遗传平衡定律名词解释
进化生物-名词解释

第一讲绪论1、生物进化论:生物进化论是研究生物界进化发展的规律以及如何运用这些规律的科学。
主要研究对象是生物界的系统发展,也包括某一物种2、进化生物学:是研究生物进化的科学,不仅研究进化的过程,更重要的是研究进化的原因、机制、速率和方向。
〔研究生物进化的科学,包括进化的过程、证据、原因、规律、演说以及生物工程进化与地球的关系等。
〕3、灾变论:认为地球在不同时期,不同地点发生了巨大的“灾难”,消灭了当时的动植物,以后由其他地方迁来的新的类型,所以不同地层有不同化石的类型。
〔多次创造,每次均不同。
认为生物的改变是突然发生的,是整体地消灭和整体地重新被创造的。
反对一个物种从另一个物种演变而来的思想。
〕4、中性突变:中性突变是指不影响蛋白质功能的突变,也即既无利也无害的突变,如同工突变和同义突变。
5、进化: 进化指事物由低级的、简单的形式向高级的、复杂的形式转变过程。
广义进化是指事物的变化与发展。
涵盖了天体的消长,生物的进化,以及人类的出现和社会的发展。
6、生物进化: 生物进化就是生物在与其生存环境相互作用的过程中,其遗传系统随时间而发生一系列不可逆的改变,并导致相应的表型改变,在大多数情况下这种改变导致生物总体对其生存环境的相对适应。
7、神创论: 〔物种不变论〕地球上的生物,都是上帝按照一定计划和一定目的,一下子创造出来的。
并且当初创造后物种没有实质性的变化,物种数也无增减,各种之间也无亲缘关系。
在18世纪的欧洲占统治地位第二讲生命及其在地球上的起源1、自我更新:生物的自我更新世一个具有同化与异化两种作用的新陈代谢过程。
2、熵:是用来表示某个体系混乱程度的物理量。
3、耗散结构:是指开放系统远离平衡态时出现的有序结构。
4、团聚体:20世纪50年代奥巴林曾将白明胶水溶液和阿拉伯胶水溶液混合,发现混合后使原本澄清的液体变得浑浊了,取少许制片,显微镜下观察发现了许多大小不等的小滴,把它们称为团聚体。
5、类蛋白质微球体:fox把多种氨基酸干热聚合形成的酸性类蛋白质放入稀薄的盐溶液中冷却,或将其溶于水使温度降低到0℃,在显微镜下观察会看到大量直径为0.5~3微米的均一球状小体,即类蛋白质微球体。
遗传学名词解释 复习

遗传学名词解释序言1. 遗传(heridity):指世代间(子代与其父母)及子代兄弟姊妹(同胞)间相似的现象。
2. 变异(variation):指世代间(子代与其父母)及子代兄弟姊妹(同胞)间的差异。
3. 遗传学(Genetics):就是研究生物的遗传与变异的科学。
从本质上讲,它是研究基因的结构、组织、传递、表达和变异等问题的生物学分支学科。
遗传学三大定律孟德尔遗传定律1.Mendel’s law of segregation孟德尔分离定律——即遗传第一定律,在配子形成过程中,成对的遗传因子相互分离,结果,如在杂合体中,半数的配子带有其中的一个遗传因子。
2.character or trait 性状——遗传学中把生物体所表现的形态结构,生理特征和行为方式等统称为性状。
3.dominant character 显性性状——具有相对性状的双亲杂交所产生的子一代中得到表现的那个亲本性状。
控制显性性状的基因常用大写字母表示*。
4.recessive character 隐性性状——具有相对性状的双亲杂交所产生的子一代中没有表现的那个亲本性状。
控制隐性性状的基因常用小写字母表示。
5.unit character单位性状——遗传分析中,对于生物表现出的不可再划分的特定性状。
单位性状可由少到一个基因座位控制。
6.relative character 相对性状——对于遗传分析中的单位性状,同一性状的不同表现类型称为相对性状。
7.parent generation 亲代&first filial generation 子一代——亲代杂交所产生的下一代(用符号F1表示)。
