稳定遗传的概念
高中生物遗传与变异知识点

高中生物遗传与变异知识点一、基因和染色体的结构与功能1.基因的结构:基因是由DNA分子组成的,由编码区和非编码区组成。
编码区是指直接参与蛋白质合成的DNA片段,非编码区则不参与蛋白质合成。
2.染色体的结构:染色体是由DNA和蛋白质组成的。
DNA在染色体上呈线状,固定在各个染色体上的特定位置。
3.基因的功能:基因是遗传信息的携带者,能够决定个体的性状及其遗传方式。
4.染色体的功能:染色体是遗传物质的载体,能够稳定遗传信息,并在细胞分裂过程中传递给后代细胞。
二、遗传变异的概念与类型1.遗传变异的概念:遗传变异指的是同一物种内个体之间在遗传物质上的差异。
2.遗传变异的类型:主要分为基因突变和染色体畸变两种。
-基因突变:指基因的突然改变,包括点突变、插入突变、缺失突变等。
例如,突变会导致基因的功能发生改变,进而影响个体的性状表现。
-染色体畸变:指染色体的数量和结构的异常,包括染色体数目异常和染色体结构异常。
例如,染色体缺失、重复、移位等畸变会引起染色体的不稳定和质量变化,从而影响个体的正常发育和生殖能力。
三、遗传规律与遗传定律1.孟德尔的遗传规律:孟德尔是遗传学的奠基人,他提出了两个基本遗传定律。
-第一定律:互斥性定律(简称分离定律):每个个体在生殖时只能传递给后代一半的遗传因子。
-第二定律:自由组合定律:每个基因对后代的遗传影响是相互独立的。
2.随机联合定律:指在两个或多个基因进行遗传时,基因之间以及其中一些基因的不完全显性和不完全隐性等特征的组合是随机的。
3.完全显性和不完全显性:完全显性是指一个等位基因(版本)能够完全表达其遗传信息,而不完全显性是指一个等位基因只能部分表达其遗传信息。
四、遗传特征的分离与联合1.分离:指两个不同表型的个体交配后,生产的后代表现出两个表型中的一个。
2.联合:指两个不同表型的个体交配后,生产的后代表现出两个表型的特征,即混合了两个表型的特征。
五、遗传的分子基础1.DNA的结构与复制:DNA由磷酸、糖和碱基组成,形成双螺旋结构。
林木育种名词解释

林木育种名词解释第一章绪论1、林木育种学:是研究林木群体的遗传结构、改良方法、优良品种(类型)的选育与繁殖的理论及技术的科学。
2、个体改良:以细胞学为基础,以改变个体的基因型,培育出优良个体为目的的育种方法。
3、群体改良:以群体遗传学、数量遗传学为基础,以改变群体的基因频率,使群体平均数得以提高,培育出一个优良群体为目的的育种手段。
第二章林木选育技术基础1、物种(species):物种是由形态相似的个体组成,同种个体间可以自由交配,并能产生可育的后代,而不同种间杂交则不育。
(林奈-瑞典科学家)2、形态学种:指分类学家在物种分类时采用的方法,主要形态上相似,有一定的分布区域的群体称为一个种。
3、生物进化(evolution):指生物在遗传、变异与自然选择作用下的演变发展、物种淘汰和物种产生的过程。
4、种群或居群(population):由分布在一定地理范围内的个体组成的群体。
5、地理小种(geographic race):由遗传性状相似的个体组成的种内分类单位,有共同的祖先,占有能够适应的特定地域。
6、生态型(ecotype):同一物种内因适应不同生境而表现出具有一定结构或功能差异的不同类群。
7、地理(种源)变异:一个树种分布在广大地区,由于突变、环境的自然选择和隔离的作用,分化并产生了种内不同的地理生态种群,这就是地理(或种源)变异。
这种变异是可以遗传的变异。
8、立地间的变异:在一个种源区内,由于立地类型的差异而产生的一些变异。
9、林分间的变异:在相似的立地条件下不同林分间的差异。
10、个体间的变异:在同一林分中不同个体间的差异。
11、群体:指一群个体间可以进行随机交配的许多个体的总称。
12、群体的遗传结构:群体中各种基因的频率,以及由不同的交配机制所形成的各种基因型频率在数量上的分布特征。
13、基因型频率(genotype frequency):在一个群体中,某一特定的基因型个体占个体总数的比率。
遗传学名词解释

