2020-2021学年上海六年级数学下册教材同步练习(沪教版)5.3 绝对值逐题详解
2022年精品解析沪教版(上海)六年级数学第二学期第五章有理数同步练习试题(含答案及详细解析)

沪教版(上海)六年级数学第二学期第五章有理数同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、6-的相反数是()A .16B .16-C .6D .6±2、北京时间2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭或功分离,进入预定轨道,顺利将翟志刚、王亚平、叶光富3名航天员送入太空,飞行约182000千米后对接于天和核心舱节点舱面向地球一侧的径向对接口.其中182000用科学记数法表示为()A .51.8210⨯B .518.210⨯C .418.210⨯D .60.18210⨯3、一天有86400秒,将86400用科学计数法表示为( )A .50.86410⨯B .48.6410⨯C .38.6410⨯D .286.410⨯4、下列互为倒数的一对是( )A .﹣5与5B .8与0.125C .213与312D .0.25与﹣45、2021年4月29日11时23分,空间站天和核心舱发射升空.7月22日上午8时,核心舱组合体轨道近地点高度约为384000米,用科学记数法表示384000应为()A .53.8410⨯B .63.8410⨯C .438.410⨯D .338410⨯6、为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是()A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯7、若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则202220222021a b c ++的值为()A .2B .0C .2021D .20228、数轴上表示1,-1,-5,2这四个数的点与原点距离最远的是()A .1B .-1C .-5D .29、湖南省第十一次党代会以来,我省6820000建档立卡贫困人口全部脱贫.数据6820000用科学记数法表示正确的是()A .66.8210⨯B .568.210⨯C .56.8210⨯D .70.68210⨯10、下列各组数中,运算结果相等的是( )A .(﹣3)2与﹣32B .(﹣3)3与﹣33C .32()3-与323- D .34与43第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作100+元,那么80-元表示________.2、张大伯将5000元存入银行,月利率是0.32%,存满6个月后,张大伯将这笔钱取出,他能得到本利和是___元.(不计利息税)3、如果ab cd =ad ﹣bc ,那么当a =53,b =3,c =34,d =214时,ab cd =_______. 4、长兴岛郊野公园的面积约为29000000平方米,这个面积用科学记数法表示_____平方米.5、一种大豆每千克含油425千克,58千克这样的大豆含油__________千克. 三、解答题(5小题,每小题10分,共计50分)1、把下列各数填入它所属的集合中:﹣1,0,12,+3.4,﹣23,|﹣0.3|,﹣(﹣4),64%,﹣|5|.正分数集合:{ …};非负有理数集合:{ …};负整数集合:{ …}.2、计算:412|5|(3)26⎡⎤-+---÷+⎢⎥⎣⎦.3、用运算律计算:(1)20.96+(﹣1.4)+(﹣13.96)+1.4.(2)22525(92)()311199696-⨯-+-⨯+⨯.(3)阅读下题的计算方法: 计算:1231()()12346-÷-+ 分析:利用倒数的意义,先求出原式的倒数,再得原式的值. 解:2311()()34612-+÷- =231()(12)346-+⨯- =﹣8+9﹣2=﹣1所以原式=﹣1根据材料提供的方法,尝试完成计算:1231 ()()20542-÷-+.4、计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(1572912-+)×(﹣36);(4)1551121()2()1 277225⨯--⨯+-÷.5、简便运算:12324112 1.25104555⨯-⨯+÷-参考答案-一、单选题1、C【分析】利用相反数的性质直接解答即可.【详解】解:-6的相反数是6,故选:C.【点睛】本题考查了相反数,掌握相反数的性质是解题的关键.2、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:182000=1.82×105.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.3、B【分析】将一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,这种记数方法叫科学记数法,由科学记数法的定义表示即可.【详解】4=⨯864008.6410故选:B.【点睛】用科学记数法表示较大的数时,注意a×10n中a的范围是1≤a<10,n是正整数,n与原数的整数部分的位数m的关系是m-1=n,反过来由用科学记数法表示的数写出原数时,原数的整数部分的数位m 比10的指数大1(即m=n+1).4、B【分析】根据倒数的定义判断.【详解】解:A、﹣5×5≠1,选项错误;B、8×0.125=1,选项正确;C、2325111326⨯=≠,选项错误;D、0.25×(﹣4)≠1,选项错误.故选:B.【点睛】本题主要考查倒数,熟练掌握倒数的定义是解题的关键.5、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:384000=53.8410⨯,故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【分析】先把66799精确到千分位,再根据科学记数法的表示形式表示即可.【详解】∵75>,∴66799精确到千分位为67000,∴467000 6.710=⨯.故选:B .【点睛】本题考查近似数与科学记数法,掌握科学记数法的表示形式是解题的关键.7、A【分析】先根据题意求出a ,b ,c 的值,然后代入202220222021a b c ++计算即可.【详解】解:∵a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴a =-1,b =0,c =1,∴202220222021a b c ++=()202220221202101-+⨯+=1+0+1=2,故选A .【点睛】本题考查了绝对值的意义,倒数的定义,以及有理数的混合运算,熟练掌握有理数的运算法则是解答本题的关键.8、C【分析】求出各数的绝对值,比较大小即可.【详解】解:1,-1,-5,2这四个数的绝对值分别为:1,1,5,2,绝对值越大,离原点越远,所以,-5与原点距离最远,故选:C .【点睛】本题考查了绝对值的意义,解题关键是明确在数轴上,离原点越远,绝对值越大.9、A【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】6820000=66.8210⨯.故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.10、B【分析】根据有理数乘方的性质,对各个选项逐个分析,即可得到答案.【详解】A 、(﹣3)2=9,﹣32=﹣9,故本选项错误;B 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;C 、32()3-=827- ,323-=83-,故本选项错误; D 、34=81,43=64,故本选项错误;故选:B.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.二、填空题1、支出80元【分析】根据正数和负数表示相反意义的量,可得答案.【详解】元”表示支出80元,“收入100元”记作“+100元”,那么“80故答案为:支出80元.【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.2、5096【分析】先求出利息公式是本金×利率×期数,再求本金+利息的和即可.【详解】解:利息=5000×0.32%×6=96元,∴本息和:5000+96=5096元,他能得到本利和是5096元.故答案为:5096.【点睛】本题考查本金与利息问题,掌握利息的计算公式为本金×利率×期数,本息和=本金+利息是解题关键.3、32【分析】原式利用题中的新定义计算即可求出值.【详解】解:根据题中的新定义得:原式=ad -bc ,当a =53,b =3,c =34,d =214时,原式=59315933344442⨯-⨯=-=, 故答案为:32.【点睛】本题考查了有理数的四则混合运算,熟练掌握运算法则是解本题的关键.4、72.910⨯【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.9a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到2的后面,所以7.n =【详解】解:2900000072.910故答案为:72.910⨯【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.5、1 10【分析】根据分有理数的乘法解决此题.【详解】解:由题意得:58千克这样的大豆含油量为425×58=110(千克).故答案为:110.【点睛】本题考查了分数的乘法,熟练掌握分数的乘法法则是解决本题的关键.三、解答题1、12,+3.4,|﹣0.3|,64%;0,12,+3.4,|﹣0.3|,﹣(﹣4),64%;﹣1,﹣|5|.【分析】根据有理数的分类方法即可得到结果.【详解】解:正分数集合:{12,+3.4,|﹣0.3|,64%,…};非负有理数集合:{0,12,+3.4,|﹣0.3|,﹣(﹣4),64%,…};负整数集合:{﹣1,﹣|5|…}.【点睛】此题考查了有理数的分类,掌握有理数的分类是本题的关键,注意整数、0、正数之间的区别:0是整数但不是正数.2、5【详解】解:412|5|(3)26⎡⎤-+---÷+⎢⎥⎣⎦ 1653621118211165=-+=【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序:先乘方,再乘除,最后算加减,有括号先算括号内的运算. 3、(1)7;(2)16;(3)13-. 【分析】(1)利用加法交换律,根据有理数加减法法则计算即可得答案;(2)利用乘法分配律,根据有理数混合运算法则计算即可得答案;(3)利用倒数的意义,先求出原式的倒数,再得原式的值即可得答案.(1)20.96+(﹣1.4)+(﹣13.96)+1.4=20.96﹣13.96+1.4﹣1.4=7.(2)22525(92)()311199696-⨯-+-⨯+⨯=22525 923111 99696⨯-⨯+⨯=255 (923111) 966⨯-+=25592(3111) 966⎡⎤⨯--⎢⎥⎣⎦=272 9⨯=16.(3)2311 ()() 54220-+÷-=231()(20) 542-+⨯-=231(20)(20)(20) 542⨯--⨯-+⨯-=81510 -+-=3-∴原式=13 -.【点睛】本题考查有理数的混合运算及运算律,熟练掌握加法交换律和乘法分配律是解题关键.4、(1)-27(2)52(3)-19(4)5 2【解析】(1)解:﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29-24=-56+29=-27;(2)解:4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)解:(1572912-+)×(﹣36) =()()()1573636362912⨯--⨯-+⨯- =-18+20-21=2-21=-19;(4) 解:1551121()2()1277225⨯--⨯+-÷ =551+277355227⨯⨯-⨯=551+72223⎛⎫⨯-⎪⎝⎭=57 72⨯=52.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.5、20【分析】将除法变为乘法,再根据乘法分配律简便计算即可求解.【详解】解:12324 112 1.2510 4555⨯-⨯+÷525325121045454=⨯-⨯+⨯5232(1210)455=⨯-+5164=⨯20=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