8.reciprocal cross反交,用甲乙两种具有不同遗传特性的亲本杂交时,如以*基因的符号在印刷上一般用斜体表示。
甲做母本,乙做父本的杂交为正交(direct cross),则以乙做父本的杂交为反交。
9.self-cross 自交——雌雄同体的生物,同一个体上的雌雄交配,常于植物。
普通生物学名词解释

普通生物学名词解释新陈代谢:生物体不断地吸收外界的物质,这些物质在生物体内发生一系列化,最后成为代谢过程的最终产物而被排除体外。
同化作用:又称为合成代谢,从外界摄取物质和能量,将它们转化为生命本身物质和贮存在化学键中的化学能。
异化作用:又称为分解代谢,分解生命物质,将能量释放出来,供生命活动之用应激性:生物能感受到刺激并作出有利于保持其体内稳态,维持生命活动的应答。
适应:生物有自己特有的生活环境,它的结构和功能的总是适合于在该环境下生存和延续。
稳态:生物对外界环境变化的内部适应。
进化:遗传变异和自然选择的长期作用导致的生物由低等到高等、由简单到复杂的逐渐演变过程。
双名法:用两个拉丁名作为物种的学名,第一个名字是署名。
第二个名字是种名。
细胞:所有生物体的基本结构单位和功能单位。
生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞器的作用,是细胞,细胞器和其环境接界的所有膜结构的总称。
细胞骨架:贯穿在整个细胞质中的网状结构,最显著的作用为维持细胞形状,并控制细胞运动。
由三类蛋白质纤维(微管、微丝、中间丝)组成。
胞间连丝:相邻细胞的壁上有小孔,细胞质通过小孔彼此相通。
这种细胞间的连接成为胞间连丝(植物细胞特有的连接方式)。
细胞连接:是指在相邻细胞之间形成的特定的连接,在细胞紧密靠拢的组织(如上皮组织)中常见。
动物的细胞连接主要有三种类型:桥立、紧密连接、间隙连接。
单纯扩散:物质跨膜转运形式的一种。
脂溶性物质顺着细胞膜内外侧浓度差转运的过程,称为单纯扩散。
被动运输:离子或小分子在浓度差或电位差的驱动下顺电化学梯度穿膜的运输方式。
易化扩散:浓度梯度的存在,水和许多亲水的溶质在多种转运蛋白的帮助下,被动地被转运过膜,这种现象被称为细化扩散。
主动转运:转运蛋白利用细胞提供的代谢能使溶质逆浓度梯度而被转运,从低浓度一侧穿过质膜而达到高浓度一侧,这种跨膜转运称为主动运输。
胞吞与胞吐:胞吞:细胞通过质膜形成内向的小泡的方式,吸收大分子和其他大的颗粒,类型分为:吞噬、胞饮和受体介导的胞吞。
种子生产学试题名词解释

1.种子生产:按照种子生产原理和技术操作规程繁殖常规种子和杂交种子的过程。
2.种子生产学:研究种子生产原理和技术及种子生产过程中质量控制的一门应用学科。
3.自花授粉:同一朵花的花粉传播到同一朵花雌蕊柱头上或同株的花粉传播到同株花的雌蕊柱头上的授粉方式。
4.异花授粉:雌蕊的柱头接受异株花粉的授粉方式;5.常异花授粉:是指某作物既可以自花授粉又能异花授粉。
6.自交不亲和性:具有完全花并可形成正常雌雄配子的植物,但缺乏授粉结实能力的一种自交不育性。
7.无融合生殖:植物性细胞的雌雄配子,不经过正常受精,两性配子融合而形成种子繁衍后代的方式。
8.无性系:一个单株通过无性繁殖产生的后代群体。
9.纯系学说:在一个由若干个纯系组成的群体中选择是有效的,在纯系内选择是无效的。
10.基因频率:某个等位基因占该位点等位基因总数的比例。
11.基因型频率:在某一群体中,某个特定基因占该群体所有基因型总数的比例。
12.遗传平衡定律:在一个大的随机交配的全体内,如果没有突变、选择和迁移因素的干扰,基因频率和基因型频率在时代间保持不变。
13.常规品种:除了一代杂交品种及亲本和无性系品种以外的品种。
14.常规品种的原种生产方法:低温贮藏繁殖法;循环选择繁殖法;株系循环繁殖法;自交混繁法。