遗传:亲代与子代之间相似的现象——保持物种的相对稳定性。
变异:亲代与子代之间、子代个体之间存在的差异——保证物种的进化和新品种的选育。
生物进化和新品种选育三大要素:遗传、变异、选择。
(1)遗传学之父:孟德尔常染色质:单一序列DNA或中度重复序列DNA,是具有转录活性、富含基因的染色体。
异染色体:间期核内聚缩程度较高,并对碱性染料着色较深的染色质。
(9)(染色体识别)着丝粒位置——最显著特征,随体的有无及大小——重要形态特征。
分类:中间着丝粒染色体、近中着丝粒染色体、近端着丝粒染色体、顶端着丝粒染色体。
同源染色体:形态和结构相同的一对染色体。
非同源染色体:一对同源染色体与另一对形态和结构不同的染色体之间互称。
(10)大肠杆菌分布广泛,是微生物遗传学和分子遗传学研究的模式材料。
——遗传背景清楚、技术操作简单、培养简单方便。
细胞周期:细胞分裂增殖的周期,是细胞从上一次分裂结束到下一次分裂结束所经历的时期。
间期:DNA合成前期(G1)、DNA合成期(S)、DNA合成后期(G2)。
分裂期(M)。
时间:S较长,M最短。
(16)无丝分裂:也称直接分裂,是指分裂细胞的染色体复制,细胞增大,当细胞体积增大到一定程度,细胞核拉长,缢裂成两部分,同时细胞质分裂,形成两个子细胞。
——低等植物如细菌。
有丝分裂:又称间接分裂,是高等植物细胞分裂的主要方式,包含细胞核分裂和细胞质分裂,特点是有纺锤体和染色体出现。
前中后末期。
前期时间最长。
减数分裂:又称成熟分裂,是性母细胞成熟时,配子形成过程中发生的一种特殊形式的有丝分裂。
减数第一次分裂前期可分为细线期、偶线期(联会二价体)、粗线期(四合体交叉交换)、双线期、终变期。
减数第一次分裂后形成的两个子细胞叫做二分体,第二次分裂后形成的四个子细胞叫做四分体或四分孢子。
减数分裂是胚子形成过程中的必要阶段。
(18)孟德尔定律:分离规律和独立分配规律。
性状:指生物体所表现的形态特征和生理特征的总称。
【生物会考遗传知识点】 高中生物会考知识点

【生物会考遗传知识点】高中生物会考知识点遗传规律都是高中生物的重难点。
这一模块有很多专业名词和计算公式,所以会导致很多同学混淆概念或者套用到错误的公式。
接下来小编为你整理了生物会考遗传知识点,一起来看看吧。
生物会考遗传知识点【1】1.现代科学研究证明,遗传物质除DNA以外还有RNA.因为绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。
2.DNA是使R型细菌产生稳定的遗传变化的物质,而噬菌体的各种性状也是通过DNA 传递给后代的,这两个实验证明了DNA是遗传物质。
3.遗传信息的传递是通过DNA分子的复制来完成的。
4.碱基对排列顺序的千变万化,构成了DNA分子的多样性,而碱基对的特定的排列顺序,又构成了每一个DNA分子的特异性。
这从分子水平说明了生物体具有多样性和特异性的原因。
5.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行。
6.基因是有遗传效应的DNA片段,基因在染色体上呈直线排列,染色体是基因的载体。
7.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故。
8.基因的表达是通过DNA控制蛋白质的合成来实现的。
9.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息。
(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。
10.DNA分子的脱氧核苷酸的排列顺序决定了信使RNA中核糖核苷酸的排列顺序,信使RNA中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质的结构和功能的特异性,从而使生物体表现出各种遗传特性。
11.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1.12.生物的一切遗传性状都是受基因控制的。
一些基因是通过控制酶的合成来控制代谢过程;基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状。
遗传概率计算