2020-2021学年上海六年级数学下册教材同步练习(沪教版)5.4 有理数的加法逐题详解

5.4有理数的加法(作业)一、填空题1.(松江2019期中2)计算:11(2)142-+=.2.(金山2018期中10)计算:21(3+-=.3.(杨浦2019期中4)计算:512162-+=.4.(金山2018期末8)计算:312+-=.5.(普陀2018期中14)计算:317342⎛⎫--+- ⎪⎝⎭=__________.6.(2020·上海市静安区实验中学课时练习)(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________.二、解答题7.(2020·上海市静安区实验中学课时练习)计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.518.(2020·上海市静安区实验中学课时练习)计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)9.(2020·上海市静安区实验中学课时练习).10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?10.(松江2019期中26)某一出租车一天下午以辰山植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:Km)依先后次序记录如下:+10,-3,-5,+4,-8,+6,-3,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?在辰山植物园南门的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?11.(2020·上海市静安区实验中学课时练习)计算:(1)44413()()(13171317-+-++-(2)2111(4)(3)6(2)3324-+-++-12.(2020·上海市静安区实验中学课时练习)计算:1216.22[(3)]10.733-+-+---13.(2019·上海七年级课时练习)阅读下面的文字,并回答问题:1的相反数是﹣1,则1+(﹣1)=0;0的相反数是0,则0+0=0;2的相反数是﹣2,则2+(﹣2)=0,故a,b互为相反数,则a+b=0;若a+b=0,则a,b互为相反数。
2020-2021学年上海六年级数学下册教材同步练习(沪教版)5.9 有理数的混合运算解析版

5.9 有理数的混合运算(作业)一、单选题1.(2020·上海嘉烁教育培训有限公司)不列等式成立的是( ) A .()239--=B .()2139--=-C .()23622--⎡⎤-=⎣⎦D .()32622--⎡⎤-=-⎣⎦【答案】C【分析】根据幂的运算法则逐项判断即可. 【详解】A. ()2139--=,错误;B. ()2139--=,错误; C. ()()236622=2--⎡⎤-=-⎣⎦,正确;D. ()()236622=2--⎡⎤-=-⎣⎦;故选C.【点睛】 本题考查了幂的运算,熟练掌握幂的运算法则是解题的关键. 2.(2020·四川乐山市·期中)下列运算正确的是( )A .7259545--⨯=-⨯=-B .54331345÷⨯=÷= C .3(2)(6)6--=--= D .12(25)12(3)4÷-=÷-=-【答案】D【分析】A 选项先算乘法,再算减法即可求解;B 将除法变为乘法,再约分计算;C 根据乘方的计算法则计算即可求解;D 先算括号里面的减法,再计算除法; 【详解】A 、725=710=17--⨯---,故选项错误; B 、5444483=3=455525÷⨯⨯⨯,故选项错误; C 、()32=8--,故选项错误;D 、()()1225=123=4÷-÷--,故选项正确;故选:D .【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减,同级运算,应按从左到右的顺序进行计算;如果有括号的,要先计算括号里面的,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化; 3.(2020·广东广州市·期中)计算:﹣(3﹣5)+32×(1﹣3)=( ) A .20 B .﹣20C .16D .﹣16【答案】D【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值. 【详解】原式=﹣(﹣2)+9×(﹣2)=2﹣18=﹣16.故选:D.【点睛】此题考查含有乘方的有理数的混合运算,掌握有理数的计算法则是解题的关键. 4.(2020·河南郑州市·期中)小明做了下列3道计算题:①11202022-⨯=⨯=,②322(3)8917---=--=-,③32326669632323⎛⎫÷-=÷-÷=-= ⎪⎝⎭.其中正确的有( )A .0道B .1道C .2道D .3道【答案】B【分析】先计算乘法,再计算减法可判断①;先计算乘方,再计算加减可判断②;先计算括号内的,再计算除法可判断③,进而可得答案.【详解】解:1111212222-⨯=-=-,故①计算错误; 322(3)8917---=--=-,故②计算正确;32563666623655⎛⎫÷-=÷=⨯= ⎪⎝⎭,故③计算错误;综上,计算正确的有1道.故选:B .【点睛】本题考查了有理数的运算,属于基础题目,熟练掌握运算法则是解题的关键.5.(2020·澄城县北关中学月考)计算:941(0.5)2834⎛⎫⎛⎫⎛⎫-⨯-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为( )A .1-B .134 C .54D .92-【答案】B【分析】先计算乘法,再将-0.5化为12-,最后利用分数的加减法进行运算即可; 【详解】∵()9413111130.5221283422444⎛⎫⎛⎫⎛⎫-⨯-+---=-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴原式=134, 故选:B .【点睛】本题考查了有理数的加减混合运算,熟练掌握运算法则是解题的关键;.6.(2020·广西南宁市·期中)现在定义两种新运算,“▲”、“★”,对于任意两个整数,a ▲b =a+b ﹣1,a ★b =a ×b ﹣1,则7★(﹣3▲5)的结果是( ) A .﹣6 B .48C .6D .﹣48【答案】C【分析】根据新定义的两种运算按运算顺序进行计算即可.【详解】解:7★(﹣3▲5)=7★(-3+5-1)=7★1=7×1-1=6.故答案为C .【点睛】本题主要考查了新定义运算和有理数的四则运算,理解并应用有理数的四则混合运算法则是解答本题的关键. 二、填空题7.(2020·上海闵行区·九年级二模)计算:252-+=______. 【答案】-1【分析】先计算乘方,再计算加法即可. 【详解】252541-+=-+=-,故答案为:-1.【点睛】本题主要考查有理数的乘方和加法运算,掌握有理数乘方和加法的运算法则是解题的关键.8.(2020·甘肃省临泽县第三中学期末)计算:2(12)(3)4(2)-÷-+÷-=____. 【答案】3【分析】根据有理数的混合运算的运算顺序,先算乘方与除法,再算加减,即可得出结果. 【详解】解:2(12)(3)4(2)-÷-+÷-44(4)=+÷-41=-3=.故答案为:3.【点睛】此题考查了有理数的混合运算,掌握有理数混合运算的相关运算法则是准确计算的关键.9.(2020·浙江台州市·期末)若a ,b 互为相反数,x ,y 互为倒数,c 的绝对值等于2,则(a b2+)2020﹣(﹣x •y )2020+c 2=__.【答案】3【分析】根据相反数的意义可得a+b=0,根据倒数的意义可得xy=1,根据绝对值的意义可知c=±2,继而将相关数值代入所求式子进行计算即可.【详解】∵a ,b 互为相反数,x ,y 互为倒数,c 的绝对值等于2,∴a+b =0,xy =1,c 2=4,∴(a b 2+)2020﹣(﹣x •y )2020+c 2=(02)2020﹣(﹣1)2020+4=0﹣1+4=3,故答案为:3.【点睛】本题考查了代数式求值,涉及了相反数、倒数、绝对值、乘方等知识,熟练掌握各相关性质以及运算法则是解题的关键.10.(2020·浙江宁波市·期末)现定义两种运算“⊕”“ *”,对于任意两个孩数,1a b a b ⊕=+-,*1a b a b =⨯-,则(68)*(35)⊕⊕的结果是_________.【答案】90【分析】首先理解两种运算“⊕”“*”的规定,然后按照混合运算的顺序,有括号的先算括号里面的,本题先算6⊕8,3⊕5,再把它们的结果用“*”计算.【详解】解:由题意知,(6⊕8)*(3⊕5)=(6+8-1)*(3+5-1)=13*7=13×7-1=90. 故答案为:90.【点睛】本题考查有理数的混合运算.考查了学生读题做题的能力.理解两种运算“⊕”“*”的规定是解题的关键.11.(2020·浙江省开化县第三初级中学期中)定义一种新运算:新定义运算2*()a b a a b =-,则2*5的结果是______. 【答案】18【分析】根据新定义的运算法则计算即可求值.【详解】解:()()222*5=225=23=29=18⨯-⨯-⨯.故答案为:18. 【点睛】本题考查了新定义的运算,理解新定义的运算法则是解题关键.12.(2020·贵州铜仁市·月考)刘佳把任意有理数对(),a b 放进装有计算装置的计算盒,会得到一个新的有理数21a b +-.例如把()3,2-放入其中,就会得到()23216+--=.现将有理数对()2,3--放入其中,得到有理数是______. 【答案】0【分析】根据计算盒中的运算,把已知数对代入计算即可求出值. 【详解】解:根据题意得:(-2)2+(-3)-1=4-3-1=0.故答案为:0. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2020·肃南裕固族自治县第一中学期末)计算:1141(1)63793÷-+-= __________ ; 【答案】165-. 