15.职务育种:指执行本单位的任务或者主要是利用本单位的物质条件所育成的品种。
16.植物新品种的新颖性:指申请品种权的植物新品种在申请日前改名品种的繁殖材料未被销售,或者经育种者许可,在中国境内销售该品种的繁殖材料未超过一年;在中国境外销售藤本植物、林木、果树和观赏树木品种繁殖材料未超过6年,销售其他植物品种繁殖材料未超过4年。
17.品种混杂:一个品种中混进了其他品种甚至是其他作物的植株或种子或上代发生天然杂交到最后后代类型出现变异类型的现象。
18.品种退化:品种的某些经济性状劣变的现象,如:生活力降低,抗逆性下将,产量和品质下降。
19.循环选择繁殖法:从某一品种的原始群体中或其它繁殖田中选择单株,通过个体选择、分系比较、混系繁殖生产原种种子的方法。
遗传学名词解释

遗传学复习资料1、孟德尔定律:是G.J.孟德尔根据豌豆杂交实验的结果提出的遗传学中最基本的定律,包括分离定律和独立分配定律。
分离定律指一对遗传因子在杂合状态下并不相互影响,而在配子形成中又按原样分配到配子中去。
独立分配定律指两对或两对以上的基因在配子形成过程中的分配彼此独立。
由于雌雄配子的随机组合,因而在子代中出现各种性状的各种组合,而且按一定的比例出现。
2、转导:由噬菌体将一个细胞的基因传递给另一细胞的过程。
它是细菌之间传递遗传物质的方式之一。
其具体含义是指一个细胞的DNA或RNA通过病毒载体的感染转移到另一个细胞中。
3、转化:通常指正常细胞经各种致癌剂处理后成为癌细胞的过程。
也可指因外源基因导入使基因型和表型发生永久性遗传改变的现象。
4、性导:细菌细胞在接合时,携带的外源DNA整合到细菌染色体上的过程。
通常利用F‘因子(带有部分细菌染色体的性因子)来形成部分二倍体。
5、条件致死突变:在一定条件下表现致死效应,但在其它条件下能够存活的类型。
6、高频重组体:F因子整合在染色体上的细菌称为高频重组细菌(Hfr)。
7、质粒:是细菌拟核裸露DNA外的遗传物质,为双股闭合环形的DNA,存在于细胞质中,质粒编码非细菌生命所必须的某些生物学性状,如性菌毛、细菌素、毒素和耐药性等。
质粒具有可自主复制、传给子代、也可丢失及在细菌之间转移等特性,与细菌的遗传变异有关。
8、位点专一性重组:这类重组在原核生物中最为典型。
这种重组依赖小范围的同源序列的联会,重组也只限于在这一小范围内,其重组事件也只涉及特定位置的短同源区或是特定点碱基序列之间。
重组时发生精确的切割,连接反应,DNA不失去不合成。
俩个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中,因此将这种重组又称为整合式重组。
9、同源重组:是指发生在非姐妹染色单体之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。
10、染色体重复:染色体上增加了某片段DNA序列的一种畸变。
遗传学名词解释

等位基因:位于一对同源染色体的相同位置上控制着相对性状的一对基因。
复等位基因:在同源染色体上相对应的基因座位上存在两种以上不同形式的等位基因,称为复等位基因。
是由于基因突变形成的。
反应规范:指某一基因型在不同环境中所显示出的表型变化范围,即基因型决定着个体对这种或那种环境条件的反应。
表现度:指杂合体在不同的遗传背景和环境条件的影响下,个体间基因表达的变化程度。
外显率:指一定基因型个体在特定的环境中形成预期表型的比例,一般用百分率表示。
表型模写:指环境改变引起的表型改变,有时会类似某基因引起的表型变化。
不完全显性:又称半显性,其特点是杂合子表现为双亲的中间性状。
镶嵌显性:特点是在后代的同一个体的不同部位上分别表现出双亲的表型。
并显性:特点是在后代个体的同一组织同一空间表现了双亲各自的特点。
致死基因:指能使携带者个体不能存活的等位基因。