遗传几率计算题历来是高中生物学教学上的一个难点,也是众多学生惧怕的题目。
遗传几率计算题以其多变的题型,丰富的考查手段,全新的试题情景和能很好的考查学生的能力而备受高考命题专家青睐。
可以说每年的高考或多或少都有遗传几率题,遗传几率的计算能力应该是应试学生必须具备的一项基本技能。
怎样在课堂教学中突破遗传几率的难点?下面本人以一些课堂教学的实例来进行探讨。
一、孟德尔豌豆杂交实验的相关计算产生的配子种题目:纯种黄圆和绿皱的豌豆杂交(两对相对性状独立遗传),F1类有多少,F中基因型、表现型的种类是多少?2YyRr先分拆成Yy和Rr产生配子再组合。
Yy产生Y、y两种配子,方法:把F1Rr产生R、r两种配子,合起来是2×2=4种。
变式1:基因型为AaBbCc、AaBbCCDdee、AaBbCcX H X h或AaBbCcX H Y的个体产生的配子种类?(按上面的方法算分别是8、8、16、32种)作用:能有效的区分某基因型个体产生的配子种类2n中的n是什么意思,n是等位基因的对数。
中基因型、表现型的种类可以先把两对等位基因分拆按基因分离定律求出求F2每对等位基因杂交后代的基因型、表现型数目再组合。
Yy×Yy→基因型:YY Yy yy 表现型:黄绿 Rr×Rr→基因型:RR Rr rr表现型:圆皱比例:1 :2 :1 3: 1 1 : 2 : 1 3 : 1种类:基因型3(YY Yy yy)×3(RR Rr rr)=9种,表现型2(黄绿)×2(圆皱)=4种。
变式2:AaBbCc×AaBbCc AaBbCcX H X h×AaBbCcX H X h杂交后代的基因型种类,表现型种类?按照上述方法3(AA Aa aa)×3(BB Bb bb)×3(CC Cc cc)=27,表现型2×2×2=8,同理另一杂交组合后代的基因型、表现型种类是:3×3×3×3=81,2×2×2×2=16.作用:可以推导出杂交后代基因型种类用3n表示,表现型用2n表示,同时也可以引导学生用分支法计算后代几率比棋盘法要快和方便得多,特别3对以上的相对性状的杂交。
《遗传学》课件ppt

谢谢聆听
长发育异常、生殖障碍以及多种躯体畸形等问题。对于染色体疾病的诊断,通常需要进行遗传学咨询、家族史 调查、临床表现观察以及遗传学检测等综合评估。治疗方面,目前尚无根治方法,但可以通过对症治疗、康复 训练以及社会心理支持等手段,提高患者的生活质量和社会适应能力。
03 基因表达调控与表观遗传学
基因表达调控机制
阐述基因歧视的概念、表现形式 和危害,包括在就业、保险、教 育等领域的歧视现象。
原因分析
分析基因歧视产生的社会、文化 和心理等方面的原因,以及现有 法律法规在防止基因歧视方面的 不足。
应对措施建议
提出防止基因歧视的政策建议, 包括完善法律法规、加强宣传教 育、推动基因科技合理应用等。
辅助生殖技术中伦理道德问题思考
染色体的形态结构
染色体的功能
染色体是遗传物质的主要载体,通过 复制、转录和翻译等过程,控制生物 体的遗传性状。
染色体在细胞分裂的不同时期呈现不 同的形态,包括染色质丝、染色单体、 四分体等。
染色体数目异常及遗传效应
1 2
染色体数目异常的类型 包括整倍体和非整倍体,如单体、三体、多倍体 等。
染色体数目异常的原因 主要是由于细胞分裂过程中染色体的不分离或丢 失所致。
高通量测序技术
利用微流控边测序。
第三代测序技术
基于单分子荧光测序或纳米孔测序,无需PCR扩增,具有读长长、速 度快、成本低等优点。
生物信息学在分子遗传学中应用
基因组组装与注释 利用生物信息学方法对基因组序列进行组装、拼接和注释, 解析基因结构和功能。
个性化医疗
基于患者的基因组信息, 制定个性化的治疗方案 和用药指导,提高治疗 效果和减少副作用。
基因治疗
生物概念

