。
⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。
_____是构成图形的基本元素点动成_____、____动成____、____动成____。
06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。
②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。
08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。
2024年秋人教版七年级数学上册 第六章 “几何图形初步”《点、线、面、体》精品课件
(2)点动形成 线 ,线动形成 面 ,面动形成 体 .
知识点1 点、线、面、体的概念 【例1】(1)球由 1 个面围成. (2)圆柱体由 3 个面围成,它的底面的形状是 圆 ,侧面 是 曲面 ,它的顶点数是 0 个. (3)如图所示的几何体是由 5 个面围成的,面和面相交形 成 9 条线 ,线与线相交形成 6 个点.
AB CD
4.如图:
(1)填空. 名称
三棱柱 四棱柱 五棱柱 六棱柱
底面个数 2 2 2 2
侧面个数 3 4 5 6
顶点个数 6 8 10 12
棱的条数 9 12 15 18
4.如图:
(2)由此可推测n(n为大于或等于3的正整数)棱柱有多少个面?多 少个顶点?多少条棱? (2)n棱柱有(n+2)个面,2n个顶点,3n条棱. (3)若一个直棱柱的面数为a,顶点数为b,棱数为c,写出a,b,c 之间的关系式. (3)c=a+b-2.
知识点2 点、线、面、体的关系 【例2】生活中有如下现象: ①用钢笔写字;②抛出一块石子,石子在空中飞行的路线; ③银行大堂的旋转门旋转一周;④硬币立在桌面上旋转一周; ⑤黑板擦在黑板上擦出一片干净区域;⑥车轮上的钢条绕轴转动. 其中能说明“点动成线”的有 ①② ; 能说明“线动成面”的有 ⑤⑥ ; 能说明“面动成体”的有 ③④ .
同学们,再见!
1.(2022·天河区期末)以正方形的一边为轴,旋转一周得到的立体图
形是( B )
A.长方体
B.圆柱
C.圆锥
D.球
2.下列说法中,正确的是( D ) A.棱柱的侧面可以是正方形,也可以是三角形 B.一个几何体的表面不可能只由曲面组成 C.棱柱的各条棱都相等 D.圆锥是由平面和曲面组成的几何体
3.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转 一周得到的( A )
第4章 几何图形初步(知识点汇总·人教7上)
⎧⎨⎩⎧⎨⎩(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆、多边形等.主视图---------从正面看2、几何体的三视图 左视图---------从左边看俯视图---------从上面看(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体.(2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念第四章 图形的初步认识知识点回顾2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法 (2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点. 图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB ,AB=2AM=2BM. 6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身). 8、点与直线的位置关系(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角1、角:有公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算(度”︒”、分”'”、秒”"”)60进制1︒=60'=3600", 1'=60"; 1'=(601)︒, 1"=(601)'=(36001)︒ 4、角的分类5、角的比较方法 (1)度量法 (2)叠合法6、角的四则运算角的和、差、倍、分及其近似值 7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若OB 是∠AOC 的平分线,则∠AOB=∠BOC=21∠AOC, ∠AOC=2∠AOB =2∠BOC ). 9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.(4)余角的性质:同角(等角)的余角相等;补角的性质:同角(等角)的补角相等.10、方向角(1)正方向(2)南或北写在前面,东或西写在后面(北偏东、北偏西、南偏东、南偏西)。
人教版七年级数学上册第四章 几何图形初步全章课件汇总
注意:几何中的点只有位置,没有大小;
线只有长短,没有粗细;
面只有大小,没有厚薄.
新知探究 跟踪训练
例1 观察如图所示的立体图形,说出它们各有几个面.
是什么样的面?面和面相交的地方形成了几条线?线
和线相交的地方形成了几个点?
解:图(1)是正方体,它有6个面,这些面都是平面,面
绕较短直角边所在直线旋转一周
绕斜边所在直线旋转一周
A
D
B
更多解法见《教材帮》数学RJ七上4.1节方法帮
直线、射线、线段
1、掌握直线、射线、线段的表达,了解相交和交点的概念;
2、探究直线、射线、线段三者间的联系与区别。
重点
掌握直线、射线、线段的表达方法。
难点
探究直线、射线、线段三者间的联系。
小学阶段就已经学习过线段、射线和直线,你能说一说它们得练
经过思考,我们得出:
经过两点有一条直线,并且只有一条直线.
简单说成:两点确定一条直线。
下列直线怎么用字母表示出来?
l
A
B
直线 AB 或直线 l
因为两点确定一条直线,所以除了用一个小写字母表示直线(如
直线 l )外,我们经常用一条直线上的两点来表示这条直线。
说一说点O与点P与直线 l 的关系。
l
面内,它们是立体图形.
