二轮经典专题复习二 数列 人教版

合集下载

高考数学第二轮专题复习教案数列的综合

高考数学第二轮专题复习教案数列的综合

第26课时 数列的综合一、基础练习1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______2、f(n)=1+2+3+…+n ,则f(n 2)=______3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+1nb =0的两个根,数列{b n }的前n 项和S n =______5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________二、例题例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:(1)到2002年,该内河可行驶的河段长度为多少公里?(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。

(1)求x 1,x 2和x n 的表达式。

(2)求f(x)的表达式,并写出其定义域。

例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。

(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =21n nS a +,且{b n }为等比数列,求a 1的值。

(2)在(1)的条件下,设c n =2()72n n n a b n n++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >3m ?若存在,求出m 的值;若不存在,请说明理由。

2023高考数学二轮专题复习与测试第一部分专题二微专题2数列求和及简单应用课件

2023高考数学二轮专题复习与测试第一部分专题二微专题2数列求和及简单应用课件

专题二 数 列
当 n≥2 时,Sn-1=2n-1-1,② ①-②得,bn=2n-1, 当 n=1 时,b1=2-1=1,满足 bn=2n-1, 所以 bn=2n-1. (2)因为 cn=anbn=2n·2n-1=n·2n, 所以 Tn=1×21+2×22+…+(n-1)·2n-1+n·2n, 2Tn=1×22+2×23+…+(n-1)·2n+n·2n-1, 两式相减得-Tn=2+22+…+2n-n·2n+1=2(22-n-11)-n·2n+1, 所以 Tn=(n-1)·2n+1+2.
专题二 数 列
综上可知,an=2n-1(n∈N*), cn=(-1)n·an+2n=(-1)n(2n-1)+2n, T2n=c1+c2+c3+…+c2n, 即 T2n=[-1+3-5+7-…-(4n-3)+(4n-1)]+(21+22+23+…+22n)= 22n+1+2n-2, 即 T2n=22n+1+2n-2.
专题二 数 列
解:(1)设等差数列{an}的公差为 d. 因为 a1=1,a2=2,所以 d=a2-a1=1. 所以数列{an}的通项公式为 an=a1+(n-1)d=n. (2)选择条件 A:b3=8,b1=2,q=2,bn=2n, 所以 ban=2an=2n. 所以 Sn=ba1+ba2+…+ban=21+22+…+2n=2n+1-2.选条件 B: 设等比数列{bn}的公比为 q. 由(1)可知 an=n,所以 ab2=b2. 因为 ab2=4,所以 b2=4. 所以 q=2.此时 bn=b1qn-1=2n.
专题二 数 列
解:(1)选条件①:∀n∈N*,an+an+1=4n,得 an+1+an+2=4(n+1), 所以 an+2-an=4(n+1)-4n=4, 即数列{a2k-1},{a2k}(k∈N*)均为公差为 4 的等差数列, 于是 a2k-1=a1+4(k-1)=4k-3=2(2k-1)-1, 又 a1+a2=4,a2=3,a2k=a2+4(k-1)=4k-1=2·(2k)-1,所以 an= 2n-1; 选条件②:因为数列Snn为等差数列, 且Snn的前 3 项和为 6,