③染色体变异:指可以用显微镜直接观察到的比较明显的染色体变化,如染色体结构的改变、染色体数目的增减等。
27.单倍体、二(多)倍体与单倍体基因组
①单倍体:体细胞中含有本物种配子染色体数目的个体,这种个体可能含有一个或多个染色体组;由配子发育而来的个体不管含有几个染色体组,都叫单倍体。
②原生质层:包括细胞膜、液泡膜以及这两层膜之间的细胞质,用在植物细胞的渗透吸水中。
3.生物膜与生物膜系统
①生物膜:细胞膜、核膜以及内质网、高尔基体、线粒体膜等,这些膜的化学组成相似,基本结构大致相同,统称为生物膜。
②生物膜系统:细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围成的细胞器,在结构、功能上是紧密联系的统一整体,它们形成的结构体系叫生物膜系统。
②二(多)倍体:由受精卵(合子)发育而成的个体,体细胞中含有两个(三个或三个以上)染色体组,就叫几倍体。
③单倍体基因组:a.无性别区分的生物:一个染色体组的染色体上所有的基因。b.有性别区分的生物:常染色体的一半+XY(ZW)性染色体上的所有基因。
28.物种、种群与种群的基因库
①物种:指分布在一定的自然区域,具有一定的形态结构和生理功能,在自然状态下能够相互交配和繁殖,并能产生出可育后代的一群个体。不同物种之间存在生殖隔离。
9.细胞株与细胞系
①细胞株:原代培养的细胞中有极少数细胞能度过生长停滞及衰老死亡的危机而继续传下去,这些存活的细胞一般能传代40~50代,这种传代细胞是细胞株。这种细胞的遗传物质没有发生改变。
②细胞系:细胞株传至50代以后有部分细胞的遗传物质发生改变并带有癌变的特点,有可能在培养条件下无限制地传代下去,这种传代细胞称为细胞系。
生物是如何将遗传信息稳定的遗传给下一代的

一生物是如何将遗传信息稳定的遗传给下一代的?①染色体是遗传物质的载体, 每一种生物的染色体数目是恒定的. 多数高等动植物都是二倍体, 即每一体细胞中有两组同样的染色体( 有时性染色体可以不成对) . 体细胞不断增殖是通过有丝分裂来完成的, 分裂形成的两个新细胞的染色体在数目和形态上与原来体细胞完全一样; 减数分裂是生殖细胞形成的分裂方式, 通过减数分裂, 生殖细胞中染色体数目减少了一半, 精卵结合后的受精卵又恢复了二倍体染色体数, 保证了亲代、亲代与子代之间染色体数目的相对恒定.②DNA 分子具有与众不同的物征性的、稳定的、三维空间结构. DNA 的两条多核苷酸链相互缠绕形成双螺旋结构, 糖基和磷酸根形成DNA 的骨架, 位于螺旋外侧; 扁平的碱基分子碟子一样重叠在一起, 面对着螺旋体的中心. 双螺旋的反向平行、碱基堆积力及相应碱基对之间的氢键作用, 尤其稳定了DNA 分子的双螺旋结构.③ DNA 分子结构中储存着遗传信息, 它的复制是以半保留方式完成的. 自我复制是指以亲代DNA 分子为模板合成子代DNA 分子的过程. 1958 年, Mesel.. son 和Stahl 研究了经15N 标记了三个世代的大肠杆菌DNA, 首次证明了DNA 的半保留复制. 研究结果说明, 新合成的两个DNA 分子完全一样, 其中都含有一条亲链和一条新合成的子链, 即半保留复制. 体细胞和性母细胞在分裂过程中都要进行这种复制, 使亲代细胞的遗传信息准确、均等的传递给子代细胞, DNA 的这种半保留复制保证了DNA 在代谢上的稳定性. 经过许多代的复制, DNA 多核苷酸链仍可保持完整, 存在与后代而不被分解掉. 这种稳定性与DNA 的遗传功能是相符的.④遗传的中心法则和碱基互补配对原则. 由DNA 合成DNA 及RNA 的过程, 使得DNA 分子中储存的遗传信息( 碱基序列) 变为RNA 分子的碱基顺序, 碱基互补配对具有严格的对应关系, A= T ( 或U ) , G= C, 确保遗传信息的准确传递. 进而又以RNA 为模板合成具有特异氨基酸顺序的与亲代相同的蛋白质. 这种遗传信息从DNA 传递给RNA, 再从RNA 传递给蛋白质的转录和翻译过程, 以及遗传信息从DNA 传递给DNA 的复制过程, 即遗传的中心法则!. 随着科学实验的进展, 中心法则! 以有新发展, 遗传信息还可由RNA 传向RNA, 由RNA 传向DNA , 这在遗传信息的传递上开辟了一条新的途径, 中心法则! 及其发展保证了遗传信息的准确传递和表达.⑤遗传密码与氨基酸的对应关系及突变与修复。