互补作用:是指两对或两对以上独立的等位基因分别处于纯合显性或杂合状态时,共同决定着一种性状的发育。
当只有一对基因是纯合显性或杂合状态,或者两对基因都是隐性时,则表现为另一种性状。
这种基因互作的类型称为互补作用。
积加作用:是指由几个非等位基因共同决定着某一性状的表现,并且每一个基因都只有部分的作用,其单独存在时分别表现相似的性状。
重叠作用:是指多对非等位基因的显性基因只要存在任何一个,都能表现出同样的表型,只有当显性基因都不存在时,才表现出另一种表型。
修饰基因:有些基因本身并不控制生物性状的表型,但它可以影响其他基因的表型效应,这些基因称为修饰基因。
上位效应:是指两对独立遗传基因共同作用于一对性状,其中一对等位基因的表现受到另一对非等位基因的遮盖作用,随着后者不同而不同的现象。
起遮盖作用的如果是受显性基因的控制,则称为显性上位效应,如果起遮盖作用的是受一对隐性基因的控制,则称为隐性上位效应。
染色体作图:研究连锁基因间的排列顺序和距离通常要分析减数分裂的产物,采用测交方法可以通过表型直接检测出基因交换类型。
医学遗传学名词解释

第一章绪论无第二章遗传的细胞学基础1.常染色质:间期核内纤维折叠盘曲程度小、分散度大、能活跃地进行转录的染色质。
2.异染色质:间期核内纤维折叠盘曲紧密、呈凝聚状态,一般无转录活性的染色质,又分为结构异染色质和兼性异染色质两大类。
3.兼性异染色质:是在特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝缩状态的异染色质,二者的转化可能与基因的表达调控有关。
4.Lyon假说:(1)雌性哺乳动物体细胞内仅有一条X染色体有活性,其他的X染色体在间期细胞核中螺旋化而呈异固缩状态的X染色质,在遗传上失去活性。
(2)失活发生在胚胎发育的早期(人胚第16天);在此之前所有体细胞中的X染色体都具有活性。
(3)X染色体的失活是随机的,但是是恒定的。
5.剂量补偿:由于正常女性体细胞中的1条X染色体发生了异固缩,失去了转录活性,这样就保证了男女性个体X染色体上的基因产物在数量上基本一致,这称为X染色体的剂量补偿。
第三章遗传的分子基础1.外显子和内含子:真核生物的基因为断裂基因,即结构基因是不连续排列的,中间被不编码的插入序列隔开,编码序列称为外显子,编码序列中间的插入序列称为内含子。
2.单一序列和高度重复序列:单一序列是在一个基因组中只出现一次或少数几次,大多数编码蛋白质和酶类的基因即结构基因为单一序列。
重复序列是指在基因组中有很多拷贝的DNA序列,有些重复序列与染色体的结构有关。
3.基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。
4.转换和颠换:转换是指一个嘌呤被另一个嘌呤所取代,或是一个嘧啶被另一个嘧啶所取代。
颠换指嘌呤取代嘧啶,或嘧啶取代嘌呤。
5.同义突变:是指碱基替换使某一密码子发生改变,但改变前后的密码子都编码同一氨基酸,实质上并不发生突变效应。
6.错义突变:是指碱基替换导致改变后的密码子编码另一种氨基酸,结果使多肽链氨基酸种类和顺序发生改变,产生异常的蛋白质分子。
7.无义突变:是指碱基替换使原来为某一个氨基酸编码的密码子变成终止密码子,导致多肽链合成提前终止。
遗传学名词解释总结

同源染色体:大小、形态结构相似,代谢和遗传功能相同的染色体。
一条来自父方,一条来自母方。
真实遗传:子代形状永远和亲代形状相同的遗传方式。
微效基因:是指控制数量性状、每个基因对表现型影响较小的基因遗传漂变:在一个小群体内,每代从基因库抽样形成下一代个体的配子时,就会产生较大的误差,由这种误差引起群体基因频率的偶然变化,叫做随机遗传漂变或简称为遗传漂变。
平衡致死品系:致死基因不能以纯合状态保存,因为纯合个体是致死的,所以只有以杂合状态保存.这种永远以杂合状态保存下来,不发生分离的品系叫做永久杂种,也叫做平衡致死品系。