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②

高考数学二轮复习 第二部分 专题二 数学传统文化的创新应用问题习题-人教版高三全册数学试题

高考数学二轮复习 第二部分 专题二 数学传统文化的创新应用问题习题-人教版高三全册数学试题

专题二 数学传统文化的创新应用问题一、选择题1.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束……)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中三角垛倒数第二层茭草总束数为( )A .91B .105C .120D .210解析:由题意得,从上往下第n 层茭草束数为1+2+3+…+n =n n +12.∴1+3+6+…+n n +12=680,即12⎣⎢⎡⎦⎥⎤16n n +12n +1+12nn +1=16n (n +1)(n +2)=680,∴n (n +1)(n +2)=15×16×17,∴n =15.故倒数第二层为第14层,该层茭草总束数为14×152=105.答案:B2.《X 丘建算经》卷上第23题:今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?意思是:现有一女子善于织布,若第1天织5尺布,从第2天起,每天比前一天多织相同量的布,现在一月(按30天计)共织930尺布(注:1匹=10丈,1丈=10尺),则每天比前一天多织( ) A.47尺布 B.5229尺布 C.815尺布 D.1631尺布 解析:设公差为d ,则由a 1=5,S 30=30×5+30×292d =930,解得d =5229.答案:B3.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为: 第一步:构造数列1,12,13,14,…,1n.第二步:将数列①的各项乘以n ,得数列(记为)a 1,a 2,a 3,…,a n . 则a 1a 2+a 2a 3+…+a n -1a n 等于( ) A .n 2B .(n -1)2C .n (n -1)D .n (n +1)解析:a 1a 2+a 2a 3+…+a n -1a n =n 1·n 2+n 2·n 3+…+n n -1·n n =n 2⎣⎢⎡⎦⎥⎤11·2+12·3+…+1n -1n =n 2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =n 2·n -1n =n (n -1). 答案:C4.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九面一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( ) A .d ≈ 3169VB .d ≈ 32V C .d ≈ 3300157VD .d ≈ 32111V解析:由球体积公式得d = 36πV ≈31.909 860 93V .因为169≈1.777 777 78,300157≈1.910 82803,2111≈1.909 090 91.而2111最接近于6π,所以选D.答案:D5.(2016·河西五市二联)我国明朝著名数学家程大位在其名著《算法统宗》中记载了如下数学问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯,”诗中描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,那么塔顶有________盏灯.( ) A .2 B .3 C .5D .6解析:本题可抽象为一个公比为2的等比数列{a n }.∵S 7=a 11-271-2=381,∴可解得a 1=3,即塔顶有3盏灯,故选B. 答案:B6.(2017·某某调研)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x 、3、1的长方体,∴组合体的体积V =V 圆柱+V 长方体=π·(12)2×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B. 答案:B7.《九章算术》是我国古代著名数学经典,其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB =1尺,弓形高CD =1寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈=10尺=100寸,π≈3.14,sin 22.5°≈513)A .600立方寸B .610立方寸C .620立方寸D .633立方寸解析:连接OA ,OB ,OD ,设⊙O 的半径为R ,则(R -1)2+52=R 2,∴R =13.sin ∠AOD =AD AO =513.∴∠AOD ≈22.5°,即∠AOB ≈45°.故∠AOB ≈π4.∴S 弓形ACB =S扇形OACB-S △OAB =12×π4×132-12×10×12≈6.33平方寸.∴该木材镶嵌在墙中的体积为V =S 弓形ACB ×100≈633立方寸.选D.答案:D8.(2017·某某模拟)李冶( 1192—1279),真定栾城(今某某省某某市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算) ( ) A .10步,50步 B .20步,60步 C .30步,70步D .40步,80步解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.故选B. 答案:B 二、填空题9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为________升.解析:设该数列{a n }的首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.答案:676610.“中国剩余定理”又称“孙子定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2 016这2 016个数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列的项数为________.解析:能被3除余1且被5除余1的数就是能被15除余1的数,故a n =15n -14.由a n =15n -14≤2 016,解得n ≤4063,又n ∈N *,故此数列的项数为135.答案:13511.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1, 3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 解析:由题意可得a n =1+2+3+…+n =n n +12,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15,由上述规律可知:b 2k =a 5k =5k5k +12(k 为正整数),b 2k -1=a 5k -1=5k -15k -1+12=5k5k -12, 故b 2 012=b 2×1 006=a 5×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项. 答案:(1)5 030 (2)5k5k -1212.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是,两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.现有下题:在xOy 平面上,将两个半圆弧(x -1)2+y 2=1(x ≥1)和(x -3)2+y 2=1(x ≥3)、两条直线y =1和y =-1围成的封闭图形记为D ,如图所示阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,y )(|y |≤1)作Ω的水平截面,所得截面面积为4π1-y 2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为________.解析:根据提示,一个底面半径为1,高为2π的圆柱平放,一个高为2,底面积为8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积为π·12·2π+2·8π=2π2+16π. 