【分析】有理数的混合运算,先做小括号里的,然后再做括号外面的.【详解】解:1141(1)63793÷-+-=1722821()63636363÷-+-=165()6363÷-=1636365-⨯=165- 故答案为:165-. 【点睛】本题考查有理数的混合运算,掌握运算顺序和运算法则,正确计算是解题关键.14.(2020·四川乐山市·期中)定义两种新运算,观察下列式子:(1)4x y x y Θ=+,例如,134137Θ=⨯+=; 3(1)43(1)11Θ-=⨯+-= ; (2)[]x 表示不超过x 的最大整数,例如,[]2.22=;[]3.244-=-;根据以上规则,计算1191()(2)24⎡⎤⎡⎤Θ-+-Θ=⎢⎥⎢⎥⎣⎦⎣⎦_______.【答案】-1【分析】分别根据(1)的新定义4x y x y Θ=+计算出两个中括号里的值,再根据(2)的新定义[]x 表示不超过x 的最大整数去中括号,即求得最终结果.【详解】解:根据(1)的新定义4x y x y Θ=+,11()2Θ-=1741+=22⎛⎫⨯- ⎪⎝⎭,19(2)4-Θ=()19134244⨯-+=-, 根据(2)的新定义[]x 表示不超过x 的最大整数,[]7=3.5=32⎡⎤⎢⎥⎣⎦,[]13 3.2544⎡⎤-=-=-⎢⎥⎣⎦,∴1191()(2)24⎡⎤⎡⎤Θ-+-Θ=⎢⎥⎢⎥⎣⎦⎣⎦3+(-4)=-1. 故答案为:-1.【点睛】本题主要考查有理数的混合运算,需要有一定的运算求解能力,熟练掌握运算法则,根据新定义列出式子并求值是解决本题的关键.三、解答题15.(2020·上海市静安区实验中学课时练习)计算: (1)323(2)4(3)8⨯--⨯-+ (2)1023(1)2(2)2-⨯+-÷ 【答案】(1)-52;(2)0【分析】(1)根据有理数的混合运算,先算乘方、再算乘法、最后算加减逐步计算即可 (2)根据有理数的混合运算,先算乘方、再算乘除、最后算加减逐步计算即可 【详解】(1)原式=3(8)498⨯--⨯+=-24﹣36+8=﹣52; (2)原式=1×4+(﹣8)÷2=4﹣4=0.【点睛】本题考查的是有理数的混合运算,熟练掌握有理数的运算法则是解答的关键. 16.(2020·上海市静安区实验中学课时练习)计算: (1)223(2)---(2)4211[2(3)]6--⨯--(3)222(10)[(4)(33)2]-+--+⨯(4)421(1)(10.5)[2(2)]3---⨯⨯--;(5)2231140.524(1)429-+-----⨯ (6)20032002(2)(2)-+-;(7)322(2)3[(4)2](3)(2)--⨯-+--÷- (8)20112010(0.25)4-⨯【答案】(1)-13;(2)16;(3)92;(4)113;(5)162-;(6)20022-;(7)1572-;(8)14-【分析】(1)先算乘方再根据减法法则计算即可;(2)根据有理数混合运算的运算顺序及运算法则进行计算即可; (3)根据有理数混合运算的运算顺序及运算法则进行计算即可; (4)根据有理数混合运算的运算顺序及运算法则进行计算即可;(5)根据有理数混合运算的运算顺序及运算法则进行计算即可; (6)逆用乘法分配律进行计算即可;(7)根据有理数混合运算的运算顺序及运算法则进行计算即可; (8)先将小数化为分数,再逆用积的乘方公式进行计算. 【详解】解:(1)原式94=--13=-; (2)原式11(29)6=--⨯-11(7)6=--⨯-71+6=-16=;(3)原式[]10016(39)2=+-+⨯100(1624)=+-1008=-=92;(4)原式110.5(24)3=-⨯⨯-111(2)23=-⨯⨯-113=+113=; (5)原式231134442429⎛⎫⎛⎫=-+-----⨯ ⎪ ⎪⎝⎭⎝⎭1127484489⎛⎫=-+----⨯ ⎪⎝⎭ 382=-+162=-;(6)原式2003200222=-+200220022212=-⨯+⨯20022(21)=⨯-+20022=-; (7)原式()18316292⎛⎫=--⨯+-⨯- ⎪⎝⎭983182=--⨯+98542=--+ 16242=-+1572=-; (8)原式20112010144⎛⎫=-⨯ ⎪⎝⎭2010201011444⎛⎫=-⨯⨯ ⎪⎝⎭201011444⎛⎫=-⨯⨯ ⎪⎝⎭14=-.【点睛】本题考查了有理数的混合运算及运算律,积的乘方,熟记运算法则及运算律是解题的关键.17.(2018·上海市娄山中学单元测试)-22-(-3)3×(-1)4-(-1)5 【答案】24【分析】在进行有理数的混合运算时,一是要注意运算顺序,先算高一级的运算,再算低一级的运算,即先乘方,后乘除,再加减.同级运算按从左到右的顺序进行.有括号先算括号内的运算.【详解】原式=-4-(-27)×1+1=-4+27+1=24【点睛】本题考查了有理数的混合运算,有理数混合运算的顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左至右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.18.(2018·上海普陀区·期中)计算:()()22018110.22024---⨯-+-. 【答案】4分析:分别计算数的高次幂,求绝对值,再求值.详解:原式=()11120445---⨯-+ ()1=120420--⨯-+ ()=114---+ =4 . 点睛:掌握高次幂,绝对值的求法,认真计算就不会出问题,易错辨析:(-2)2=4,-(-2)2=-4, 22=4,-22=-4.19.(2018·上海普陀区·期中)计算:1121()67342⎛⎫-+÷- ⎪⎝⎭【答案】-29分析:利用乘法分配律,展开分别计算.详解:原式=()11242673⎛⎫-+⨯-⎪⎝⎭()()()112=424242673⨯--⨯-+⨯-7628=-+-29=-点睛:乘法分配律 (a+b+c )m=am+bm+cm. 20.(2020·浙江其他模拟)计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 【答案】(1)-21;(2)17-【分析】(1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减.(2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案.【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+-⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷-=17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键.21.(2020·浙江杭州市·期末)给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式.(可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;【答案】()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-, 可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案. 【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.22.(2020·山西七年级期中)24点游戏是一种扑克牌类的益智类游戏,游戏规则是:从一副扑克牌(去掉大小王)中任意抽取4张牌,根据牌面上的数字进行混合运算(每张牌必须用且只能用一次,可以加括号),使得运算结果为24或24-.例如:抽到的数字为“4,4,10,10”,则可列式并计算为:(10104)424⨯-÷=. 如果♥、◆表示正,♠、♣表示负(如“◆5”为“5+”,“♠4”为“4-”),请对下面两组扑克牌按要求进行记数,并按“24点”游戏规则对两组数分别进行列式计算,使其运算结果均为24或24-.①依次记为:_________________列式计算:__________________.②依次记为:_________________列式计算:_______.【答案】①4+,4+,10-,10-;[(10)(10)4]424-⨯--÷=.(答案不唯一,正确即可) ②4-,4+,10+,10-;[(10)104](4)24-⨯+÷-=.(答案不唯一,正确即可)【分析】根据♥、◆表示正,♠、♣表示负结合牌的点数即可表示,出各张牌表示的数,根据“24点”游戏规则结合有理数的混合运算法则列式即可.【详解】解:①四张牌依次记为4+,4+,10-,10-;列式计算得:[(10)(10)4]424-⨯--÷=(答案不唯一,正确即可);②四张牌依次记为4-,4+,10+,10-;列式计算得:[(10)104](4)24-⨯+÷-=(答案不唯一,正确即可).【点睛】本题考查了新定义问题和有理数的混合运算,理解“24点”游戏规则并熟练掌握有理数运算法则是解题关键.。
2022年沪教版(上海)六年级数学第二学期第五章有理数同步练习试题

沪教版(上海)六年级数学第二学期第五章有理数同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各数25,-6,25,0,3.14,20%中,分数的个数是()A .1B .2C .3D .4 2、第24届冬季奥林匹克运动会,将于2022年2月4日在北京开幕.此次冬奥会的单板大跳台项目场馆坐落在北京市首钢园区的北京冬季奥林匹克公园,园区总占地面积171.2公顷即1712000平方米.将1712000用科学记数法表示应为()A .3171210⨯B .71.71210⨯C .61.71210⨯D .70.171210⨯3、下列各组数中,运算结果相等的是( )A .(﹣3)2与﹣32B .(﹣3)3与﹣33C .32()3-与323- D .34与434、若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则202220222021a b c ++的值为()A .2B .0C .2021D .20225、目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75000万个,将数据75000用科学记数法表示是( )A .37.510⨯B .47.510⨯C .57.510⨯D .67.510⨯6、有理数a ,b ,c 在数轴上的对应点的位置如图所示,若b c =,则下列结论错误的是()A .0a b +<B .0a c +<C .0ab <D .0bc <7、数轴上表示1,-1,-5,2这四个数的点与原点距离最远的是()A .1B .-1C .-5D .28、有理数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是()A .c b a >>B .c b =C .0a c ⋅>D .0a b +<9、下列运算结果正确的是()A .2(7)5-+-=-B .(3)(8)5++-=-C .(9)(2)11---=-D .