思考
你能找出一些立体图形的实例吗?
思考 它们对应的立体图形是什么?
三棱柱
六棱柱
四棱锥
做一做 把相应的实物与图形用线连接起来.
正方体
球
六棱柱
圆锥
长方体
四棱锥
观察 下面这些几何图形又有什么共同特点?
各部分都在同一平面内.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年度???学校9月月考卷学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列四个几何体中,是三棱柱的为( ).
A.B.
C.D.
2.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()
A.9 B.11 C.14 D.18
3.下面四个图形中,经过折叠能围成如图所示的几何图形的是()
A.B.
C.
D.
4.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( ).
A .在观测点的南偏东75︒方向处
B .在距观测点5km 处
C .在观测点的南偏东15︒方向5km 处
D .在观测点的南偏东75︒方向5km 处 5.若2945α︒'=,则α的余角等于( )
A .6055︒'
B .6015︒'
C .15055︒'
D .15015︒' 6.“横看成岭侧成峰”从数学的角度解释为( )
A .从不同的方向观察同一建筑物时,看到的图形不一样
B .从同一方向观察同一建筑物时,看到的图形不一样
C .从同一的方向观察不同的建筑物时,看到的图形一样
D .以上答案都不对
7.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).
A .点动成线,线动成面
B .线动成面,面动成体
C .点动成线,面动成体
D .点动成面,面动成线
8.如图,下列表示角的方法中,不正确的是 ( )
A .∠A
B .∠a
C .∠E
D .∠1
9.如图,点B 相对于点A 的方向是( ).
A .南偏东43︒
B .北偏西47︒
C .西偏北47︒
D .东偏南47︒ 10.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是( )
A .9和13
B .2和9
C .1和13
D .2和8 11.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上
B .点
C 在线段AB 的延长线上 C .点C 在直线AB 外
D .不能确定
12.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是( ). A . B .
C .
D . 13.如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,设AC BC a +=,则MN 的长度是( )
A .2a
B .a
C .12a
D .14
a 14.如图,已知∠AOB =120︒,∠COD 在∠AOB 内部且∠COD = 60︒ ,则∠AOD 与∠COB 一定满足的关系为( )
A .∠AOD = ∠COB
B .∠AOD + ∠COB = 180︒
C .∠AO
D =12
∠COB D .∠AOD + ∠COB = 120︒ 15.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )
A .30°
B .45°
C .50°
D .60°
二、填空题 16.如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走_________个小立方块.
17.如图,已知AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .
18.如图,过直线AB 上一点O 作射线OC ,∠BOC=29°18′,则∠AOC 的度数为_____.
19.A 、B 两地之间弯曲的公路改直,能够缩短路程,其根据的道理是________. 20.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞? (填序号).
21.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.
22.小明家有一个如图的无盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到其平面展开图.若长方体纸盒的长、宽、高分别是a ,b ,(c 单位:cm ,).a b c >>则它的展开图周长最大时,用含a ,b ,c 的代数式表示最大周长为______cm .
23.已知OA ⊥OC 于O ,∠AOB :∠AOC =3:2,则∠BOC 的度数为_____度.
三、解答题
24.观察下列多面体,并把下表补充完整.
观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.
25.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .
(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?
(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .
26.(1)计算(直接写出结果):38255028+=''__________,821526-='__________. (2)一个角的余角比这个角的补角的三分之一多6,求这个角的大小.
27.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:
(1)线段AB 的长;
(2)线段DE 的长.
28.如图,是一个几何体的表面展开图.
(1)该几何体是________;
A .正方体
B .长方体
C .三棱柱
D .四棱锥 (2)求该几何体的体积.
29.射线OA ,OB ,OC ,OD ,OE 有公共端点O .
(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.
(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD
平分COE ∠,求BOD ∠的度数.
30.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .
(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;
(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.
参考答案
1.C
2.B
3.B
4.D
5.B
6.A
7.A
8.C
9.B
10.D
11.A
12.C
13.C
14.B
15.B
16.16
17.1
18.150°42′
19.两点之间,线段最短
20.②.
21.126︒
22.()842a b c ++
23.45度或135
24.8,15,18,6,7;2a c b +-=
25.(1)-4;(2)-88
26.(1)53;886634'';(2)36°
27.(1)10.8cm ;(2)0.6cm
28.(1)C ;(2)4
29.(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,
COD ∠,DOE ∠;(2)54︒
30.(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-。