答案:2π2+16π传统文化训练二一、选择题1.(2017·某某模拟)《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为( ) A.176升 B.72升 C.11366升 D.10933升 解析:自上而下依次设各节竹子的容积分别为a 1,a 2,…,a 9,依题意有⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,因为a 2+a 3=a 1+a 4,a 7+a 9=2a 8,故a 2+a 3+a 8=32+43=176.选A.答案:A2.(2017·某某模拟)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数N 除以正整数m 后的余数为n ,则记为N ≡n (mod m ),例如11≡2(mod 3).现将该问题以程序框图给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .24解析:当n =21时,21被3整除,执行否.当n =22时,22除以3余1,执行否; 当n =23时,23除以3余2,执行是;又23除以5余3,执行是,输出的n =23.故选C. 答案:C3.(2017·某某模拟)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有90钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有________钱.( ) A .28 B .32 C .56D .70解析:设甲、乙、丙三人各持有x ,y ,z 钱,则⎩⎪⎨⎪⎧x +y +z 2=90y +x +z 2=70z +x +y 2=56,解方程组得⎩⎪⎨⎪⎧x =72y =32z =4,所以乙手上有32钱. 答案:B4.(2017·某某模拟)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD .且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x3,所以PR =PQ 2+QR 2=x32+3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66x -322+34,故选A.答案:A5.欧拉公式e i x=cos x +isin x 是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,复数e π4i·e 3π4i +(1+i)2的虚部是( )A .-1B .1C .-2D .2解析:依题意得,e π4i·e 3π4i +(1+i)2=(cos π4+isin π4)(cos 3π4+isin 3π4)+2i =-1+2i ,其虚部是2,选D. 答案:D6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A .2B .3C .4D .5解析:程序运行如下:n =1,a =5+52=152,b =4,a >b ,继续循环;n =2,a =152+12×152=454,b =8,a >b ,继续循环;n =3,a =454+12×454=1358,b =16,a >b ,继续循环;n =4,a =1358+12×1358=40516, b =32,此时,a <b .输出n =4,故选C.答案:C7.(2017·某某中学调研)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日解析:由题易知良马每日所行里数构成一等差数列其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n a 1+a n2+n b 1+b n2=2 250,即n 103+13n +902+n 97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.答案:D8.埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式,例如25=13+115,可以这样理解:假定有两个面包,要平均分给5个人,若每人分得一个面包的12,不够,若每人分得一个面包的13,还余13,再将这13分成5份,每人分得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145,按此规律,2n=( )A.2n +1+2n n +1 B.1n +1+1n n +1C.1n +2+1nn +2 D.12n +1+12n +12n +3解析:根据分面包原理知,等式右边第一个数的分母应是等式左边数的分母加1的一半, 第二个数的分母是第一个数的分母与等式左边数的分母的乘积,两个数的原始分子都是1, 即2n =1n +12+1nn +12=2n +1+2n n +1.故选A. 答案:A 二、填空题9.某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项和,他设计了一个程序框图,则满足条件的整数P 的值为________.解析:由题意,第1次循环:a =0,b =1,i =3,S =0+1=1,求出第3项c =1,求出前3项和 S =0+1+1=2,a =1,b =1,满足条件,i =4,执行循环体;第2次循环:求出第4项c =1+1=2,求出前4项和S =0+1+1+2=4,a =1,b =2,满足条件,i =5,执行循环体,…… 第8次循环:求出第10项c ,求出前10项和S ,此时i =10,由题意不满足条件,跳出循环,输出S 的值,故判断框内应为“i ≤9?”,所以P 的值为9.答案:910.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n n +12=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n ,……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:由N (n,4)=n 2,N (n,6)=2n 2-n ,…,可以推测:当k 为偶数时,N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k2-2n ,于是N (n,24)=11n 2-10n ,故N (10,24)=11×102-10×10=1 000.答案:1 00011.(2017·某某模拟)辗转相除法,又名欧几里得算法,乃求两个正整数之最大公因子的算法.它是已知最古老的算法之一,在中国则可以追溯至东汉时期出现的《九章算术》.图中的程序框图所描述的算法就是欧几里得辗转相除法.若输入m =5 280,n =12 155,则输出的m 的值为________.解析:通解:依题意,当输入m =5 280,n =12 155时,执行题中的程序框图,进行第一次循环时,m 除以n 的余数r =5 280,m =12 155,n =5 280,r ≠0;进行第二次循环时,m 除以n 的余数r =1 595,m =5 280,n =1 595,r ≠0;进行第三次循环时,m 除以n 的余数r =495,m =1 595,n =495,r ≠0;进行第四次循环时,m 除以n 的余数r =110,m =495,n =110,r ≠0;进行第五次循环时,m 除以n 的余数r =55,m =110,n =55,r ≠0;进行第六次循环时,m 除以n 的余数r =0,m =55,n =0,r =0,此时结束循环,输出的m 的值为55.优解:依题意,注意到5 280=25×3×5×11,12 155=5×11×221,因此5 280与12 155的最大公因子是55,即输出的m 的值为55.答案:5512.(2017·某某模拟)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [2a +c b +2c +a d +d -b ]6个,假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为________个.解析:根据题意可知,a =2,b =1,n =15,则c =2+14=16,d =1+14=15,代入题中所给的公式,可计算出木桶的个数为15×20+34×15+146=1 360. 答案:1 360。