(6)(4)10++-=+10、2021年10月16日,神州十三号载人飞船在长征二号F 遥十三运载火箭的托举下点火升空,成功对接距地球约386000米的空间站,将数据386000用科学记数法表示()A .3.86×106B .0.386×106C .3.86×105D .386×103第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算2213⎛⎫- ⎪⎝⎭的结果为_______. 2、在8、2.5、0、45、10中,自然数有________个.3、绝对值小于5的所有非负整数的积是______.4、计算()()2223-+-的结果是________.5、据报道,在第12届中国国际航空航天博览会上,中国航天科正式宣布,已经开展4000km/h 的高速飞行列车研究.请把数据4000用科学记数法表示为 _____.三、解答题(5小题,每小题10分,共计50分)1、计算:﹣12×(﹣9)+16÷(﹣2)3﹣|﹣4×5|.2、计算:(1)8+(﹣10)+(﹣2)﹣(﹣5)(2)217﹣323﹣513+(﹣317)(3)﹣81÷(﹣214)×49÷(﹣16) (4)﹣14﹣16×[3﹣(﹣3)2] (5)(1572912-+)×(﹣36) (6)1992425×(﹣5)(用简便方法计算) 3、计算:(1)137242812⎛⎫-⨯-+ ⎪⎝⎭(2)()21382-⨯+-÷4、计算:()()3413243⎛⎫-⨯+-÷- ⎪⎝⎭. 5、如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M、点N分别所对应的数(用含t的式子表示);(2)若点M、点N均位于点A右侧,且AN=2AM,求运动时间t;(3)若点P为线段AM的中点,点Q为线段BN的中点,点M、N在整个运动过程中,当PQ+AM=17时,求运动时间t.-参考答案-一、单选题1、C【分析】分数的定义:把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数,常见分数有三类,有限小数,百分数,和分数mn形式的数,根据分式定义解答即可.【详解】解:由题意可知,﹣6,25,0,属于整数,分数有:25,3.14,20%,共3个.故选:C.【点睛】本题考查了有理数的分类,分清分数和整数是解题的关键.2、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n 是负数.【详解】将1712000用科学记数法表示为61.71210⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、B【分析】根据有理数乘方的性质,对各个选项逐个分析,即可得到答案.【详解】A 、(﹣3)2=9,﹣32=﹣9,故本选项错误;B 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;C 、32()3-=827- ,323-=83-,故本选项错误; D 、34=81,43=64,故本选项错误;故选:B .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.4、A【分析】先根据题意求出a ,b ,c 的值,然后代入202220222021a b c ++计算即可.【详解】解:∵a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,∴a =-1,b =0,c =1,∴202220222021a b c ++=()202220221202101-+⨯+=1+0+1=2,故选A .【点睛】本题考查了绝对值的意义,倒数的定义,以及有理数的混合运算,熟练掌握有理数的运算法则是解答本题的关键.5、B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】75000=47.510⨯故选:B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.6、C【分析】根据题意可知0a b c <<<,且||||a c >,再根据有理数的加法、乘法、除法运算法则判断即可.【详解】 解:因为b c =,所以0a b c <<<,且||||a c >,所以0a b +<,0a c +<,0ab >,0b c<,C 选项错误,故选:C .【点睛】本题考查根据数轴上的点判断式子的正负,有理数的加法、乘法、除法运算,熟练掌握几种运算法则中符号的判断方法是解题关键.7、C【分析】求出各数的绝对值,比较大小即可.【详解】解:1,-1,-5,2这四个数的绝对值分别为:1,1,5,2,绝对值越大,离原点越远,所以,-5与原点距离最远,故选:C .【点睛】本题考查了绝对值的意义,解题关键是明确在数轴上,离原点越远,绝对值越大.8、D【分析】根据实数的比较大小,绝对值的定义,有理数的乘法法则,有理数的加法法则,分别判断即可.【详解】解:A选项,观察数轴,c>a>b,故该选项错误,不符合题意;B选项,观察数轴,|c|<2,|b|>2,∴|b|>|c|,故该选项错误,不符合题意;C选项,∵a<0,c>0,∴ac<0,故该选项错误,不符合题意;D选项,∵a<0,b<0,∴a+b<0,故该选项正确,符合题意.故选:D.【点睛】本题考查了实数的比较大小,绝对值的定义,有理数的乘法法则,有理数的加法法则,熟练掌握有理数的计算法则是解题的关键.9、B【分析】由加减运算,分别对每个选项进行判断,即可得到答案.【详解】-+-=--=-;故A错误;解:A、2(7)279++-=-=-,故B正确;B、(3)(8)385---=-+=-,故C错误;C、(9)(2)927++-=-=,故D错误;D、(6)(4)642故选:B.【点睛】本题考查了有理数的加减运算,解题的关键是掌握运算法则,正确的进行判断.10、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:将数据386000用科学记数法表示:386000=53.8610⨯,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题1、259##【分析】先把带分数化为假分数,再算乘方即可.【详解】解:22525==33921⎛⎫-⎛⎫-⎪⎝⎭⎪⎝⎭故答案为:25 9【点睛】本题考查了有理数的乘方,把带分数化为假分数再乘方是解题分关键.2、3【分析】根据零和正整数是自然数,去判断即可.【详解】∵8,0,10是自然数,有3个,故答案为:3个.【点睛】本题考查了自然数即零和正整数统称自然数,熟记定义是解题的关键.3、0【分析】找出绝对值小于5的所有非负整数,求出之积即可.【详解】解:绝对值小于5的所有非负整数为: 0,1,2,3,4,012340⨯⨯⨯⨯=.故答案为:0.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.4、13【详解】解:()()2223-+-=49+=13.故答案为:13.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减.5、4×103科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将4000用科学记数法表示为:4×103.故答案为:4×103.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题-1、13【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.【详解】=-⨯-+÷--,原式1(9)16(8)20=--,9220=-.13【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2、(1)1(2)—10(4)0 (5)—19(6)4 9995-【分析】(1)先去括号,再计算加减运算即可;(2)把带分数化为假分数,再把同分母进行合并计算即可;(3)先把带分数化为假分数,再把除法化为乘法,计算即可;(4)先算乘方,计算算括号里面的,再算乘法,最后算加减即可;(5)先去括号,再计算乘法,最后算加减即可;(6)把2419925化为1(200)25-,再去括号,算乘法,最后算加减即可.(1))原式81025=--+,1=;(2)原式15111622 7337=---,15221116 ()()7733=--+,19=--,10=-;(3)原式44181()()9916=-⨯-⨯⨯-,1=-;(4)原式11(39)6=--⨯-,11(6)6=--⨯-,11=-+,=;(5)原式157(36)(36)(36)2912=⨯--⨯-+⨯-,182021=-+-,19=-;(6)原式1(200)(5)25=-⨯-,1200(5)(5)25=⨯--⨯-,110005=-+,49995=-.【点睛】本题考查有理数的混合运算,掌握有理数的运算法则和运算顺序是解题的关键.3、(1)-17;(2)7-【分析】(1)运用乘法的分配律计算即可;(2)按照先乘方,再乘除,最后加减的顺序计算.(1)137242812⎛⎫-⨯-+ ⎪⎝⎭=12914-+-= -17.(2)()21382-⨯+-÷=34--=7-.【点睛】本题考查了有理数的混合运算,运算律,熟练掌握运算法则,灵活选择运算律是解题的关键. 4、1【分析】根据含有乘方的有理数混合运算性质计算,即可得到答案.【详解】()()3413243⎛⎫-⨯+-÷- ⎪⎝⎭ ()()13843=-⨯+-÷-12=-+1=.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握含有乘方的有理数混合运算性质,从而完成求解.5、(1)点M 、点N 分别所对应的数分别为t -,103t -;(2)4t =;(3)t =1或18【分析】(1)根据题意进行求解即可;(2)由(1)所求,根据数轴上两点距离公式可得()66AM t t =---=-,()1036163AN t t =---=-,再由2AN AM =,得到163122t t -=-,由此即可得到答案;(3)分当M 、N 均在A 点右侧时,当N 在A 点左侧,M 在A 点右侧时,当M 、N 都在A 点左侧时,三种情况讨论求解即可.【详解】解:(1)由题意得:点M 、点N 分别所对应的数分别为t -,103t -;(2)∵点A 表示的数为-6,点M 、点N 分别所对应的数分别为t -,103t -,∴()66AM t t =---=-,()1036163AN t t =---=-,∵2AN AM =,∴163122t t -=-,∴4t =;(3)如图1所示,当M 、N 均在A 点右侧时,由(1)(2)得点M 、点N 分别所对应的数分别为t -,103t -,()66AM t t =---=-∵点P 为线段AM 的中点,点Q 为线段BN 的中点,∴点P 和点Q 表示的数分别为62t --,1031020322t t -+-=, ∴2036262222t t t PQ ----=-= ∵17PQ AM +=, ∴2626172t t -+-=, ∴1t =;如图2所示,当N 在A 点左侧,M 在A 点右侧时,同图1可知点P 和点Q 表示的数分别为62t --,2032t -, ∴2036262222t t t PQ ----=-= ∵17PQ AM +=, ∴2626172t t -+-=, ∴1t =,不符合题意;如图3所示,当M 、N 都在A 点左侧时,同图1可得点P 和点Q 表示的数分别为62t --,2032t -, ∴6AM t =-,2036262222t t t PQ ----=-=,∵17PQ AM +=, ∴2626172t t -+-=,此时方程无解;如图4所示,当M 、N 都在A 点左侧时,同理可得点P 和点Q 表示的数分别为62t --,2032t -, ∴6AM t =-,6203226222t t t PQ ----=-=, ∵17PQ AM +=, ∴2266172t t -+-=, 解得18t =,∴综上所述,当17PQ AM +=,t =1或18.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,熟知数轴的相关知识是解题的关键.。