母性影响:前定作用正反交的结果不同,子代表型受到母本基因型的影响而和母本的表型一样的现象转座子:细胞中能自发的改变自身位置,从染色体的一个位置转移到另一个位置的一段DNA 顺序。
移码突变:DNA分子中增减一个或几个核苷酸(不是3个),是移码编组移动而产生的突变。
顺反效应:同一基因内部的不同突变遗传效果不同,顺式排列(a1a2/++)产生野生型。
反式排列(a1+ / +a2)产生突变型。
局限性转导:由温和噬菌体进行的转导。
基因频率:是指在一个种群基因库中,某个基因占全部等位基因数的比率基因型频率指一个种群某种基因型的所占的百分比自发突变:在自然条件下发生的突变诱发突变:根据突变产生大的机理,人为利用化学、物理因素处理诱发基因突变累加作用:每个有效基因的作用按一定数值与尽余值(无效基因的基本值)相加或相减。
倍加作用:每个有效基因的作用按一定数值与尽余值相乘或相除。
完全连锁:在同一染色体上的连锁基因100%联系在一起传递到下一代如雄果蝇、雌蚕。
不完全连锁:由于同源染色体之间的交换,使位于同一对染色体上的连锁基因发生部分的重新组合,重组型远远小于亲本型,这种现象被称为不完全连锁。
转化:一个细菌品系的细胞由于吸收了另一细菌品系分离得来的DNA(称为转化因子)而发生的遗传性状改变的现象。
转导:以病毒作为载体把遗传信息从一个细菌细胞传到另一个细菌细胞的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传平衡定律:在一定条件下,群体的基因频率和基因型频率在一代一代繁殖传代中保持不变,即law
of
genetic
eauilibriam。
条件:(1)在一个很大的群体;(2)随机婚配而非选择性婚配;(3)没有自然选择;(4)
没有突变发生;(5)没有大规模迁移。
种群的基因频率能否保持稳定呢英国数学家哈代(G.H.Hardy,1877—1947)和德国医生温伯格(W.Weinberg,1862—1937)分别于1908年和1909年独立证明,如果一个种群符合下列条件:1.种群是极大的;2.种群个体间的交配是随机的,也就是说种群中每一个个体与种群中其他个体的交配机会是相等的;3.没有突变产生;4.种群之间不存在个体的迁移或基因交流;5.没有自然选择,那么,这个种群的基因频率(包括基因型频率)就可以一代代稳定不变,保持平衡。
这就是遗传平衡定律,也称哈代-温伯格平衡。
遗传平衡定律的推导包括三个步骤:1.从亲本到所产生的配子;2.从配子的结合到子一代(或合子)的基因型;3.从子一代(或合子)的基因型到子代的基因频率。
下面用一个例子来说明。
在一个兔种群中,有一半的兔体内有白色脂肪,基因型为YY,另一半的兔体内有黄色脂肪,基因型为yy。
那么,这个种群中的基因Y和基因y的频率都是0.5。
在有性生殖过程中,在满足上述五个条件的情况下,这个种群产生的具有Y和y基因的精子的比例是0.5:0.5,产生的具有Y和y基因的卵细胞的比例也是0.5:0.5。
因此,子一代中基因Y和基因y的频率不变,仍然是0.50:0.50。
如果继续满足上述五个条件,这个种群中基因Y和基因y的频率将永远保持0.50:0.50,而基因型YY、Yy、yy的频率也会一直保持0.25、0.50和0.25。
如果用p代表基因Y的频率,q代表基因y的频率。
那么,遗传平衡定律可以写成:
(p+q)^2=p^2+2pq+q^2=1
p^2代表一个等位基因(如Y)纯合子的频率,q^2代表另一个等位基因(如y)纯合子的频率,2pq代表杂合子(如Yy)的频率。
如果一种群达到了遗传平衡,其基因型频率应当符合p^2+2pq+q^2=1。
遗传平衡所指的种群是理想的种群,在自然条件下,这样的种群是不存在的。
这也从反面说明了在自然界中,种群的基因频率迟早要发生变化,也就是说种群的进化是必然的。