人教版数学高二 数学A版必修五导学案第二章 数列(复习)

人教版数学高二 数学A版必修五导学案第二章 数列(复习)

第二章 数列(复习)1. 系统掌握数列的有关概念和公式;2. 了解数列的通项公式n a 与前n 项和公式n S 的关系;3. 能通过前n 项和公式n S 求出数列的通项公式n a .一、课前准备(复习教材P 28 ~P 69,找出疑惑之处)(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.(5)等差、等比数列的前n 项和公式及其推导方法.二、新课导学※ 学习探究1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.3. 求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.5. 数列求和主要:(1)逆序相加;(2)错位相消;(3)叠加、叠乘;(4)分组求和;(5)裂项相消,如111(1)1n n n n =-++.※ 典型例题例1在数列{}n a 中,1a =1,n ≥2时,n a 、n S 、n S -12成等比数列. (1)求234,,a a a ; (2)求数列{}n a 的通项公式.例2已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对任意正整数n ,均有3121123n n nc c c c a b b b b ++++⋯⋯+=, 求c 1+c 2+c 3+…+c 2004的值.※ 动手试试练 1. 等差数列{}n a 的首项为,a 公差为d ;等差数列{}n b 的首项为,b 公差为e . 如果(1)n n n c a b n =+≥,且124,8.c c == 求数列{}n c 的通项公式.练2. 如图,作边长为a 的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,求前n 个内切圆的面积和.练3. 一个蜂巢里有1只蜜蜂,第1天,它飞出去回了5个伙伴; 第2天, 6只蜜蜂飞出去,各自找回了5个伙伴,……,如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.A. 55986B. 46656C. 216D. 36三、总结提升 ※ 学习小结1. 数列的有关概念和公式;2. 熟练掌握有关概念和公式并能灵活运用,培养解决实际问题的能力.※ 知识拓展数列前n 项和重要公式:2222(1)(21)1236n n n n +++++=; 3332112[(1)]2n n n ++=+ 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 集合{}*21,,60M m m n n N m ==-∈<的元素个数是( ). A. 59 B. 31 C. 30 D. 292. 若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是( ).A .648B .832C .1168D .19443. 设数列{}n a 是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1B. 2C. 4D. 84. 已知等差数列245,4,3, (77)的前n 项和为n S ,则使得n S 最大的序号n 的值为 . 5. 在小于100的正整数中,被5除余1的数的个数有 个;这些数的和是1. 观察下面的数阵, 容易看出, 第n 行最右边的数是2n , 那么第20行最左边的数是几?第20行所有数的和是多少?12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25… … … … … …2. 选菜问题:学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的,下星期一会有20% 改选B 种菜;而选B 种菜的,下星期一会有30% 改选A 种菜. 用,n n a b 分别表示在第n 个星期选A 的人数和选B 的人数,如果1300,a = 求10a .。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

2024届高三数学二轮专题复习数列求和—裂项相消法教学设计

高三二轮复习数列求和—裂项相消法教学设计内容教学目的掌握裂项相消求和的使用环境及一般过程和思路.教学重点难点识别裂项相消求和的使用环境.如何裂项?如何相消?教学过程过程一、强调本微课学习内容,学习目标,重难点,易错点。

学习目标:掌握裂项相消求和的使用环境及一般过程和思路.学习重点:识别裂项相消求和的使用环境.学习难点:如何裂项?如何相消?易错点:裂项时忘记配平,相消时留下哪些项?过程二、通过熟悉的典型例子入手,引导学生回顾裂项相消的具体类型。

裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n项和.看下面两个例子:)211(2121+-=+nnnn)(⎪⎭⎫⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-++⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=+++⨯+⨯+⨯211121121211......513141213112121......531421311nnnnnn)(()()))2)(1(1)1(1(21211++-+=++nnnnnnn()()⎪⎪⎭⎫⎝⎛++-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++-+++⎪⎭⎫⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=++++⨯⨯+⨯⨯+⨯⨯)2)(1(12121)2)(1(1)1(1......43132132121121211......543143213211nnnnnnnnn过程三、因为是二轮专题复习,学生经过一轮的复习,对于裂项的方法有一定的理解,在此基础上直接点出裂项的四种基本类型,并强调裂项的常用方法为通分的逆运算,分母有理化,对数的运算等。