2020-2021学年上海六年级数学下册教材同步练习(沪教版)5.2 数轴解析版

5.2 数轴(作业)一、单选题1.(2020·上海市静安区实验中学课时练习)下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号.A.2个B.3个C.4个D.5个【答案】A【分析】根据相反数的定义即可判断得到结果.【详解】①0的相反数还是0本身,错误;②符号相反、绝对值相等的两个数互为相反数,错误;③表示互为相反数的两个数的点到原点的距离相等,正确;④若有理数a,b互为相反数,那么a+b=0,正确;⑤0的相反数还是0,错误;正确的有2个,故选A.【点睛】本题考查的是相反数的定义.2.(2019·上海虹口区·月考)已知在数轴上的点A、B依次表示实数-1.8、17,则A与B两点间的距离可表示为()A.-1.8+17 B.-1.8-17 C.|-1.8+17|D.|-1.8-17|【答案】D【分析】求A与B两点间的距离就是用A点的数减去B点的数的绝对值.【详解】已知数轴上的点A、B依次表示实数-1.8、17,所以A与B两点间的距离可表示为:|-1.8-17|.故选D.【点睛】本题主要考查了数轴的有关知识,在解题时要能够数与数轴相结合是本题的关键.3.(2020·上海市静安区实验中学课时练习)下列说法中正确的是()A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数【答案】C【分析】根据相反数的定义即可得到结果.【详解】A、2是正数,-1是负数,但它们不互为相反数,故本选项错误;B、0的相反数还是0,故本选项错误;C、任何一个数都有它的相反数,本选项正确;D、-2在原点左边,1在原点右边,但它们不互为相反数,故本选项错误;故选C. 4.(2018·上海市娄山中学单元测试)m,n是有理数,它们在数轴上的对应点的位置如图所示,把m,-m,n,-n从小到大的顺序排列是()A.-n<-m<m<n B.-m<-n<m<nC.-n<m<-m<n D.-n<n<-m<m【答案】C【分析】根据数轴和相反数比较即可.【详解】由数轴可知m<0,n>0,|n|>|m|对于-m,-n,m,n由小到大正确的排序是- n < m <- m < n ,故选C.【点睛】本题考查了数轴,相反数,有理数的大小比较的应用,能根据数轴上m,n 得出-m,-n 的位置是解此题的关键.5.(2019·上海长宁区·)在数轴上表示实数a 和b 的点的位置如图所示,那么下列各式成立的是( )A .a b <B .a b >C .0ab >D .||||a b >【答案】B 【分析】根据数轴上的点所表示的数,右边的总比左边的大,且离原点的距离越远,则该点所对应的数的绝对值越大,进行分析.【详解】解:A 、根据a 在b 的右边,则a >b ,故本选项错误;B 、根据a 在b 的右边,则a >b ,故本选项正确;C 、根据a 在原点的右边,b 在原点的左边,得b <0<a ,则ab <0,故本选项错误;D 、根据b 离原点的距离较远,则|b|>|a|,故本选项错误.故选:B .【点睛】此题考查了数轴上的点和实数之间的对应关系,同时能够根据点在数轴上的位置判断它们所对应的数之间的大小关系以及绝对值的大小关系.二、填空题6.(2020·上海市静安区实验中学课时练习)已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 .【答案】-3,3【分析】利用数形结合的思想,数轴上A 、B 表示的数互为相反数,说明A ,B 到原点的距离相等,再通过它们的距离为6,并且点A 在点B 的左边,可以确定这两个点的位置,即它们所表示的数.【详解】数轴上A、B表示的数互为相反数,则两个点到原点的距离相等,而它们的距离为6,所以它们到原点的距离都为3;又因为点A在点B的左边,所以点A、B表示的数分别是-3,3.【点睛】本题考查的是数轴的有关知识和相反数的定义.7.(2020·上海市静安区实验中学课时练习)-(-3)的相反数是.【答案】-3【详解】解:在一个数前面添上“-”号,表示这个数的相反数.∴--的相反数是3-.故答案为:-3.--=,(3)(3)38.(2020·上海市静安区实验中学课时练习)数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是______个单位长度.【答案】1【分析】本题考查的是数轴的运用【详解】先根据题意得到将点A经过两次移动之后所得到的点即可得到结果.点A表示-3,将点A先向右移动7个单位长度得到4,再向左移动5个单位长度得到-1,1到原点的距离是个单位长度.9.(2020·上海市静安区实验中学课时练习)从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是,再向右移动两个单位长度到达点C,则点C表示的数是.【答案】-3,-1【分析】根据题意,点B在出发点的左侧两个单位,进而可得点B表示的数,再向右移动两个单位长度到达点C,分析可得,则C与出发点重合,可得答案.【详解】根据题意,点B表示的数是-3,再向右移动两个单位长度到达点C,则C与出发点重合,故则点C表示的数是-1,故答案为-3,-1.【点睛】本题考查的是数轴的运用10.(2020·上海市静安区实验中学课时练习)已知x 是整数,并且-3<x <4,那么在数轴上表示x 的所有可能的数值有 .【答案】-2,-1,0,1,2,3【解析】本题考查的是数轴上的点与实数的一一对应的关系画出数轴,并在数轴上表示出x 的取值范围,满足条件的点就是在这两个点之间的整数点. 如图,,根据数轴可以得到满足条件的整数有:-2,-1,0,1,2,3. 11.(2020·上海市静安区实验中学课时练习)化简下列各数:-(-68)=________ -(+0.75)=________-(-35)=________ -(+3.8)=________ +(-3)=________ +(+6)=________【答案】68 -0.75 35-3.8 -3 6 【分析】根据在一个数前面添上+号,大小不变;在一个数前面添上-号,表示这个数的相反数即可得出.【详解】-(-68)=68,-(+0.75)=-0.75,-(-35)=35, -(+3.8)=-3.8,+(-3)=-3,+(+6)=6.【点睛】本题考查的是相反数的定义,熟练掌握定义是解题的关键.12.(2020·上海市静安区实验中学课时练习)-2的相反数是________;57的相反数是________;0的相反数是________. 【答案】2 -570 【分析】根据只有符号不同的两个数叫做互为相反数,0的相反数是0解答即可.【详解】-2的相反数是2;57的相反数是-57;0的相反数是0.故答案为2 -57【点睛】此题考查了相反数的定义,只有符号不同的两个数叫做互为相反数,0的相反数是0,熟练掌握相反数的定义是解题关键.13.(2018·上海松江区·)在数轴上,如果点A、点B所对应的数分别为3-、2,那么A、B两点的距离AB=_______.【答案】5【分析】利用A,B对应的数,进而求出两点之间的距离.【详解】A,B两点之间的距离为2-(-3)=2+3=5.故答案为:5.【点睛】此题主要考查了实数与数轴,得出异号两点之间距离求法是解题关键.三、解答题14.(2020·上海市静安区实验中学课时练习)画出数轴并表示出下列有理数:921.5,2,2,2.5,,,0.23---【分析】将题目中给出的数,在数轴上正确的位置表示出来即可.【详解】以0为原点,作一条以右方向为正方向的数轴,各点的位置如图:【点睛】本题考查了数轴,点在数轴上位置的确定,解题的关键是要熟练掌握画数轴以及在数轴上表示数,体现了数形结合的思想.15.(2018·上海市娄山中学单元测试)请在数轴上分别描出表示数1-13,-2,0,1-22,314的点,并用“<”连接个数.【答案】113 22101234 -<-<-<<【分析】在数轴上描出各数,根据数轴上右边的数总比左边的数大,即可用小于号将各数连接起来.【详解】将已知的数表示在数轴上,如图所示:则113 22101234 -<-<-<<【点睛】此题考查了有理数的大小比较,以及数轴,理解数轴上右边的数总比左边的数大是解本题的关键.16.(2019·上海课时练习)如图所示,在数轴上有A、B、C三个点,请回答:(1)将A点向右移动3个单位长度,C点向左移动5个单位长度,它们各自表示新的什么数?(2)移动A、B、C中的两个点,使得三个点表示的数相同,有几种移动方法?【答案】(1)将A点向右移动3个单位长度表示0,C点向左移动5个单位长度表示−2;(2)有3种移动方法,详见解析.【分析】(1)先根据题意得出A、B、C三点所表示的数,再得出将A点向右移动3个单位长度,C点向左移动5个单位长度表示的数即可;(2)分三种情况讨论:①点A不动,②点B不动,③点C不动,分别使3个数重合即可.【详解】解:由数轴可知,点A表示−3,点B表示−1,点C表示3,(1)将A点向右移动3个单位长度表示0,C点向左移动5个单位长度表示−2;(2)有3种移动方法:①点A不动,把点B沿数轴向左移动2个单位长度,点C沿数轴向左移动6个单位长度,此时三个点都表示−3;②点B不动,把点A沿数轴向右移动2个单位长度,点C沿数轴向左移动4个单位长度,此时三个点都表示−1;③点C不动,把点A沿数轴向右移动6个单位长度,点B沿数轴向右移动4个单位长度,此时三个点都表示3.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键,注意数形结合思想的应用.。
2020-2021学年沪教版六年级第二学期数学5.3绝对值的几何意义练习(有答案)