本质是恒等变形,运用化归与转化思想、等式思想。

等差型:1a n a n+1=1d(1a n-1a n+1),其中a n≠0,d≠0. . (通分的逆运算)指数型:(a-1)a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b. (通分的逆运算)无理型:1a+b=1a-b(a-b)(a>0,b>0). (分母有理化)对数型:log n a n +1a n=log n a n +1-log n a n (a n >0). (对数的运算法则)过程四、对照四种类型,分别用4道典型例题进行讲解与说明,并敲掉裂项时要配平,求和相消时要注意消去哪些项,剩下哪些项。

2020届数学(理)高考二轮专题复习课件:第二部分 专题二 第2讲 数列的求和及综合应用


[思维升华] 1.给出 Sn 与 an 的递推关系求 an,常用思路是:一 是利用 Sn-Sn-1=an(n≥2)转化为 an 的递推关系,再求其 通项公式;二是转化为 Sn 的递推关系,先求出 Sn 与 n 之 间的关系,再求 an. 2.形如 an+1=pan+q(p≠1,q≠0),可构造一个新的 等比数列.
解:(1)设等差数列{an}的公差为d,等比数列{bn}的 公比为q.
依题意,得33qq=2=31+5+2d4,d,解得dq==33,, 故an=3+3(n-1)=3n,bn=3×3n-1=3n. 所以{an}的通项公式为an=3n,{bn}的通项公式为bn =3n. (2)a1c1+a2c2+…+a2nc2n=(a1+a3+a5+…+a2n-1) +(a2b1+a4b2+a6b3+…+a2nbn)= n×3+n(n2-1)×6 +(6×31+12×32+18×33+…+6n×3n)=3n 2+6(1×31 +2×32+…+n×3n).
记Tn=1×31+2×32+…+n×3n,① 则3Tn=1×32+2×33+…+n×3n+1,② ②-①得,2Tn=-3-32-33-…-3n+n×3n+1= -3(11--33n)+n×3n+1=(2n-1)2 3n+1+3.
所以a1c1+a2c2+…+a2nc2n =3n2+6Tn =3n2+3(2n-12)·3n+1+9 =(2n-1)·32n+2+6n2+9.
从近年高考看,本讲主要考查的内容:(1)以等差(比) 数列为背景,考查等差(比)的通项与求和公式、分组转 化求和;(2)以简单的递推关系为背景,考查错位相减、 裂项相消、倒序相加等求和的基本方法.主要以解答题 的形式呈现,中档难度,且常与函数、不等式知识交 汇.
【例 1】 设数列{an}的前 n 项和为 Sn,对任意的正 整数 n,都有 an=5Sn+1 成立,bn=-1-log2|an|,数列 {bn}的前 n 项和为 Tn,cn=TbnTn+n1+1.

数列的单调性讲义-高三数学二轮专题复习

数列的单调性所谓数列,由前面的基础知识可知,实则就是函数图像上一个个孤立的点,而单调性作为函数最重要的性质之一,自然而然的单调性也是数列的一个基本性质之一.本节就数列的单调性问题进行相关总结.一、研究数列单调性的基本方法1、 作差法:例1、已知数列{a n }满足a n =n+12n ,证明:数列{a n }单调递减. 证明:∵a n =n+12n ∴a n+1=n+22n+1.则a n+1−a n =n+22n+1−n+12n =−n 2n+1<0恒成立故数列{a n }单调递减2、 作商法:例2、已知a n =(n +1)(1011)n (n ∈N ∗),证明:数列{a n }先递增后递减.证明:令a n a n−1≥1(n ≥2) 即(n+1)(1011)n n∙(1011)n−1≥1整理得:n+1n≥1110,得n ≤10 同理,令a n a n+1≥1 即(n+1)(1011)n (n+2)∙(1011)n+1≥1整理得:n+1n+2≥1011,得n ≥9∴{a n }从第1项到第9项递增,从第10项开始递减,得证.3、 函数法(导数法)例4、记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求数列{}n a 的通项公式;(2)求n S ,并求n S 的最小值.解:(1)略(29n a n =-)(2) 方法一:我们可以借助一个二次函数函数()28,0f x x x x =-≥,很明显这个函数在[)0,4上单调递减,在[)4,+∞上单调递增,那么可以得到最小值()()min 416f x f ==-,从而2=8n S n n -的最小值为416S =-.方法二:由于数列{}n a 的通项公式29n a n =-,可以借助函数()29,0f x x x =-≥.在90,2⎡⎫⎪⎢⎣⎭,()0f x <;在9,2⎡⎫+∞⎪⎢⎣⎭,()0f x ≥,所以数列{}n a 的前4项均为负数,故而n S 的最小值为416S =-.变式:(1)如果一个数列的前n 项和为2=9n S n n -,那么求n S 取得最小值时序号n 是多少?很显然,4n =或5n =.(取得最值时为n =4.5,但n 只能取整数)(2)在(1)的前提下,求n nS 取得最小值时序号n 是多少?可以借助函数()329,0f x x x x =-≥,求导()'23183(6),0f x x x x x x =-=-≥.()f x 在[)0,6单调递减,在[)6,+∞上单调递增,从而()()min 6108f x f ==-.故而n nS 取得最小值时序号n 是6.例5、已知单调递增数列{}n a 的通项公式()2,4,01,6,4n n a n a a a a n a n -⎧<⎪=>≠⎨--≥⎪⎩其中且求a 的取值范围.解:这一个题我们很容易想到这样题目:设()y f x =在R 上是的一个增函数,且()()2,4,01,6,4x a x f x a a a x a x -⎧<⎪=>≠⎨--≥⎪⎩其中且 求a 的取值范围.只需要()4216064a a a a a -⎧>⎪->⎨⎪≤-⋅-⎩,可以求得a 的范围是(]1,3.对于数列{}n a 就有一点问题,因为数列在直角坐标系所对应的点是不连续的限制条件应该为34160a a a a >⎧⎪->⎨⎪<⎩,即()3216064a a a a a -⎧>⎪->⎨⎪<-⋅-⎩,求得a 的范围是()1,4.变式:(1)设函数f (x )={(a −2)x ,x ≥2,(12)x −1,x <2,,a n =f(n),若数列{}n a 是递减数列,求实数a 的取值范围.由题意()()2012a f f -<⎧⎪⎨>⎪⎩即可,可得a 的取值范围7,4⎛⎫-∞ ⎪⎝⎭. (2)已知数列{}n a 中,()()*11,,021n a n N a R a a n =+∈∈≠+-.对任意的*n N ∈,都有6n a a ≤成立,求a 的取值范围.由题意,可借助函数()()112112212f x a a x x =+=+-+-- 在2,2a -⎛⎫-∞ ⎪⎝⎭,2,2a -⎛⎫+∞ ⎪⎝⎭单调递减 再结合数列的离散性特点,可得限制条件2562a -<<,得到a 的范围为()10,8--. 总结:我们在利用函数与数列共性来解题时,还要注意数列的特殊性(离散性),它的图像是一系列孤立的点,而不像我们研究过的初等函数一般都是连续的曲线,因此在解题中应该充分利用这一特殊性.在研究数列单调性时,只要这些点每个比它的前一个点高(即1n n a a +<),则图象呈上升趋势;反之,呈下降趋势.二、课后练习1、 已知c n =(n +1)1n+1,则数列c n 的最大值为:_______.2、已知f (x )={(3−a )x −3,x ≤7,a x−6,x >7,,数列a n =f(n)(n ∈N ∗),且a n 是递增数列,则a 的取值范围为:_________.1、解:令f (x )=ln x x则f’(x)=1−ln xx2当x≥3时,ln x>1,1−ln x<0,f’(x)<0在[3,+∞)内,f(x)单调递减所以当n≥2时,{ln c n}单调递减即c n是递减数列又∵c1<c2,所以c max=c2=√33.2、解:由题意得:{3−a>0f(8)>f(7),解得a∈(2,3)。

2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)

所以

类型2递推公式为
解法:把原递推公式转化为 ,利用累乘法(逐商相乘法)求解。
例5.已知数列 满足 , ,求 。
解析:由条件知 ,分别令 ,代入上式得 个等式累乘之,即
又 ,
点评:由 和 确定的递推数列 的通项可如下求得:
由已知递推式有 , , , 依次向前代入,得