绝对值的几何意义 1. m n - 的几何意义是数轴上表示 m 的点与表示 n 的点之间的距离.⑴ x 的几何意义是数轴上表示_________的点与表示_________的点之间的距离;x _________ 0x -(>,=,<); ⑵ 21- 的几何意义是数轴上表示 2 的点与表示 1 的点之间的距离;则 21-= _________;⑶ 3x - 的几何意义是数轴上表示_________的点与表示 _________的点之间的距离,若 31x -=,则 x = _________.⑷ 2x + 的几何意义是数轴上表示_________的点与表示 _________ 的点之间的距离,若 22x +=,则 x = _________.⑸ 当 1x =- 时,则 |2||2|x x -++= _________.2. 不相等的有理数a ,b ,c 在数轴上对应点分别为A ,B ,C ,如果||||||a b b c a c -+-=-,那么B 点A ,C 点的位置关系是?3. 若 0.239x =-,求 131********x x x x x x -+-++------- 的值.4. 已知 04a ≤≤,那么 |2||3|a a -+- 的最大值与最小值分别等于_________、_________.5. 已知 m 是实数,求 |||1||2|m m m +-+- 的最小值.6. 已知 m 是实数,求 2468m m m m -+-+-+- 的最小值.7. 求 15y x x =--+ 的最大值和最小值.8. 已知759x -≤≤,求|1||3|x x --+的最大值与最小值.9. 如果对于某一给定范围内的 x 值, 13p x x =++- 为定值,则此定值为_________.10. 若 x 是实数,则 |1|2|2|3|3|4|4|5|5|y x x x x x =-+-+-+-+- 的最小值为 ______ .11. 若a b c d 为互不相等的有理数,且||||||1a c b c d b -=-=-=,||a d -= ______.参考答案1. ⑴ x ,原点;$=$;⑵ 1;⑶ x ,3,2 或 4;⑷ x ,2-,0 或 4-;⑸ 42. 考察绝对值的几何意义在数轴上标出3个点观察的点B 在A 、C 之间3. 法1:0.239x =-,则原式 ()()()()()131********x x x x x x =-------+++++- 135199721996x x x x x x x =-+-+-+--+++-++-()()()1325419971996=+-+-++- 111999=+++=法2: 由 x a b <,可得 x b x a b a ---=-,则原式 ()()()132********x x x x x x =--+---++---111999=+++=4. 5;1我们可以利用零点,将 a 的范围分为 3 段,利用绝对值得几何意义分类讨论,很容易发现答案:当 0a = 时达到最大值 5 .5. 根据绝对值的几何意义,这个问题可以转化为在数轴上找一点 m ,使点 m 到点 0,点 1 和点 2 的距离之和最小,显然当 1m = 时,原式的最小值为 2.6. 根据绝对值的几何意义,这个问题可以转化为在数轴上找一点 m ,使 m 到点 2,点 4,点 6 和点 8 的距离和最小,显然当点 m 在点 4 和点 6 之间(包括点 4 和点 6)时,原式的值最小为 87. 方法 1:根据几何意义可以得答案; 方法 2:找到零点 51 -, 可以分为以下三段进行讨论:当 5x ≤- 时,15156y x x x x =--+=-++=;当 51x -<< 时,151524y x x x x x =--+=---=--;当 1x ≥ 时,15156y x x x x =--+=---=-;综上所得最小值为 6-,最大值为 68. |1||3|x x --+表示x 到点1和3-的距离差,画出数轴我们会发现当,79x =时两者的距离差最小为329-,即min 32(|1||3|)9x x --+=-;当53x -≤≤-时,两者的距离差最大为4,即max (|1||3|)4x x --+=.9. 利用绝对值的几何意义解答,零点 1- 、 3 把数轴分成分成 3 段,容易发现当 13x -≤≤ 这个区间时 13p x x =++- 为定值 4 ,当 1x <- 或 3x > 时,有 134p x x =++->.10. 答案: 15原式|1||4|2(|2||5|)3(|3||5|)3|4|x x x x x x x =-+-+-+-+-+-+-|41|2|52|3|53|3036615≥-+⨯-+⨯-+⨯=++=,当 4x = 时等号成立.11. 答案: 3。
沪教版(上海)六年级第二学期数学 5.3绝对值 同步练习(含解析)

5.3绝对值同步练习一.选择题1.下列四个数中,其绝对值大于1的是()A.1B.0C.﹣D.﹣22.在有理数①1、②﹣1.3、③﹣2.5、④﹣|﹣1.2|中,最小的数是()A.①B.②C.③D.④3.关于0,下列几种说法不正确的是()A.0既不是正数,也不是负数B.0是最小的数C.0的绝对值是0D.0的相反数是04.下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|5.下列正确的是()A.﹣(﹣21)<+(﹣21)B.C.D.6.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a+b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±7 7.绝对值小于3的非负整数的个数为()A.7B.4C.3D.28.下列说法正确的是()A.若两个数的绝对值相等,则这两个数必相等B.若两数不相等,则这两数的绝对值一定不相等C.若两数相等,则这两数的绝对值相等D.两数比较大小,绝对值大的数大9.下列有理数大小关系判断正确的是()A.|﹣3|<|+3|B.0>|﹣10|C.﹣(﹣)>﹣|﹣|D.﹣1>﹣0.0110.用“<”号连接三个数:|﹣3.5|,﹣,0.75,正确的是()A.﹣<0.75<|﹣3.5|B.﹣<|﹣3.5|<0.75C.|﹣3.5|<﹣<0.75D.0.75<|﹣3.5|<﹣二.填空题11.比较大小:﹣|﹣1|.(“>”或“=”或“<”)12.﹣的相反数是,小于﹣2的最大整数是.13.已知|a|=3,b=2,且a>b,则a﹣2b的值为.14.|a﹣5|+3的最小值是.15.若|x+3|+|x﹣5|=12,则x=.三.解答题16.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.17.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.18.(1)根据|x|是非负数,且非负数中最小的数是0,解答下列问题:Ⅰ:当x取何值时,|x﹣2020|有最小值,这个最小值是多少?Ⅱ:当x取何值时,2020﹣|x﹣1|有最大值,这个最大值是多少?(2)已知数a、b、c在数轴上的位置如图所示,化简:|a+c|+|a+b|+|b+c|.参考答案一.选择题1.解:|1|=1,|0|=0,|﹣|=,|﹣2|=2,则绝对值大于1的是﹣2.故选:D.2.解:﹣|﹣1.2|=﹣1.2,∵﹣2.5<﹣1.3<﹣1.2<1,∴在有理数①1、②﹣1.3、③﹣2.5、④﹣|﹣1.2|中,最小的数是:③.故选:C.3.解:0既不是正数,也不是负数,是正数和负数的分界线,正数大于0,负数小于0,0的绝对值和相反数都是0,因此选项A、C、D不符合题意,故选:B.4.解:因为﹣(﹣2)=2,﹣|﹣2|=﹣2,|﹣2|=2,所以选项A、B、D中的两个数均不相等,只有选项C中的两个数相等.故选:C.5.解:A、∵﹣(﹣21)=21,+(﹣21)=﹣21,∴﹣(﹣21)>+(﹣21),故本选项错误;B、∵﹣|﹣10|=﹣10,∴﹣|﹣10|<8,故本选项错误;C、∵﹣|﹣7|=﹣7,﹣(﹣7)=7,∴﹣|﹣7|<﹣(﹣7),故本选项错误;D、∵|﹣|=,|﹣|=,∴﹣<﹣,故本选项正确;故选:D.6.解:∵|a|=3,∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=﹣4或a=﹣3,b=﹣4,(1)a=3,b=﹣4时,a+b=3+(﹣4)=﹣1;(2)a=﹣3,b=﹣4时,a+b=﹣3+(﹣4)=﹣7;∴代数式a﹣b的值为﹣1或﹣7.故选:C.7.解:绝对值小于3的非负整数有0、1、2,共3个;故选:C.8.解:A、若两个数的绝对值相等,则这两个数相等或互为相反数,故本选项不合题意;B、若两数不相等,则这两数的绝对值一定不相等,说法错误,互为相反数的两个数的绝对值相等,故本选项不合题意;C、若两数相等,则这两数的绝对值相等,说法正确,故本选项符合题意;D、两数比较大小,绝对值大的数大,说法错误,如0与﹣1,0的绝对值小于﹣1的绝对值,0>﹣1,故本选项不合题意.故选:C.9.解:A、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,故本选项错误;B、∵|﹣10|=10,∴0<|﹣10|,故本选项错误;C、∵﹣(﹣)=,﹣|﹣|=﹣,∴﹣(﹣)>﹣|﹣|,故本选项正确;D、∵1>0.01,∴﹣1<﹣0.01,故本选项错误.故选:C.10.解:∵|﹣3.5|=3.5,∴<0.75<|﹣3.5|,故选:A.11.解:∵﹣|﹣1|=﹣1,∴﹣|﹣1|<.故答案为:<.12.解:﹣的相反数是,小于﹣2的最大整数是﹣3.故答案为:,﹣3.13.解:∵|a|=3,b=2,且a>b,∴a=3,∴a﹣2b=3﹣4=﹣1.故答案为:﹣1.14.解:∵|a﹣5|≥0,∴|a﹣5|+3的最小值是:3.故答案为:3.15.解:(1)x≤﹣3时,∵|x+3|+|x﹣5|=12,∴﹣x﹣3+4﹣0.8x=12,解得x=﹣.(2)﹣3<x<5时,∵|x+3|+|x﹣5|=12,∴x+3+4﹣0.8x=12,解得x=25.(3)x≥5时,∵|x+3|+|x﹣5|=12,∴x+3+0.8x﹣4=12,解得x=.故答案为:﹣、25或.三.解答题16.解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.17.解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x<﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为﹣6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为﹣6.18.解:(1)Ⅰ:当x2020时,|x﹣2020|有最小值,这个最小值是0;Ⅱ:当x=1时,2020﹣|x﹣1|有最大值,这个最大值是2020;(2)根据题意,得c<0<a<b,且|a|<|c|<|b|,∴a+c<0,a+b>0,b+c>0,∴|a+c|+|a+b|+|b+=﹣a﹣c+a+b+b+c=2b.。
2021-2022学年度沪教版(上海)六年级数学第二学期第五章有理数同步测试试卷(含答案详解)