简记为 ,这就是叠(迭)代法的基本模式。
2010年高三数学第二轮专题复习——数列通项的求法
考纲要求:
1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式);
2.能够依据数列的前几项归纳出其通项公式;
3.会应用递推公式求数列中的项或.通项;
4.掌握已知 的一般方法和步骤.
考点回顾:
回顾近几年高考,对数列概念以及通项一般很少单独考查,往往与等差、等比数列或者与数列其它知识综合考查.一般作为考查其他知识的铺垫知识,因此,如果这一部分掌握不好,对解决其他问题也是非常不利的.
题型3.应用 与 的关系求通项
有些数列给出{ }的前n项和 与 的关系式 = ,利用该式写出 ,两式做差,再利用 导出 与 的递推式,从而求出 。
例3.已知数列 的前 项和 满足 .求数列 的通项公式.
分析:由前n项和 与 的关系即可求得.
解析:由
当 时,有
……,
经验证 也满足上式,所以
点评:利用公式 求解时,要注意对n分类讨论,但若能合写时一定要合并.
7.在数列 中, ,则 =()
A.5 B.-5 C.1 D.-1
8.已知数列 满足 ,则 ()
A.2010 2009 B.2011 2010 C.2009 2008 D.2009 2009
9.已知数列 的通项公式分别为 ,(a、b为常数)且a>b,那么两个数列中序号与数值均相同的项的个数为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时 简单递推数列、数学归纳法应用
主干知识整合
1.数列的连续若干项满足的等量关系
an+k=f(an+k-1,an+k-2,…,an)称为数列的递推关系.由递推关系及k个初始值可以确定的一个数列叫做递推数列.
2.求递推数列的通项的分析方法有:
(1)归纳——猜想——数学归纳法证明.
(2)作新数列.最常见的是构成等差数列或等比数列来解决问题.
变式题如图2-9-1所示,一粒子在区域{(x,y)|x≥0,y≥0}上运动,在第一秒内它从原点运动到点B1(0,1),接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个单位长度.
(1)设粒子从原点到达点An、Bn、Cn时,所经过的时间分别为an、bn、cn,试写出{an}、{bn}、{cn}的通项公式;
(3)累加法,累乘法,迭代法.
3.数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是递推的依据.实际上它使命题的正确性突破了有限,达到无限.证明关键是k+1步的推证,要有目标意识.
真题新题探究
【解】 (1)∵Sn=-n2+9n+2 (n∈N*),∴当n=1时,a1=S1=10,
当时n≥2时,an=Sn-Sn-1=(-n2+9n+2)-[-(n-1)2+9(n-1)+2]=10-2n,
∴ ∴数列{an}不是等差数列.
(2)由 ,可知:当n≤5时,|an|=an, 当n>5时,|an|=-an.∴当n≤5时,
当n≥2时bn= = = >0,
Tn=b1+b2+…+bn= + = .
由bn>0(n∈N*)可知:Tn随n的增大而单调递增.所以要使不等式Tn< 对一切自然数n总成立,只需 Tn≤ .
又 Tn= = ,所以满足题意的自然数n0=24.
【评析】 利用前n项和Sn与通项an的关系求通项公式时,要注意n=1时的特殊情况.
【例2】2005年·全国卷Ⅰ设正项等比数列{an}的首项a1= ,前n项和为Sn,且.210S30-(210+1)S20+S10=0.
(1)求{an}的通项;
(2)求{nSn}的前n项和Tn.
【分析】 第(1)问中关键是求出公比q,然后写出{an}的通项.第(2)问利用错位相减法求和.
【解】 (1)由210S30-(210+1)S20+S10=0 得210(S30-S20)=S20-S10,
且S1=1,S2= ,求数列{an}的通项公式.
【分析】 根据Sn-Sn-2= (n≥3)的特点,因此要对n分奇数,偶数两种情况进行讨论.
【解】 方法一:先考虑偶数项有:
S2n-S2n-2= =
S2n-2-S2n-4= =
………
S4-S2= = .
∴S2n=S2-3[ + +…+ ]
=-3[ + +… + ]=-3 =-4[ ]=-2+ (n≥1).
所以aij=a1jqi-1=[a11+(j-1)d]qi-1=j( )i.
(2)A1=a11+a12+a13+…+a18=( +4)×4=18.
Ak=ak1+ak2+ak3+…+ak8
=qk-1(a11+a12+a13+…+a18)= ;
(3)∵Ak<1,∴ <1,∴k≥6,又k≤8,∴k值为6,7,8.
即210(a21+a22+…+a30)=a11+a12+…+a20, 可得 210·q10(a11+a12+…+a20) =a11+a12+…+a20.
因为an>0,所以 210q10=1,解得q= ,因而an=a1qn-1= ,n=1,2,….
(2)因为{an}是首项a1= 、公比q= 的等比数列,