沪教版(上海)六年级数学第二学期第五章有理数同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有理数a ,b ,c 在数轴上的对应点的位置如图所示,若b c =,则下列结论错误的是()A .0a b +<B .0a c +<C .0ab <D .0bc <2、某玩具商店周年店庆,全场八折促销,持会员卡可在促销活动的基础上再打六折.某电动汽车原价500元,小明持会员卡购买这个电动汽车需要花的钱数是( )A .300元B .240元C .270元D .400元3、北京市某周的最高平均气温是6℃,最低平均气温是2-℃,那么这周北京市最高平均气温与最低平均气温的温差为()A .8℃B .6℃C .4℃D .2-℃4、下列四个数中,属于负数的是().A .3-B .3C .πD .05、下列说法中错误的有( )①若两数的差是正数,则这两个数都是正数;②在数轴上与原点距离越远的点表示的数越大;③零减去任何一个有理数,其差是该数的相反数;④正数的倒数是正数,负数的倒数是负数,任何数都有倒数.A.4个B.3个C.2个D.1个6、据国家统计局公布的全国粮食生产数据显示.2021年全国粮食播种面积为117632000公顷,粮食总产量为13657亿斤,将117632000用科学记数法表示为()A.9⨯B.80.1176321011763210⨯D.3⨯⨯C.711.7632101.17632107、湖南省第十一次党代会以来,我省6820000建档立卡贫困人口全部脱贫.数据6820000用科学记数法表示正确的是()A.6⨯D.76.82100.68210⨯68.2106.8210⨯B.5⨯C.58、按如图所示的程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.当输出的数为11时,输入的数字不可能是()A.-1 B.3 C.-5 D.49、在数轴上,点A表示-2,若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.2 B.4 C.6 D.-410、据新京报讯,为满足节能低碳要求,石景山区总长9.6公里的“冬奥大道”照明工程全部安装LED新型高效节能电光源53000套.数字53000用科学记数法可表示为()A.5⨯C.353105.3100.5310B.4⨯D.35.310第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:()()2016323193-+⨯--÷-的结果为______.2、如图,在一块长20m ,宽10m 的长方形草地上,修建两条宽为1m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 _____m 2.3、________的倒数是324. 4、把数﹣7,4.8,8,0,﹣9,(﹣7.9)2,﹣12,﹣312,23分别填在相应的大括号内. 整数集合:{_____________________…};分数集合:{_____________________…};正数集合:{_____________________…};负数集合:{_____________________…}.5、﹣6的绝对值减去4的相反数再加上﹣7,结果为___.三、解答题(5小题,每小题10分,共计50分)1、计算:12524236⎛⎫-⨯+- ⎪⎝⎭. 2、计算:412|5|(3)26⎡⎤-+---÷+⎢⎥⎣⎦. 3、计算:()11212463⎛⎫+-⨯- ⎪⎝⎭ 4、已知有理数ab <0,a+b >0,且 |a |=2,|b |=3,求a b .5、如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M 、点N 分别所对应的数(用含t 的式子表示);(2)若点M 、点N 均位于点A 右侧,且AN =2AM ,求运动时间t ;(3)若点P 为线段AM 的中点,点Q 为线段BN 的中点,点M 、N 在整个运动过程中,当PQ +AM =17时,求运动时间t .-参考答案-一、单选题1、C【分析】根据题意可知0a b c <<<,且||||a c >,再根据有理数的加法、乘法、除法运算法则判断即可.【详解】 解:因为b c =,所以0a b c <<<,且||||a c >,所以0a b +<,0a c +<,0ab >,0b c<,C 选项错误,故选:C .【点睛】 本题考查根据数轴上的点判断式子的正负,有理数的加法、乘法、除法运算,熟练掌握几种运算法则中符号的判断方法是解题关键.2、B【分析】根据题意,列出算式计算即可.【详解】解:500×0.8×0.6=240(元).故选B .【点睛】本题主要考查有理数乘法运算的实际应用,审清题意、列出算式是解答本题的关键.3、A【分析】根据有理数的减法求解即可.【详解】解:最高平均气温与最低平均气温的温差为()628--=℃故选A【点睛】本题考查了有理数减法的应用,理解题意是解题的关键.4、A【分析】根据负数的特征是小于0的数,对各选项进行一一分析即可.【详解】解:-3是小于0的数,是负数,故选项A 正确;3是大于0的数是正数,故选项B不正确;π是大于0的数是正数,故选项C不正确;0不是负数,故选项D不正确.故选A.【点睛】本题考查负数的特征,掌握负数的特征是解题关键.5、B【分析】根据有理数的运算、倒数、相反数、数轴等方面的性质、法则进行判断即可.【详解】解:∵被减数大于减数时,两数的差就是正数,如-1-(-2)=2,∴说法①错误;∵原点左边离原点越远的点表示的负数反而越小,∴说法②错误;∵零减去任何一个有理数,其差是该数的相反数,∴说法③正确;∵0没有倒数,∴说法④错误.故选:B.【点睛】此题考查了有理数的运算、倒数、相反数、数轴等方面的应用能力,关键是能准确理解以上知识.6、B【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:117632000=1.17632×108.故选:B.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.7、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】6820000=6.6.8210故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.8、D【分析】根据所给程序流程图的运算规则逐项计算即可解答.【详解】解:当x=-1时,(-1)×(-2)+1=3<10,当x=3时,3×(-2)+1=-5<10,当x=-5,(-5)×(-2)+1=11>10,当x=4,4×(-2)+1=-7<10,当x=-7,(-7)×(-2)+1=15>10,故当输入数字为-1或3或-5时,输出的数为11,当输入数字为4时,输出的数为15,故选:D.【点睛】本题考查程序流程图与有理数的计算,理解所给程序流程图,掌握有理数的混合运算法则是解答的关键.9、A【分析】根据向右加的运算法则,计算-2+4的结果就是新数.【详解】根据题意,得点B表示的数是-2+4=2,故选A.【点睛】本题考查了数轴上的动点问题,熟练掌握新数的表示方法是解题的关键.10、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:53000=5.3×104,故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题1、-2【分析】根据有理数混合运算法则先计算乘方,再算乘除,最后加减即可.【详解】解:()()2016323193-+⨯--÷-=()8313-+⨯--=833-++2、171【分析】直接利用草地的绿地面积=长方形面积-长的小路面积-短的小路去掉1平米的小路面积,进而得出答案.【详解】解:由图形可得,这块草地的绿地面积为:20×10-20×1-(10﹣1)×1=200-20-9=171(m 2).故答案为:171.【点睛】此题主要考查了长方形面积,正确求出小路面积是解题关键.3、411【分析】根据324=114,根据倒数的定义计算即可.【详解】∵324=114,∴114的倒数是411,故答案为:4 11.【点睛】本题考查了求一个数的倒数即乘积为1的两个数,熟记倒数的定义是解题的关键.4、-7,8, 0, -9, -12, 23; 4.8, (-7.9)2,132; 4.8 ,8, (-7.9)2,23; -7, -9, -12, -312【分析】根据整数,分数,正数,负数的特征进行判定可求解.【详解】解:整数集合:{-7,8,0,-9,-12,23…};分数集合:{4.8,(-7.9)2,-312…};正数集合:{4.8,8,(-7.9)2,23 …};负数集合:{-7,-9,-12,-312…}.故答案为:-7,8,0,-9,-12,23;4.8,(-7.9)2,-312;4.8,8,(-7.9)2,23;-7,-9,-12,-312.【点睛】本题主要考查有理数的分类,掌握整数,分数,正数,负数的特征是解题的关键.5、3【分析】根据题意列出算式,即可求解.【详解】解:|6|(4)(7)---+-,64(7)=++-,3=,故答案为:3.【点睛】本题考查了绝对值,相反数,解题的关键是有理数的加法,减法法则,掌握减去一个数等于加上这个数的相反数.三、解答题1、-8【分析】用乘法分配律计算即可求出值.【详解】 解:12512524(24)(24)(24)1216208236236⎛⎫-⨯+-=-⨯+-⨯--⨯=--+=- ⎪⎝⎭. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.2、5【详解】 解:412|5|(3)26⎡⎤-+---÷+⎢⎥⎣⎦ 1653621118211165=-+=【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序”是解本题的关键,有理数的混合运算的运算顺序:先乘方,再乘除,最后算加减,有括号先算括号内的运算. 3、3【详解】解:原式=()()()112121212463⨯-+⨯--⨯- =()328-+-+=3.【点睛】本题考查有理数的乘法运算律.一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,用字母表示为a (b +c )=ab +ac .4、-8【分析】根据绝对值的意义、有理数的乘法法则、有理数的加法法则得出a ,b 的值,再根据有理数的乘方解决此题.【详解】解:∵|a |=2,|b |=3,∴a =±2,b =±3.∵ab <0,∴a 与b 异号.又∵a +b >0,∴当a >0,则b <0,|a |>|b |;当a <0,则b >0,|a |<|b |.∴当a =2,此时b 不存在;当a =-2,则b =3.∴a b =(-2)3=-8.【点睛】本题考查了绝对值、有理数的乘法、有理数的加法、有理数的乘方,熟练掌握绝对值、有理数的乘法法则、有理数的加法法则、有理数的乘方是解决本题的关键.5、(1)点M 、点N 分别所对应的数分别为t -,103t -;(2)4t =;(3)t =1或18【分析】(1)根据题意进行求解即可;(2)由(1)所求,根据数轴上两点距离公式可得()66AM t t =---=-,()1036163AN t t =---=-,再由2AN AM =,得到163122t t -=-,由此即可得到答案;(3)分当M 、N 均在A 点右侧时,当N 在A 点左侧,M 在A 点右侧时,当M 、N 都在A 点左侧时,三种情况讨论求解即可.【详解】解:(1)由题意得:点M 、点N 分别所对应的数分别为t -,103t -;(2)∵点A 表示的数为-6,点M 、点N 分别所对应的数分别为t -,103t -,∴()66AM t t =---=-,()1036163AN t t =---=-,∵2AN AM =,∴163122t t -=-,∴4t =;(3)如图1所示,当M 、N 均在A 点右侧时,由(1)(2)得点M 、点N 分别所对应的数分别为t -,103t -,()66AM t t =---=-∵点P 为线段AM 的中点,点Q 为线段BN 的中点,∴点P 和点Q 表示的数分别为62t --,1031020322t t -+-=, ∴2036262222t t t PQ ----=-= ∵17PQ AM +=, ∴2626172t t -+-=, ∴1t =;如图2所示,当N 在A 点左侧,M 在A 点右侧时,同图1可知点P 和点Q 表示的数分别为62t --,2032t -, ∴2036262222t t t PQ ----=-= ∵17PQ AM +=, ∴2626172t t -+-=, ∴1t =,不符合题意;如图3所示,当M 、N 都在A 点左侧时,同图1可得点P 和点Q 表示的数分别为62t --,2032t -, ∴6AM t =-,2036262222t t t PQ ----=-=, ∵17PQ AM +=, ∴2626172t t -+-=,此时方程无解;如图4所示,当M 、N 都在A 点左侧时,同理可得点P 和点Q 表示的数分别为62t --,2032t -, ∴6AM t =-,6203226222t t t PQ ----=-=, ∵17PQ AM +=, ∴2266172t t -+-=, 解得18t =,∴综上所述,当17PQ AM +=,t =1或18.