专题二数列
知识网络图解
考题分析及命题趋势
数列是函数概念的继续和延伸,是定义在正整数集或它的子集{1,2,…,n}上的函数.对于公差不为零的等差数列而言,可以把它看作正整数n的“一次函数”,前n项和是正整数n的“二次函数”,公比不为1的等比数列可看作正整数n的“指数函数”.因此,学过数列后,一方面加深了对函数概念理解,拓宽了学生的知识范围;另一方面也为今后学习高等数学知识和解决现实生活中的一些实际问题打下了基础.数列的题目形态多变,蕴涵丰富的数学思想和方法,是高考的热点之一.
【例1】2005年·全国卷Ⅱ如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则( B )
A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a5
【解析】∵a8=a1+7d,a4=a1+3d,a5=a1+4d,∴a1·a8=a +7a1d,a4·a5=a +7a1d+12d2.
同理考虑奇数项有:
S2n+1-S2n-1= = .
S2n-1-S2n-3= =
………
S3-S1= = .
S2n+1=S1+3[ + +…+ ]=2- (n≥1).
a2n+1=S2n+1-S2n=2- -(-2+ )=4- (n≥1).
a2n=S2n-S2n-1=-2+ -(2- )=-4+ (n≥1).
变式题(理)2005年·湖南已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
=( )
A.2 B. C.1 D.
【例3】 已知数列{an}的前n项和Sn=-n2+9n+2(n∈N*).
(1)判断数列{an}是否为等差数列;
(2)设Rn=|a1|+|a2|+…+|an|,求Rn;
变式题2005年·上海用n个不同的实数a1,a2,…,an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi=-ai1+2ai2-3ai3+…+(-1)nnain,i=1,2,3,…,n!.用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120=.
故Sn= =1- ,nSn=n- .
则数列{nSn}的前n项和Tn=(1+2+…+n)-( + +…+ ),
= (1+2+…+n)-( + +…+ + )
两式相减,得
= (1+2+…+n)-( + +…+ +)+ = - +
即Tn= + + -2.
【评析】 本题考查等比数列的基础知识,考查分析问题能力和推理能力.
(2)求粒子从原点运动到点P(16,44)时所需的时间;
(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标.图2-9-1
【例3】 (9理)2005年·重庆数列{an}满足a1=1且an+1= (n≥1).
a1=S1=1.
综合可得 ,
方法二:因为Sn-Sn-2=an+an-1, 所以an+an-1= (n≥3), 两边同乘以(-1)n,可得:
(-1)nan-(-1)n-1an-1= =
设bn=(-1)nan,∴bn-bn-1= (n≥3).
所以bn-bn-1= ,
bn-1-bn-2= ,
……
b3-b2= ,
(文)2005年·湖南已知数列{an}满足a1=0,an+1= (n∈N*),则a20=(B)
A.0 B. - C.Байду номын сангаасD.
【解析】a1=0,a2=- ,a3= ,a4=0,a5=- ,a6= ,…,∴an+3=an,∴a20=a3=- .
【评析】本题考查递推数列,注意它的周期性.
【例2】2005年·江西已知数列{an}的前n项和Sn满足Sn-Sn-2= (n≥3),
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
方法技巧提炼
1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.
2.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,借助“基本量法”树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.
∵d≠0∴d2>0,∴a1a8<a4a5
【评析】 利用等差数列通项公式写出a4,a5,a8,然后计算a1a8,a4a5,再比较大小.防止与等比数列的性质混淆,错选为D.
变式题设{an}(n∈N*)是等差数列,其公差为d,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是( )
A.d<0 B.a7=0C.S9>S5D.S6与S7均为Sn的最大值
(理)(3) 设bn= (n∈N*),
Tn=b1+b2+…+bn,是否存在最小的自然数n0,使得不等式Tn< 对一切自然数n总成立?如果存在,求出n0的值;如果不存在,说明理由.
相关文档
最新文档