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,熟知数轴的相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 绝对值(作业)一、单选题1.(2020·上海市静安区实验中学课时练习)下列说法错误的是( ) A .一个正数的绝对值一定是正数; B .任何数的绝对值都是正数 C .一个负数的绝对值一定是正数;D .任何数的绝对值都不是负数2.(2019·上海民办华二浦东实验学校月考)-5的绝对值的相反数是( ) A .5B .15C .-5D .-153.(2018·上海嘉定区·七年级期中)已知实数a 在数轴上的位置如图所示,则化简11a -+的结果为…( )A .1.5B .aC .2a +D .2a -4.(2021·上海九年级专题练习)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是( )A .|a+b|=a+bB .|a+b|=a-bC .|b+1|=b+1D .|a+1|=a+15.(2021·上海九年级专题练习)数轴上点A 到原点的距离为2.5,则点A 所表示的数是( ) A .2.5B .﹣2.5C .2.5或﹣2.5D .06.(2011·上海长宁区·中考模拟)﹣3的绝对值是( )A .﹣3B .3C .-13D .137.(2020·上海市静安区实验中学课时练习)下列说法错误的个数是 ( )(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A.3 B.2 C.1 D.0二、填空题x-=__________.8.(2021·上海九年级专题练习)当2x>时,化简:29.(2020·上海市静安区实验中学课时练习)式子︱x +1︱的最小值是__ ,这时x值为 ____ .10.(2020·上海市静安区实验中学课时练习)已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱=___________.11.(2020·上海市静安区实验中学课时练习)已知︱x︱=2 ,︱y︱=3,则x +y =____________.12.(2020·上海市静安区实验中学课时练习)有理数a ,b在数轴上的位置如图所示,则a _____ b,︱a︱_____ ︱b︱.13.(2020·上海市静安区实验中学课时练习)︱x - 1︱ =3,则 x=_______.14.(2020·上海市静安区实验中学课时练习)如果 x < y < 0, 那么︱x ︱︱y︱.三、解答题15.(2020·上海市静安区实验中学课时练习)某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5,—15 ,+ 30 ,—20 ,—16 ,+ 14(1)若该车每百公里耗油 3 L ,则这车今天共耗油多少升?(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?16.(2020·上海市静安区实验中学课时练习)若,a b互为相反数,,c d互为倒数,m的绝对值为2,求a bcd ma b m+-+++的值.17.(2019·上海七年级课时练习)南非世界杯的比赛用球是由阿迪达斯公司生产,名为“Kopanya”的球,其质量是有严格规定的,检查5个足球的质量(单位:克),超过规定质量的克数记作正数,不足规定质量的克数记作负数,检查结果如下:(A)+15 (B)-10 (C)+20 (D)-30 (E)-15(1)指出哪个足球的质量最接近规定质量.(2)如果对两个足球作上述检查,检查的结果分别是m和n.请利用学过的绝对值的知识指出这两个足球中哪个好一些.5.3 绝对值(作业)一、单选题1.(2020·上海市静安区实验中学课时练习)下列说法错误的是()A.一个正数的绝对值一定是正数;B.任何数的绝对值都是正数C.一个负数的绝对值一定是正数;D.任何数的绝对值都不是负数【答案】B【分析】利用绝对值的意义分别判断后即可确定正确的选项.【详解】解:A 、一个正数的绝对值一定是正数是正确的,不符合题意; B 、0的绝对值是0,符合题意;C 、一个负数的绝对值一定是正数是正确的,不符合题意;D 、任何数的绝对值都不是负数是正确的,不符合题意. 故选B .【点睛】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2019·上海民办华二浦东实验学校月考)-5的绝对值的相反数是( ) A .5 B .15C .-5D .-15【答案】C【分析】首先求出−5的绝对值为5,然后根据5的相反数为−5,即可推出最后结果为−5. 【详解】解:∵|−5|=5,∴−5的绝对值的相反数是−5.故选:C .【点睛】本题主要考查绝对值的性质,相反数的定义,关键在于认真的进行分析解答. 3.(2018·上海嘉定区·七年级期中)已知实数a 在数轴上的位置如图所示,则化简11a -+的结果为…( )A .1.5B .aC .2a +D .2a -【答案】D【分析】先根据点a 在数轴上位置确定a 的取值范围,再根据绝对值的性质把原式化简即可. 【详解】∵由数轴上a 点的位置可知,0<a<1,∴a −1<0,a-+=1−a+1=2−a.故选D.∴11【点睛】本题考查数轴和绝对值,解题的关键是掌握数轴和绝对值.4.(2021·上海九年级专题练习)已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()A.|a+b|=a+b B.|a+b|=a-bC.|b+1|=b+1 D.|a+1|=a+1【答案】D试题分析:由数轴上a,b两点的位置可知b<0,1>a>0,且|b|>|a|,A、|a+b|=-(a+b)=-a-b,故选项A错误;B、|a+b|=-(a+b)=-a-b,故选项B错误;C、|b+1|=-(b+1)=-b-1,故选项C错误;D、|a+1|=a+1,故选项D正确.故选D.考点:1.绝对值;2.实数与数轴.5.(2021·上海九年级专题练习)数轴上点A到原点的距离为2.5,则点A所表示的数是()A.2.5 B.﹣2.5 C.2.5或﹣2.5 D.0【答案】C试题分析:在数轴上点A到原点的距离为2.5的数有两个,意义相反,互为相反数.即2.5和﹣2.5.解:在数轴上,2.5和﹣2.5到原点的距离为2.5.所以点A所表示的数是2.5和﹣2.5.故选C.点评:此题考查的知识点是数轴.关键是要明确原点的距离为2.5的数有两个,意义相反.6.(2011·上海长宁区·中考模拟)﹣3的绝对值是()A .﹣3B .3C .-13D .13【答案】B【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7.(2020·上海市静安区实验中学课时练习)下列说法错误的个数是 ( ) (1) 绝对值是它本身的数有两个,是0和1 (2) 任何有理数的绝对值都不是负数 (3) 一个有理数的绝对值必为正数 (4) 绝对值等于相反数的数一定是非负数 A .3 B .2C .1D .0【答案】A【分析】本题考查的是绝对值的性质.根据绝对值的性质得,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详解】(1)绝对值是它本身的数有正数和0,故本小题错误; (2)任何有理数的绝对值都不是负数,正确; (3)0的绝对值是0,但0不是正数,故本小题错误;(4)绝对值等于相反数的数是负数和0,负数和0统称非正数,故本小题错误; 综上,错误的有3个,故选A. 二、填空题8.(2021·上海九年级专题练习)当2x >时,化简:2x -=__________.【答案】2x -【分析】直接根据绝对值的性质求解即可.【详解】解:∵2x >,∴x-2>0,∴2x -=2x -.故答案为2x -.【点睛】本题考查了绝对值的意义,掌握非负数的绝对值为其本身、负数的绝对值为其相反数是解答本题的关键.9.(2020·上海市静安区实验中学课时练习)式子︱x +1︱的最小值是__ ,这时x 值为 ____ .【答案】0 -1【分析】根据一个有理数的绝对值非负可得所求式子的最小值,进而可得x 的值.【详解】解:一个数的绝对值最小是0,所以1x +的最小值是0,此时10x +=,所以1x =-. 故答案为:0,﹣1.【点睛】本题考查了有理数的绝对值,明确题意、熟知绝对值的意义是关键.10.(2020·上海市静安区实验中学课时练习)已知 ︱x +1 ︱与 ︱y -2︱互为相反数,则︱x ︱+︱y ︱=___________. 【答案】3【分析】本题考查的是相反数、非负数、绝对值的性质.先根据互为相反数的两个数的和为,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可得到结果.【详解】由题意得,|1||2|0x y ++-=,则10,20x y +=-=,1,2x y =-=,则||||3x y +=11.(2020·上海市静安区实验中学课时练习)已知︱x ︱=2 ,︱y ︱=3,则x +y =____________. 【答案】±1, ±5【分析】本题考查了绝对值的性质.先根据绝对值的性质其出x y 、的值,即可得到结果. 【详解】||2x =,2x ∴=±,||3y =,3y ∴=±,当2,3x y ==时,5x y +=, 当2,3x y ==-时,1x y +=-, 当2,3x y =-=时,1x y +=,当2,3x y =-=-时,5x y +=-,综上,1x y +=±或5x y +=±.12.(2020·上海市静安区实验中学课时练习)有理数a ,b 在数轴上的位置如图所示,则a _____ b , ︱a ︱_____ ︱b ︱.【答案】< >【分析】根据数轴上的点表示的数右边的总比左边的大,以及绝对值的意义即可得出结论. 【详解】解:由有理数a 、b 在数轴上的位置可得,a <b <0,|a|>|b|, 故答案为:<;>【点睛】本题考查了根据点在数轴的位置,确定有理数的大小,绝对值的大小,熟练掌握绝对值的意义是解决问题的关键.13.(2020·上海市静安区实验中学课时练习)︱x - 1︱ =3,则 x =_______ . 【答案】4或-2【分析】本题考查的是绝对值的性质和有理数的加法.根据绝对值的性质得,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【详解】|1|3x -=,13x ∴-=±,31x ∴=±+,4x =或 2.x =-14.(2020·上海市静安区实验中学课时练习)如果 x < y < 0, 那么︱x ︱ ︱y ︱. 【答案】>【分析】本题考查的是绝对值的性质。